Articles | Volume 35, issue 4
https://doi.org/10.5194/ejm-35-523-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-523-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Some thoughts about eclogites and related rocks
Laboratory for Crustal Petrology, Department of Geology, University of
Maryland, College Park, MD 20742, USA
Related subject area
Metamorphic petrology
Comparison between 2D and 3D microstructures and implications for metamorphic constraints using a chloritoid–garnet-bearing mica schist
Sedimentary protolith and high-P metamorphism of oxidized manganiferous quartzite from the Lanterman Range, northern Victoria Land, Antarctica
Metamorphic evolution of sillimanite gneiss in the high-pressure terrane of the Western Gneiss Region (Norway)
Halogen-bearing metasomatizing melt preserved in high-pressure (HP) eclogites of Pfaffenberg, Bohemian Massif
Île Dumet (Armorican Massif, France) and its glaucophane eclogites: the little sister of Île de Groix
Retrogression of ultrahigh-pressure eclogite, Western Gneiss Region, Norway
Electron backscatter diffraction analysis combined with NanoSIMS U–Pb isotope data reveal intra-grain plastic deformation in zircon and its effects on U–Pb age: examples from Himalayan eclogites, Pakistan
H2O and Cl in deep crustal melts: the message of melt inclusions in metamorphic rocks
Very-low-grade phyllosilicates in the Aravis massif (Haute-Savoie, France) and the di-trioctahedral substitution in chlorite
Partial melting of amphibole–clinozoisite eclogite at the pressure maximum (eclogite type locality, Eastern Alps, Austria)
Petrological study of an eclogite-facies metagranite from the Champtoceaux Complex (La Picherais, Armorican Massif, France)
Corundum-bearing and spinel-bearing symplectites in ultrahigh-pressure eclogites record high-temperature overprint and partial melting during slab exhumation
Metamorphic P–T paths of Archean granulite facies metasedimentary lithologies from the eastern Beartooth Mountains of the northern Wyoming Province, Montana, USA: constraints from quartz-in-garnet (QuiG) Raman elastic barometry, geothermobarometry, and thermodynamic modeling
Detrital garnet petrology challenges Paleoproterozoic ultrahigh-pressure metamorphism in western Greenland
Equilibrium and kinetic approaches to understand the occurrence of the uncommon chloritoid + biotite assemblage
Geochemistry and paleogeographic implications of Permo-Triassic metasedimentary cover from the Tauern Window (Eastern Alps)
Reaction progress of clay minerals and carbonaceous matter in a contact metamorphic aureole (Torres del Paine intrusion, Chile)
Partial melting of zoisite eclogite from the Sanddal area, North-East Greenland Caledonides
Fabiola Caso, Alessandro Petroccia, Sara Nerone, Andrea Maffeis, Alberto Corno, and Michele Zucali
Eur. J. Mineral., 36, 381–395, https://doi.org/10.5194/ejm-36-381-2024, https://doi.org/10.5194/ejm-36-381-2024, 2024
Short summary
Short summary
Despite the fact that rock textures depend on the 3D spatial distribution of minerals, our tectono-metamorphic reconstructions are mostly based on a 2D visualisation (i.e. thin sections). For 2D a thin section scan has been combined with chemical X-ray maps, whereas for 3D the X-ray computerised axial microtomography (μCT) has been applied. This study corroborates the reliability of the thin section approach, still emphasising that 3D visualisation can help understand rock textures.
Taehwan Kim, Yoonsup Kim, Simone Tumiati, Daeyeong Kim, Keewook Yi, and Mi Jung Lee
Eur. J. Mineral., 36, 323–343, https://doi.org/10.5194/ejm-36-323-2024, https://doi.org/10.5194/ejm-36-323-2024, 2024
Short summary
Short summary
The manganese-rich siliceous metasediment in the Antarctic Ross orogen most likely originated from Mn-nodule-bearing chert deposited not earlier than ca. 546 Ma. Subduction-related metamorphism resulted in the production of highly oxidized assemblages involving Mn3+ and rare-earth-element-zoned epidote-group mineral and Mn2+-rich garnet. A reduced environment was responsible for the Mn olivine-bearing assemblages from silica-deficient composition.
Ane K. Engvik and Johannes Jakob
Eur. J. Mineral., 36, 345–360, https://doi.org/10.5194/ejm-36-345-2024, https://doi.org/10.5194/ejm-36-345-2024, 2024
Short summary
Short summary
The paper documents sillimanite gneiss in the Western Gneiss Region (WGR) and its presence, composition, formation and metamorphic evolution. Peak metamorphism is modelled to T = 750 °C and P around 0.6 GPa. Subsequent retrogression consumes garnet and shows mineral replacement and melt crystallization involving sillimanite, white mica, K-feldspar and quartz. The petrological evolution is in accordance with the investigated eclogites and HP granulites in the northwestern part of WGR.
Alessia Borghini, Silvio Ferrero, Patrick J. O'Brien, Bernd Wunder, Peter Tollan, Jarosław Majka, Rico Fuchs, and Kerstin Gresky
Eur. J. Mineral., 36, 279–300, https://doi.org/10.5194/ejm-36-279-2024, https://doi.org/10.5194/ejm-36-279-2024, 2024
Short summary
Short summary
We studied primary granitic and halogen-rich melt inclusions trapped in mantle rocks in the Bohemian Massif (Germany) in order to retrieve important information about the nature of the melt and the source rock. The melt was produced by the partial melting of metasediments during the deepest stages of subduction and interacted with the mantle. This work is an excellent example of transfer of crustal material, volatiles in particular, in the mantle during the subduction of the continental crust.
Gaston Godard, David C. Smith, Damien Jaujard, and Sidali Doukkari
Eur. J. Mineral., 36, 99–122, https://doi.org/10.5194/ejm-36-99-2024, https://doi.org/10.5194/ejm-36-99-2024, 2024
Short summary
Short summary
Petrological and mineralogical studies of mica schists, orthogneisses and glaucophane eclogites from Dumet Island (Armorican Massif, NW France) indicate that this occurrence, which has undergone high-pressure metamorphism up to 16 kbar and 620 °C, is similar to that of Groix Island. There are about 10 similar occurrences within the Ibero-Armorican Arc, forming a discontinuous high-pressure belt, but most of them have remained unnoticed due to a high degree of retrogression.
Dirk Spengler, Adam Włodek, Xin Zhong, Anselm Loges, and Simon J. Cuthbert
Eur. J. Mineral., 35, 1125–1147, https://doi.org/10.5194/ejm-35-1125-2023, https://doi.org/10.5194/ejm-35-1125-2023, 2023
Short summary
Short summary
Rock lenses from the diamond stability field (>120 km depth) within ordinary gneiss are enigmatic. Even more when these lenses form an alternating exposure pattern with ordinary lenses. We studied 10 lenses from W Norway and found that many of them have a hidden history. Tiny needles of quartz enclosed in old pyroxene cores are evidence for a rock origin at great depth. These needles survived the rocks' passage to the surface that variably obscured the mineral chemistry – the rocks' memory.
Hafiz U. Rehman, Takanori Kagoshima, Naoto Takahata, Yuji Sano, Fabrice Barou, David Mainprice, and Hiroshi Yamamoto
Eur. J. Mineral., 35, 1079–1090, https://doi.org/10.5194/ejm-35-1079-2023, https://doi.org/10.5194/ejm-35-1079-2023, 2023
Short summary
Short summary
Zircon preserves geologic rock history. Electron backscatter diffraction (EBSD) analysis is useful to visualize deformed domains in zircons. Zircons from the Himalayan high-pressure eclogites were analzyed for EBSD to identify intra-grain plastic deformation. The U–Pb isotope age dating, using Nano-SIMS, showed that plastic deformation likely affects the geochronological records. For geologically meaningful results, it is necessary to identify undisturbed domains in zircon via EBSD.
Silvio Ferrero, Alessia Borghini, Laurent Remusat, Gautier Nicoli, Bernd Wunder, and Roberto Braga
Eur. J. Mineral., 35, 1031–1049, https://doi.org/10.5194/ejm-35-1031-2023, https://doi.org/10.5194/ejm-35-1031-2023, 2023
Short summary
Short summary
Garnet often entraps small droplets of deep melts generated during mountain building processes. Using high-resolution techniques, we studied these droplets in order to provide hard numbers for the quantification of volatile budgets during crustal evolution, show how even melts formed at >1000°C contain water, and clarify how water behaves during metamorphism and melting at the microscale. Moreover, we provide the very first data on chlorine in natural melts from crustal reworking.
Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste
Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, https://doi.org/10.5194/ejm-35-831-2023, 2023
Short summary
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Simon Schorn, Anna Rogowitz, and Christoph A. Hauzenberger
Eur. J. Mineral., 35, 715–735, https://doi.org/10.5194/ejm-35-715-2023, https://doi.org/10.5194/ejm-35-715-2023, 2023
Short summary
Short summary
We investigate rocks called eclogite, which are related to subduction and the collision of continents. Our samples show evidence of limited melting at high pressure corresponding to about 70 km depth, which may play an important role in the exhumation of these rocks and the differentiation of the crust. However, due to their composition and metamorphic evolution, melt production is limited, suggesting that similar rocks are unlikely to contribute strongly to subduction-related magmatism.
Thomas Gyomlai, Philippe Yamato, and Gaston Godard
Eur. J. Mineral., 35, 589–611, https://doi.org/10.5194/ejm-35-589-2023, https://doi.org/10.5194/ejm-35-589-2023, 2023
Short summary
Short summary
The La Picherais metagranite is a key example of undeformed high-pressure quartzofeldspathic rock from the Armorican Massif. Through petrological observations and thermodynamic modelling, this study determines that the metagranite was pressured above 1.7 GPa and the associated mafic lenses at ~ 2.1 GPa. This metagranite provides an opportunity to study the degree of transformation of quartzofeldspathic rocks at high pressure, which may have a significant impact on the dynamics of subduction.
Pan Tang and Shun Guo
Eur. J. Mineral., 35, 569–588, https://doi.org/10.5194/ejm-35-569-2023, https://doi.org/10.5194/ejm-35-569-2023, 2023
Short summary
Short summary
In this study, unusual corundum- and spinel-bearing symplectites after muscovite were found in ultrahigh-pressure eclogites from the Dabie terrane, China. The results indicate that these symplectites formed by the low-pressure partial melting of muscovite during slab exhumation. We stress that the occurrence of corundum- and spinel-bearing symplectites after muscovite in eclogites provides important implications for fluid and melt actions in exhumed slabs.
Larry Tuttle and Darrell J. Henry
Eur. J. Mineral., 35, 499–522, https://doi.org/10.5194/ejm-35-499-2023, https://doi.org/10.5194/ejm-35-499-2023, 2023
Short summary
Short summary
Quartz inclusions in garnet are used to constrain the metamorphic pressure–temperature history of multiple ~2.8 Ga metasedimentary rocks from Montana, USA. Inclusion studies along with mineral and whole rock chemistry suggests that the rocks of interest experienced a clockwise metamorphic P–T history that included isobaric heating to peak metamorphic temperatures once inclusions were entrapped. These findings place fundamental constraints on the P–T evolution of this important geologic setting.
Jan Schönig, Carsten Benner, Guido Meinhold, Hilmar von Eynatten, and N. Keno Lünsdorf
Eur. J. Mineral., 35, 479–498, https://doi.org/10.5194/ejm-35-479-2023, https://doi.org/10.5194/ejm-35-479-2023, 2023
Short summary
Short summary
When and how modern-style plate tectonics initiated is a matter of debate. Although the earliest unequivocal evidence for ultrahigh-pressure metamorphism is Neoproterozoic, similar processes have been proposed for Paleoproterozoic rocks of western Greenland. We intensely screened the area by studying detrital heavy minerals, garnet chemistry, and mineral inclusion assemblages in garnet. Our results raise considerable doubts on the existence of Paleoproterozoic ultrahigh-pressure rocks.
Sara Nerone, Chiara Groppo, and Franco Rolfo
Eur. J. Mineral., 35, 305–320, https://doi.org/10.5194/ejm-35-305-2023, https://doi.org/10.5194/ejm-35-305-2023, 2023
Short summary
Short summary
The coexistence of chloritoid and biotite in medium-pressure Barrovian terranes is uncommon, with chloritoid usually occurring at lower temperatures than biotite. A petrologic approach using equilibrium thermodynamic modelling points out how metapelites can attain H2O-undersaturated conditions even at medium pressure and amphibolite-facies conditions and consequently can be affected by kinetic barriers, which need to be taken into account.
Gerhard Franz, Martin Kutzschbach, Eleanor J. Berryman, Anette Meixner, Anselm Loges, and Dina Schultze
Eur. J. Mineral., 33, 401–423, https://doi.org/10.5194/ejm-33-401-2021, https://doi.org/10.5194/ejm-33-401-2021, 2021
Short summary
Short summary
Metamorphic rocks contain information about their original rocks and thus provide insight into the earlier stages of a region of interest. Here, we used the whole-rock chemical composition and stable boron isotopes of a suite of rocks from the Alps (Italy–Austria), which were deposited in a restricted intramontane basin before the Alpine orogeny. It is possible to reconstruct the depositional conditions for these sediments, which are now common metamorphic rocks such as schists and gneisses.
Annette Süssenberger, Susanne Theodora Schmidt, Florian H. Schmidt, and Manuel F. G. Weinkauf
Eur. J. Mineral., 32, 653–671, https://doi.org/10.5194/ejm-32-653-2020, https://doi.org/10.5194/ejm-32-653-2020, 2020
Wentao Cao, Jane A. Gilotti, and Hans-Joachim Massonne
Eur. J. Mineral., 32, 405–425, https://doi.org/10.5194/ejm-32-405-2020, https://doi.org/10.5194/ejm-32-405-2020, 2020
Short summary
Short summary
Zoisite eclogites from the Sanddal area, North-East Greenland, contain numerous textures, such as cusps and neoblasts, which are interpreted as melt-related textures. Mineral chemistry and thermodynamic modeling demonstrate that they were partially melted through the breakdown of hydrous minerals, phengite, paragonite and zoisite. Pressure–temperature phase diagrams show that the eclogites reached a maximum depth of ∼70 km and were partially melted near that depth and during exhumation.
Cited articles
Abers, G. A., Nakajima, J., van Keken, P. E., Kita, S., and Hacker, B. R.:
Thermal–petrological controls on the location of earthquakes within
subducting plates, Earth Planet. Sc. Lett., 369, 178–187,
https://doi.org/10.1016/j.epsl.2013.03.022, 2013.
Agard, P., Yamato, P., Jolivet, L., and Burov, E.: Exhumation of oceanic
blueschists and eclogites in subduction zones: Timing and mechanisms, Earth
Sc. Rev., 92, 53–79, https://doi.org/10.1016/j.earscirev.2008.11.002, 2009.
Agard, P., Plunder, A., Angiboust, S., Bonnet, G., and Ruha, J.: The
subduction plate interface: rock record and mechanical coupling (from long
to short timescales), Lithos, 320/321, 537–566, https://doi.org/10.1016/j.lithos.2018.09.029, 2018.
Agard, P., Soret, M., Bonnet, G., Ninkabou, D., Plunder, A., Prigent, C.,
and Yamato, P.: Subduction and obduction processes: The fate of oceanic
lithosphere revealed by blueschists, eclogites, and ophiolites, in:
Compressional Tectonics: Plate Convergence to Mountain Building, edited by:
Catlos, E. J. and Çemen, I., American Geophysical Union Geophysical
Monograph, Vol. 277, John Wiley & Sons, Inc., https://doi.org/10.1002/9781119773856.ch02, 2023.
Alvaro, M., Mazzucchelli, M. L., Angel, R. J., Murri, M., Campomenosi, N.,
Scambelluri, M., Nestola, F., Korsakov, A., Tomilenko, A. A., Marone, F., and
Morana, M.: Fossil subduction recorded by quartz from the coesite stability
field, Geology, 48, 24–28, https://doi.org/10.1130/G46617.1, 2020.
Alvaro, M., Angel, R. J., and Nestola, F.: Inclusions in diamonds probe
Earth's chemistry through deep time, Commun. Chem., 5, 1–3,
https://doi.org/10.1038/s42004-022-00627-1, 2022.
Angel, R. J., Mazzucchelli, M. L., Alvaro, M., Nimis, P., and Nestola, F.:
Geobarometry from host-inclusion systems: the role of elastic relaxation, Am.
Mineral., 99, 2146–2149, 2014.
Angel, R. J., Mazzucchelli, M. L., Alvaro, M., and Nestola, F.: EosFit-Pinc: A
simple GUI for host-inclusion elastic thermobarometry, Am. Mineral., 102,
1957–1960, https://doi.org/10.2138/am-2017-6190, 2017.
Angel, R. J., Murri, M., Mihailova, B., and Alvaro, M.: Stress, strain and
Raman shifts, Z.
Krist.-Cryst. Mater., 234, 129–140,
https://doi.org/10.1515/zkri-2018-2112, 2019.
Angiboust, S. and Raimondo, T.: Permeability of subducted oceanic crust
revealed by eclogite-facies vugs, Geology, 50, 964–968,
https://doi.org/10.1130/G50066.1, 2022.
Angiboust, S., Pettke, T., de Hoog, J. C. M., Caron, B., and Oncken, O.:
Channelized fluid flow and eclogite-facies metasomatism along the subduction
shear zone, J. Petrol., 55, 883–916, https://doi.org/10.1093/petrology/egu010, 2014.
Ashley, K. T., Webb, L. E., Spear, F. S., and Thomas, J. B.: P-T-D histories
from quartz: a case study of the application of the TitaniQ thermobarometer
to progressive fabric development in metapelites, Geochem. Geophy. Geosy.,
14, 3821–3843, https://doi. org/10.1002/ggge.20237, 2013.
Aulbach, S. and Smart, K. A.: Petrogenesis and geodynamic significance of
xenolithic eclogites, Annu. Rev. Earth Pl. Sc., 51, 521–549,
https://doi.org/10.1146/annurev-earth-031621-112904, 2023.
Austrheim, H.: Eclogitization of lower crustal granulites by fluid migration
through shear zones, Earth Planet. Sc. Lett., 81, 221–232,
https://doi.org/10.1016/0012-821X(87)90158-0, 1987.
Austrheim, H., Dunkel, K. G., Plümper, O., Ildefonse, B., Liu, Y., and
Jamtveit, B: Fragmentation of wall rock garnets during deep crustal
earthquakes, Sci. Adv., 3, e1602067, https://doi.org/10.1126/sciadv.1602067,
2017.
Auzanneau, E., Schmidt, M. W., Vielzeuf, D., and Connolly, J. A. D.: Titanium
in phengite: a geobarometer for high temperature eclogites, Contrib. Mineral.
Petrol., 159, 1–24, https://doi.org/10.1007/s00410-009-0412-7, 2010.
Baldwin, S. L., Schönig, J., Gonzalez, J. P., Davies, H., and von
Eynatten, H.: Garnet sand reveals rock recycling processes in the youngest
exhumed high-and ultrahigh-pressure terrane on Earth, P. Natl. Acad. Sci. USA, 118,
e2017231118, https://doi.org/10.1073/pnas.2017231118, 2021.
Baes, M., Sobolev, S., Gerya, T., and Brune, S.: Plume-induced subduction
initiation: Single-slab or multi-slab subduction?, Geochem. Geophy. Geosy.,
21, e2019GC008663, https://doi.org/10.1029/2019GC008663, 2020.
Baes, M., Sobolev, S., Gerya, T., Stern, R., and Brune, S.: Plate motion and
plume-induced subduction initiation, Gondwana Res., 98, 277–288, https://doi.org/10.1016/j.gr.2021.06.007, 2021.
Berg, J.-P. and Gerya, T. V.: The role of viscous heating in Barrovian
metamorphism of collisional orogens: thermomechanical models and application
to the Lepontine Dome in the Central Alps, J. Metamorph. Geol., 23, 75–95,
https://doi.org/10.1111/j.1525-1314.2005.00563.x, 2005.
Berman, R. G.: Internally-consistent thermodynamic data for minerals in the
system
Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2,
J. Petrol., 29, 445–522, https://doi.org/10.1093/petrology/29.2.445, 1988.
Berman, R. G.: Thermobarometry using multi-equilibrium calculations; a new
technique, with petrological applications, Can. Mineral., 29, 833–855,
1991.
Borghini, A., Nicoli, G., Ferrero, S., O'Brien, P. J., Laurent, O., Remusat,
L., Borghini, G., and Milani, S.: The role of continental subduction in
mantle metasomatism and carbon recycling revealed by melt inclusions in UHP
eclogites, Sci. Adv., 9, eabp9482, https://doi.org/10.1126/sciadv.abp9482,
2023.
Bovay, T., Lanari, P., Rubatto, D., Smit, M., and Piccoli, F.:
Pressure–temperature–time evolution of subducted crust revealed by complex
garnet zoning (Theodul Glacier Unit, Switzerland), J. Metamorph. Geol., 40,
175–206, https://doi.org/10.1111/jmg.12623, 2022.
Bonazzi, M., Angel, R. J., Gilio, M., Mazzucchelli, M., and Alvaro, M.: Garnet
EoS: a critical review and synthesis, Contrib. Mineral. Petrol., 177, 54,
https://doi.org/10.1007/s00410-022-01918-5, 2022.
Bras, E., Yamato, P., Schmalholz, S. M., Duretz, T., and Podladchikov, Y. Y.:
Eclogitisation of dry and impermeable granulite by fluid flow with
reaction-induced porosity: Insights from hydro-chemical modelling, Earth Planet. Sc. Lett., 617, 118256, https://doi.org/10.1016/j.epsl.2023.118256, 2023.
Brown, M.: Metamorphic conditions in orogenic belts: A record of secular
change, Int. Geol. Rev., 49, 193–234,
https://doi.org/10.2747/0020-6814.49.3.193, 2007.
Brown, M.: The spatial and temporal patterning of the deep crust and
implications for the process of melt extraction, Philos. T. R. Soc. A, 368,
11–51, https://doi.org/10.1098/rsta.2009.0200, 2010.
Brown, M. and Johnson, T.: Secular change in metamorphism and the onset of
global plate tectonics, Am. Mineral., 103, 181–196,
https://doi.org/10.2138/am-2018-6166, 2018.
Brown, M. and Johnson, T.: Time's arrow, time's cycle: granulite
metamorphism and geodynamics, Mineral. Mag., 83, 323–338,
https://doi.org/10.1180/mgm.2019.19, 2019a.
Brown, M. and Johnson, T.: Metamorphism and the evolution of subduction on
Earth, Am. Mineral., 104, 1065–1082, https://doi.org/10.2138/am-2019-6956,
2019b.
Brown, M. and Johnson, T.: Global age, temperature and pressure data for
secular change in metamorphism, EarthChem Library [data set],
https://doi.org/10.1594/IEDA/111316, 2019c.
Brown, M., Averkin, Y. A., McLellan, E. L., and Sawyer, E. W.: Melt segregation
in migmatites, J. Geophys. Res., 100, 15,655–15,679,
https://doi.org/10.1029/95JB00517, 1995.
Brown, M., Kirkland, C., and Johnson, T.: Secular evolution of geodynamics
since the Paleoarchean: significant change at the dawn of the Phanerozoic,
Geology, 48, 488–492, https://doi.org/10.1130/G47417.1, 2020.
Brown, M., Johnson, T., and Spencer, C.: Secular changes in metamorphism and
metamorphic cooling rates track the evolving plate tectonic regime on Earth,
J. Geol. Soc. Lond., 179, jgs2022-050, https://doi.org/10.1144/jgs2022-050, 2022.
Brueckner, H. K., Gilotti, J. A., and Nutman, A. P.: Caledonian eclogite-facies
metamorphism of Early Proterozoic protoliths from the North-East Greenland
Eclogite Province, Contrib. Mineral. Petrol., 130, 103–120,
https://doi.org/10.1007/s004100050353, 1998.
Bryden, C. D. and Jamieson, R. A.: Scapolite pegmatite from the Nordøyane
ultra-high pressure domain, Western Gneiss Region, Norway: Partial melting
driven by infiltration of mantle-derived fluid, Lithos, 364–365, 105546,
https://doi.org/10.1016/j.lithos.2020.105546, 2020.
Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S.,
Blundy, J., and Gobbo, L.: Mineral inclusions in sublithospheric diamonds
from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths,
carbonated melts and primary kimberlite magmatism, Contrib. Mineral. Petrol.,
160, 489–510, https://doi.org/10.1007/s00410-010-0490-6, 2010.
Campomenosi, N., Angel, R. J., Alvaro, M., and Mihailova, B.: Resetting of
zircon inclusions in garnet: Implications for elastic thermobarometry,
Geology, 51, 23–27, https://doi.org/10.1130/G50431.1, 2023a.
Campomenosi, N., Angel, R.J., Alvaro, M., and Mihailova, B.: Quartz-in-garnet (QuiG) under pressure: insights from in situ Raman spectroscopy, Contrib. Mineral. Petrol., 178, 44, https://doi.org/10.1007/s00410-023-02026-8, 2023.
Castelli, D., Rolfo, F., Groppo, C., and Compagnoni, R.: Impure marbles from
the UHP Brossasco-Isasca Unit (Dora-Maira Massif, western Alps): evidence
for Alpine equilibration in the diamond stability field and evaluation of
the X(CO2) fluid evolution, J. Metamorph. Geol., 25, 587–603,
https://doi.org/10.1111/j.1525-1314.2007.00716.x, 2007.
Chapman, T., Clarke, G. L., and Daczko, N. R.: The role of buoyancy in the
fate of ultra-high-pressure eclogite, Sci. Rep., 9, 19925,
https://doi.org/10.1038/s41598-019-56475-y, 2019.
Chen, Y. X., Zheng, Y. F., Gao, X. Y., and Hu, Z.: Multiphase solid inclusions
in zoisite-bearing eclogite: Evidence for partial melting of
ultrahigh-pressure metamorphic rocks during continental collision, Lithos,
200–201, 1–21, https://doi.org/10.1016/j.lithos.2014.04.004, 2014.
Chen, Y. X., Zhou, K., He, Q., Zheng, Y. F., Schertl, H. P., and Chen, K.:
First finding of continental deep subduction in the Sesia Zone of Western
Alps and implications for subduction dynamics, Nat. Sci. Rev., 10, nwad023,
https://doi.org/10.1093/nsr/nwad023, 2023.
Chopin, C.: Coesite and pure pyrope in high-grade blueschists of the Western
Alps: a first record and some consequences, Contrib. Mineral. Petrol., 86,
107–118, https://doi.org/10.1007/BF00381838, 1984.
Chowdhury, P., Chakraborty, S., Gerya, T. V., Cawood, P. A., and Capitanio,
F. A.: Peel-back controlled lithospheric convergence explains the secular
transitions in Archean metamorphism and magmatism, Earth Planet. Sc. Lett.,
538, 116224, https://doi.org/10.1016/j.epsl.2020.116224, 2020.
Chowdhury, P., Chakraborty, S., and Gerya, T. V.: Time will tell: Secular
change in metamorphic timescales and the tectonic implications, Gondwana
Res., 93, 291–310, https://doi.org/10.1016/j.gr.2021.02.003, 2021.
Cionoiu, S., Moulas, E., Stünitz, H., and Tajčmanová, L.:
Locally resolved stress-state in samples during experimental deformation:
Insights into the effect of stress on mineral reactions, J. Geophys. Res.-Sol.
Ea., 127, e2022JB024814, https://doi.org/10.1029/2022JB024814, 2022.
Cisneros, M. and Befus, K. S.: Applications and limitations of elastic
thermobarometry: insights from elastic modeling of inclusion-host pairs and
example case studies, Geochem. Geophy. Geosy., 21, e2020GC009231,
https://doi.org/10.1029/2020GC009231, 2020.
Cisneros, M., Behr, W. M., Platt, J. P., and Anczkiewicz, R.: Quartz-in-garnet
barometry constraints on formation pressures of eclogites from the
Franciscan Complex, California, Contrib. Mineral. Petrol., 177, 1–23,
https://doi.org/10.1007/s00410-021-01876-4, 2022.
Coleman, R. G., Lee, D. E., Beatty, L. B., and Brannock, W. W.: Eclogites and
eclogites: Their differences and similarities, Geol. Soc. Am. Bull., 76,
483–508, https://doi.org/10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2,
1965.
Condie, K. C., Aster, R. C., and van Hunen, J.: A great thermal divergence in
the mantle beginning 2.5 Ga: Geochemical constraints from greenstone basalts
and komatiites, Geosci. Front., 7, 543–553,
https://doi.org/10.1016/j.gsf.2016.01.006, 2016.
Connolly, J. A. D.: Multivariable phase diagrams; an algorithm based on
generalized thermodynamics, Am. J. Sc., 290, 666–718,
https://doi.org/10.2475/ajs.290.6.666, 1990.
Connolly, J. A. D.: Computation of phase equilibria by linear programming: a
tool for geodynamic modeling and its application to subduction zone
decarbonation, Earth Planet. Sc. Lett., 236, 524–541,
https://doi.org/10.1016/j.epsl.2005.04.033, 2005.
Connolly, J. A. D. and Podladchikov, Y. Y.: Fluid flow in compressive tectonic
settings: Implications for midcrustal seismic reflectors and downward fluid
migration, J. Geophys. Res.-Sol. Ea., 109, B04201,
https://doi.org/10.1029/2003JB002822, 2004.
de Capitani, C. and Brown, T. H.: The computation of chemical equilibrium in
complex systems containing non-ideal solutions, Geochim. Cosmochim. Ac., 51,
2639–2652, https://doi.org/10.1016/0016-7037(87)90145-1, 1987.
de Capitani, C. and Petrakakis, K.: The computation of equilibrium
assemblage diagrams with Theriak/Domino software, Am. Mineral., 95,
1006–1016, https://doi.org/10.2138/am.2010.3354, 2010.
Dewey, J. F. and Bird, J. M.: Mountain belts and the new global tectonics, J. Geophys. Res., 75, 2625–2647, https://doi.org/10.1029/JB075i014p02625, 1970.
Dobrzhinetskaya, L. F., O'Bannon III, E. F., and Sumino, H.: Non-cratonic
diamonds from UHP metamorphic terranes, ophiolites and volcanic sources, Rev.
Mineral. Geochem., 88, 191–255, https://doi.org/10.2138/rmg.2022.88.04, 2022.
Doucet, L. S., Li, Z. X., El Dien, H. G., Pourteau, A., Murphy, J. B., Collins,
W. J., Mattielli, N., Olierook, H. K. H., Spencer, C. J., and Mitchell, R. N.:
Distinct formation history for deep-mantle domains reflected in geochemical
differences, Nat. Geosci., 13, 511–515,
https://doi.org/10.1038/s41561-020-0599-9, 2020.
Duan, W.-Y., Li, X.-P., Schertl, H.-P., and Willner, A. P.: C-O-H-S fluids
released by oceanic serpentinite in subduction zones: Implications for
arc-magma oxidation, Earth Planet. Sc. Lett., 594, 117709, https://doi.org/10.1016/j.epsl.2022.117709, 2022.
Duesterhoeft, E. and Lanari, P.: Iterative thermodynamic modelling – Part 1:
A theoretical scoring technique and a computer program (Bingo-Antidote), J. Metamorph. Geol., 38, 527–551, https://doi.org/10.1111/jmg.12538, 2020.
Dunlap, W. J.: Nature's diffusion experiment: the cooling-rate cooling-age
correlation, Geology, 28, 139–142,
https://doi.org/10.1130/0091-7613(2000)28<139:NDETCC>2.0.CO;2, 2000.
Ehlers, A. M., Zaffiro, G., Angel, R. J., Boffa-Ballaran, T., Carpenter, M. A.,
Alvaro, M., and Ross, N. L.: Thermoelastic properties of zircon: Implications
for geothermobarometry, Am. Mineral., 107, 74–81,
https://doi.org/10.2138/am-2021-7731, 2022.
Enami, M., Nishiyama, T., and Mouri, T.: Laser Raman microspectrometry of
metamorphic quartz: A simple method for comparison of metamorphic pressures,
Am. Mineral., 92, 1303–1315, https://doi.org/10.2138/am.2007.2438, 2007.
Ernst, W. G.: Metamorphic zonations on presumably subducted lithospheric
plates from Japan, California and the Alps, Contrib. Mineral. Petrol., 34,
43–59, https://doi.org/10.1007/BF00376030, 1971.
Ernst, W. G.: Blueschist metamorphism and PT regimes in active subduction
zones, Tectonophysics, 17, 255–272,
https://doi.org/10.1016/0040-1951(73)90006-1, 1973.
Evans, B. W., Trommsdorff, V., and Richter, W.: Petrology of an
eclogite-metarodingite suite at Cima di Gagnone, Ticino, Switzerland, Am. Mineral., 64, 15–31, 1979.
Evans, K. A., Frost, B. R., Reddy, S. M., and Brown, T. C.: Causes, effects, and
implications of the relationships amongst fluids, serpentinisation, and
alloys, Lithos, 446–447, 107132,
https://doi.org/10.1016/j.lithos.2023.107132, 2023.
Fan, X., Chu, X., Cao, W., and Zou, Y.: Local rapid exhumation during the
long-lived Grenville orogeny, in: Laurentia: Turning Points in the Evolution of a
Continent, edited by: Whitmeyer, S. J., Williams, M. L., Kellett,
D. A., and Tikoff, B., Geol. Soc. Am. Mem., 220, 307–330,
https://doi.org/10.1130/2022.1220(18), 2023.
Faryad, S. W., Baldwin, S. L., Jedlicka, R., and Ježek, J.: Two stage
garnet growth in coesite eclogite from the southeastern Papua New Guinea
(U)HP terrane, Contrib. Mineral. Petrol., 174, 73,
https://doi.org/10.1007/s00410-019-1612-4, 2019.
Feng, P., Wang, L., Brown, M., Johnson, T. E., Kylander-Clark, A., and
Piccoli, P. M.: Partial melting of ultrahigh-pressure eclogite by
omphacite-breakdown facilitates exhumation of deeply-subducted crust, Earth Planet. Sc. Lett., 554, 116664, https://doi.org/10.1016/j.epsl.2020.116664,
2021.
Ferrand, T. P., Hilairet, N., Incel, S., Deldicque, D., Labrousse, L., Gasc,
J., Renner, J., Wang, Y., Green II, H. W., and Schubnel, A.:
Dehydration-driven stress transfer triggers intermediate-depth earthquakes,
Nat. Commun., 8, 15247, https://doi.org/10.1038/ncomms15247, 2017.
Ferrando, S., Frezzotti, M. L., Dallai, L., and Compagnoni, R.: Multiphase
solid inclusions in UHP rocks (Su-Lu, China): Remnants of supercritical
silicate-rich aqueous fluids released during continental subduction, Chem.
Geol., 223, 68–81, https://doi.org/10.1016/j.chemgeo.2005.01.029, 2005.
Ferrero, S., Wunder, B., Walczak, K., O'Brien, P. J., and Ziemann, M. A.:
Preserved near ultrahigh-pressure melt from continental crust subducted to
mantle depths, Geology, 43, 447–450, https://doi.org/10.1130/G36534.1,
2015.
Ferry, J. M. and Watson, E. B.: New thermodynamic models and revised
calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib. Mineral. Petrol., 154, 429–437, https://doi.org/10.1007/s00410-007-0201-0,
2007.
Forster, M., Lister, G., Compagnoni, R., Giles, D., Hills, Q., Betts, P.,
Beltrando, M., and Tamagno, E.: Mapping of oceanic crust with “HP” to
“UHP” metamorphism: The Lago di Cignana Unit (Western Alps),
https://openresearch-repository.anu.edu.au/handle/1885/36551 (last access: 14 February 2023), 2004.
Ganzhorn, A. C., Labrousse, L., Prouteau, G., Leroy, C., Vrijmoed, J. C.,
Andersen, T. B., and Arbaret, L.: Structural, petrological and chemical
analysis of syn-kinematic migmatites: Insights from the Western Gneiss
Region, Norway, J. Metamorph. Geol., 32, 647–673,
https://doi.org/10.1111/jmg.12084, 2014.
Gao, X. Y., Zheng, Y. F., and Chen, Y. X.: Dehydration melting of
ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase
solid inclusions in garnet, J. Metamorph. Geol., 30, 193–212,
https://https://doi.org/10.1111/j.1525-1314.2011.00962.x, 2012.
Garciá-Casco, A., Torres-Roldán, R. L., Millán, G., Monié,
P., and Schneider, J.: Oscillatory zoning in eclogitic garnet and amphibole,
Northern Serpentinite Melange, Cuba: a record of tectonic instability during
subduction?, J. Metamorph. Geol., 20, 581–598, https://doi.org/10.1046/j.1525-1314.2002.00390.x, 2002.
Gasc, J., Daigre, C., Moarefvand, A., Deldicque, D., Fauconnier, J.,
Gardonio, B., Madonna, C., Burnley, P., and Schubnel, A.: Deep-focus
earthquakes: From high-temperature experiments to cold slabs, Geology, 50,
1018–1022, https://doi.org/10.1130/G50084.1, 2022.
Gerya, T. V.: Tectonic overpressure and underpressure in lithospheric
tectonics and metamorphism, J. Metamorph. Geol., 33, 785–800,
https://https://doi.org/10.1111/jmg.12144, 2015.
Gerya, T. V., Stöckhert, B., and Perchuk, A. L.: Exhumation of
high-pressure metamorphic rocks in a subduction channel: A numerical
simulation, Tectonics, 21, 1056, https://doi.org/10.1029/2002TC001406, 2002.
Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., and Whattam, S. A.: Plate
tectonics on the Earth triggered by plume-induced subduction initiation,
Nature, 527, 221–225, https://doi.org/10.1038/nature15752,
2015.
Ghignone, S., Scaramuzzo, E., Bruno, M., and Livio, F.: A new UHP unit in the Western Alps: First occurrence of coesite from the Monviso Massif (Italy), Am. Mineral., 108, 1368–1375, https://doi.org/10.2138/am-2022-8621, 2023.
Gilio, M., Angel, R. J., and Alvaro, M.: Elastic geobarometry: How to work
with residual inclusion strains and pressures, Am. Mineral., 106, 1530–1533,
https://doi.org/10.2138/am-2021-7928, 2021.
Gilio, M., Scambelluri, M., Angel, R. J., and Alvaro, M.: The contribution of
elastic geothermobarometry to the debate on HP versus UHP metamorphism, J. Metamorph. Geol., 40, 229–242, https://doi.org/10.1111/jmg.12625, 2022.
Godard, G.: Eclogites and their geodynamic interpretation: a history, J.
Geodynam., 32, 165–203, https://doi.org/10.1016/S0264-3707(01)00020-5, 2001.
Gonzalez, J. P.,
Mazzucchelli, M. L., Angel, R. J., and Alvaro, M.: Elastic geobarometry for
anisotropic inclusions in anisotropic host minerals: Quartz-in-zircon, J. Geophys. Res.-Sol. Ea., 126, e2021JB022080,
https://doi.org/10.1029/2021JB022080, 2021.
Gordon, S. M., Whitney, D. L., Teyssier, C., and Fossen, H.: U-Pb dates and
trace-element geochemistry of zircon from migmatite, Western Gneiss Region,
Norway: Significance for history of partial melting in continental
subduction, Lithos, 170–171, 35–53,
https://doi.org/10.1016/j.lithos.2013.02.003, 2013.
Gilotti, J. A., McClelland, W. C., Schorn, S., Compagnoni, R., and Coble, M. A.: Provenance, protolith and metamorphic ages of jadeite-bearing orthogneiss and host paragneiss at Tavagnasco, the Sesia Zone, Lower Aosta Valley, Italy, Eur. J. Mineral., submitted, 2023.
Giuntoli, F., Lanari, P., Burn, M., Kunz, B. E., and Engi, M.: Deeply subducted continental fragments – Part 2: Insight from petrochronology in the central Sesia Zone (western Italian Alps), Solid Earth, 9, 191–222, https://doi.org/10.5194/se-9-191-2018, 2018.
Green II, H. W. and Burnley, P. C.: A new self-organizing mechanism for
deep-focus earthquakes, Nature, 341, 733–737,
https://doi.org/10.1038/341733a0, 1989.
Hack, A. C., Thompson, A. B., and Aerts, M.: Phase relations involving
hydrous silicate melts, aqueous fluids, and minerals, Rev. Mineral. Geochem.,
65, 129–185, https://doi.org/10.2138/rmg.2007.65.5, 2007.
Hacker, B. R. and Gerya, T. V.: Paradigms, new and old, for ultrahigh-pressure
tectonism, Tectonophysics, 603, 79–88,
https://doi.org/10.1016/j.tecto.2013.05.026, 2013.
Hacker, B. R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D., and
Shuwen, D.: U Pb zircon ages constrain the architecture of the
ultrahigh-pressure Qinling–Dabie Orogen, China, Earth Planet. Sc. Lett., 161,
215–230, https://doi.org/10.1016/S0012-821X(98)00152-6, 1998.
Hacker, B. R., Abers, G. A., and Peacock, S. M.: Subduction factory: 1.
Theoretical mineralogy, densities, seismic wave speeds, and H2O
contents, J. Geophys. Res., 108, 2029, https://doi.org/10.1029/2001JB001127,
2003a.
Hacker, B. R., Peacock, S. M., Abers, G. A., and Holloway, S. D.: Subduction
factory 2. Are intermediate-depth earthquakes in subducting slabs linked to
metamorphic dehydration reactions?, J. Geophys. Res.-Sol. Ea., 108, 2030,
https://doi.org/10.1029/2001JB001129, 2003b.
Hanchar, J. M. and Hoskin, P. W. O.: Zircon, Rev. Mineral. Geochem., 53, 500 pp., 2003.
Harte, B. and Richardson, S.: Mineral inclusions in diamonds track the
evolution of a Mesozoic subducted slab beneath West Gondwanaland, Gondwana
Res., 21, 235–245, https://doi.org/10.1016/j.gr.2011.07.001, 2012.
Hermann, J.: Experimental evidence for diamond-facies metamorphism in the
Dora-Maira massif, Lithos, 70, 163–182,
https://doi.org/10.1016/S0024-4937(03)00097-5, 2003.
Hermann, J. and Lakey, S.: Water transfer to the deep mantle through
hydrous, Al-rich silicates in subduction zones, Geology, 49, 911–915,
https://doi.org/10.1130/G48658.1, 2021.
Hermann, J. and Rubatto, D.: Subduction of continental crust to mantle
depth: geochemistry of ultrahigh-pressure rocks, Treat. Geochem.
4, 309–340,
https://doi.org/10.1016/B978-0-08-095975-7.00309-0, 2014.
Herzberg, C.: Understanding the Paleoproterozoic Circum-Superior Large
Igneous Province constrains the thermal properties of Earth's mantle through
time, Precambrian Res., 375, 106671,
https://doi.org/10.1016/j.precamres.2022.106671, 2022a.
Herzberg, C.: Thermal history of the Earth: Reply to “Less is not always
more: A more inclusive data-filtering approach to secular mantle cooling”
by Ross N. Mitchell and Jérôme Ganne, Precambrian Res., 381, 106844,
https://doi.org/10.1016/j.precamres.2022.106844, 2022b.
Herzberg, C., Condie, K., and Korenaga, J.: Thermal history of the Earth and
its petrological expression, Earth Planet. Sc. Lett., 292, 79–88,
https://doi.org/10.1016/j.epsl.2010.01.022, 2010.
Holder, R. M., Viete, D. R., Brown, M., and Johnson, T. E.: Metamorphism
and the evolution of plate tectonics, Nature, 572, 378–381,
https://doi.org/10.1038/s41586-019-1462-2, 2019.
Holland, T. J. B., Green, E. C. R., and Powell, R.: A thermodynamic model for
feldspars in
KAlSi3O8–NaAlSi3O8–CaAl2Si2O8 for
mineral equilibrium calculations, J. Metamorph. Geol., 40, 587–600,
https://doi.org/10.1111/jmg.12639, 2022.
Huber, K., Vrijmoed, J. C., and John, T.: Formation of olivine veins by
reactive fluid flow in a dehydrating serpentinite, Geochem. Geophy. Geosy.,
23, e2021GC010267, https://doi.org/10.1029/2021GC010267, 2022.
Jackson, M. G. and Macdonald, F. A.: Hemispheric geochemical dichotomy of the
mantle is a legacy of austral supercontinent assembly and onset of deep
continental crust subduction, AGU Advances, 3, e2022AV000664,
https://doi.org/10.1029/2022AV000664, 2022.
Jamtveit, B., Ben-Zion, Y., Renard, F., and Austrheim, H.:
Earthquake-induced transformation of the lower crust, Nature, 556, 487–491,
https://doi.org/10.1038/s41586-018-0045-y, 2018.
Jamtveit, B., Petley-Ragan, A., Incel, S., Dunkel, K. G., Aupart, C.,
Austrheim, H., Corfu, F., Menegon, L., and Renard, F.: The effects of
earthquakes and fluids on the metamorphism of the lower continental crust, J. Geophys. Res.-Sol. Ea., 124, 7725–7755,
https://doi.org/10.1029/2018JB016461, 2019.
Jiang, K., Wang, J., Kusky, T., Polat, A., Deng, H., and Wang, L.:
Neoarchean seafloor hydrothermal metamorphism of basalts in the Zanhuang
ophiolitic mélange, North China Craton, Precambrian Res., 347, 105832,
https://doi.org/10.1016/j.precamres.2020.105832, 2020.
Johnson,
T. E., Brown, M., Kaus, B., and VanTongeren, J. A.: Delamination and recycling
of Archaean crust caused by gravitational instabilities, Nat. Geosci., 7,
47–52, https://doi.org/10.1038/ngeo2019, 2014.
Johnson, T. E., Yakymchuk, C., and Brown, M.: Crustal melting and suprasolidus
phase equilibria: From first principles to the state-of-the-art, Earth Sci.
Rev., 221, 103778, https://doi.org/10.1016/j.earscirev.2021.103778, 2021.
Jolivet, L., Faccenna, C., Goffé, B., Burov, E., and Agard, P.:
Subduction tectonics and exhumation of high-pressure metamorphic rocks in
the Mediterranean orogens, Am. J. Sci., 303, 353–409, https://doi.org/10.2475/ajs.303.5.353, 2003.
Katayama, I., Nakashima, S., and Yurimoto, H.: Water content in natural
eclogite and implication for water transport into the deep upper mantle,
Lithos, 86, 245–259, https://doi.org/10.1016/j.lithos.2005.06.006, 2006.
Kellett, D. A., Weller, O. M., Zagorevski, A., and Regis, D.: A
petrochronological approach for the detrital record: Tracking mm-sized
eclogite clasts in the northern Canadian Cordillera, Earth Planet. Sc. Lett.,
494, 23–31, https://doi.org/10.1016/j.epsl.2018.04.036, 2018.
Kerswell, B. C., Kohn, M. J., and Gerya, T. V.: Computing rates and
distributions of rock recovery in subduction zones, Geochem. Geophy. Geosy.,
24, e2022GC010834, https://doi.org/10.1029/2022GC010834,
2023.
Kirby, S., Engdahl, E. R., and Denlinger, R.: Intermediate-depth
intraslab earthquakes and arc volcanism as physical expressions of crustal
and uppermost mantle metamorphism in subducting slabs, Geophys. Monogr.
Ser., 96, 195–214, https://doi.org/10.1029/GM096p0195, 1996.
Kohn, M. J.: “Thermoba-Raman-try”: Calibration of spectroscopic barometers
and thermometers for mineral inclusions, Earth Planet. Sc. Lett., 388,
187–196, https://doi.org/10.1016/j.epsl.2013.11.054, 2014.
Kohn, M. J.: A refined zirconium-in-rutile thermometer, Am. Mineral., 105,
963–971, https://doi.org/10.2138/am-2020-7091, 2020.
Kohn, M. J., Engi, M., and Lanari, P.: Petrochronology: Methods and
applications, Rev. Mineral. Geochem., 83, 575 pp.,
https://doi.org/10.2138/rmg.2017.83.1, 2017.
Kohn, M. J., Mazzucchelli, M. L., and Alvaro, M.: Elastic Thermobarometry, Annu.
Rev. Earth Pl. Sc., 51, 331–66,
https://doi.org/10.1146/annurev-earth-031621-112720, 2023.
Korhonen, F. J., Brown, M., Clark, C., and Bhattacharya, S.: Osumilite–melt
interactions in ultrahigh temperature granulites: phase equilibria modelling
and implications for the P–T–t evolution of the Eastern Ghats Province,
India, J. Metamorph. Geol., 31, 881–907, https://doi.org/10.1111/jmg.12049,
2013.
Kurz, W., Handler, R., and Bertoldi, C.: Tracing the exhumation of the
Eclogite Zone (Tauern Window, Eastern Alps) by 40Ar 39Ar dating of
white mica in eclogites, Swiss J. Geosci., 101, 191–206,
https://doi.org/10.1007/s00015-008-1281-1, 2008.
Kylander-Clark, A. R. C., Hacker, B. R., and Mattinson, C. G.: Size and
exhumation rate of ultrahigh-pressure terranes linked to orogenic stage,
Earth Planet. Sc. Lett., 321, 115–120,
https://doi.org/10.1016/j.epsl.2011.12.036, 2012.
Labrousse, L., Prouteau, G., and Ganzhorn, A. C.: Continental exhumation
triggered by partial melting at ultrahigh pressure, Geology, 39, 1171–1174,
https://doi.org/10.1130/G32316.1, 2011.
Labrousse, L., Duretz, T., and Gerya, T.: H2O-fluid-saturated melting
of subducted continental crust facilitates exhumation of ultrahigh-pressure
rocks in continental subduction zones, Earth Planet. Sc. Lett., 428, 151–161,
https://doi.org/10.1016/j.epsl.2015.06.016, 2015.
Lallemand, S. and Arcay, D.: Subduction initiation from the earliest stages
to self-sustained subduction: Insights from the analysis of 70 Cenozoic
sites, Earth Sci. Rev., 221, 103779, https://doi.org/10.1016/j.earscirev.2021.103779, 2021.
Lanari, P., and Engi, M.: Local bulk composition effects on metamorphic
mineral assemblages, Rev. Mineral. Geochem., 83, 55–102, https://doi.org/10.2138/rmg.2017.83.3, 2017.
Lanari, P. and Hermann, J.: Iterative thermodynamic modelling – Part 2:
Tracing equilibrium relationships between minerals in metamorphic rocks, J. Metamorph. Geol., 39, 651–674, https://doi.org/10.1111/jmg.12575, 2021.
Lang, H. M. and Gilotti, J. A.: Partial melting of metapelites at
ultrahigh-pressure conditions, Greenland Caledonides, J. Metamorph. Geol., 25,
129–147, https://doi.org/10.1111/j.1525-1314.2006.00687.x, 2007.
Lang, H. M. and Gilotti, J. A.: Modeling the exhumation path of partially
melted ultrahigh-pressure metapelites, North-East Greenland Caledonides,
Lithos, 226, 131–146, https://doi.org/10.1016/j.lithos.2014.10.010, 2015.
Lappin, M. A. and Smith, D. C.: Mantle-equilibrated orthopyroxene-eclogite pods
from the Basal Gneisses in the Selje District, Western Norway, J. Petrol., 19,
530–584, https://doi.org/10.1093/petrology/19.3.530, 1978.
Levitas, V. I.: Resolving puzzles of the phase transformation-based mechanism
of the strong deep-focus earthquake, Nat. Commun., 13, 6291,
https://doi.org/10.1038/s41467-022-33802-y, 2022.
Li, X., Zhang, L., Wei, C., Bader, T., and Guo, J.: Cold subduction recorded
by the 1.9 Ga Salma eclogite in Belomorian Province (Russia), Earth Planet. Sc. Lett., 602, 117930, https://doi.org/10.1016/j.epsl.2022.117930, 2023.
Liu, F. L. and Liou, J. G.: Zircon as the best mineral for P–T–time history of
UHP metamorphism: A review on mineral inclusions and U–Pb SHRIMP ages of
zircons from the Dabie-Sulu UHP rocks, J. Asian Earth Sci., 40, 1–39,
https://doi.org/10.1016/j.jseaes.2010.08.007, 2011.
Liu, L., Zhang, J. F., Cao, Y. T., Green II, H. W., Yang, W. Q., Xu, H. J., Liao,
X. Y., and Kang, L.: Evidence of former stishovite in UHP eclogite from the
South Altyn Tagh, western China, Earth Planet. Sc. Lett., 484, 353–362,
https://doi.org/10.1016/j.epsl.2017.12.023, 2018.
Liu, Y. B., Mitchell, R. N., Brown, M., Johnson, T., and Pisarevsky, S.:
Linking metamorphism and plate boundaries over the past two billion years,
Geology, 50, 631–635, https://doi.org/10.1130/G49637.1, 2022.
Lu, G., Zhao, L., Chen, L., Wan, B., and Wu, F.-Y.: Reviewing subduction
initiation and the origin of plate tectonics: What do we learn from
present-day Earth?, Earth Planet Phys., 5, 123–140, https://doi.org/10.26464/epp2021014, 2021.
Luisier, C., Baumgartner, L.,
Schmalholz, S. M., Siron, G., and Vennemann T.: Metamorphic pressure
variation in a coherent Alpine nappe challenges lithostatic pressure
paradigm, Nat. Commun., 10, 4734, https://doi.org/10.1038/s41467-019-12727-z, 2019.
Luisier, C., Ballèvre, M., and Duretz, T.: The role of H2O on
metamorphism and deformation at high pressure: A combined petrological and
thermo-mechanical study based on the Gran Paradiso Unit, Western Alps,
Lithos, 446–447, 107123, https://doi.org/10.1016/j.lithos.2023.107123,
2023.
Malvoisin, B., Austrheim, H., Hetényi, G., Reynes, J., Hermann, J.,
Baumgartner, L. P., and Podladchikov, Y. Y.: Sustainable densification of the
deep crust, Geology, 48, 673–677, https://doi.org/10.1130/G47201.1, 2020.
Mancktelow, N. S.: Nonlithostatic pressure during sediment subduction and the
development and exhumation of high-pressure metamorphic rocks, J. Geophys. Res.-Sol. Ea., 100, 571–583, https://doi.org/10.1029/94JB02158, 1995.
Mancktelow, N. S.: Tectonic pressure: Theoretical concepts and modelled
examples, Lithos, 103, 149–177,
https://doi.org/10.1016/j.lithos.2007.09.013, 2008.
Manning, C. E. and Frezzotti, M. L.: Subduction-zone fluids, Elements, 16,
395–400, https://doi.org/10.2138/gselements.16.6.395, 2020.
Manzotti, P., Bosse, V., Pitra, P., Robyr, M., Schiavi, F., and
Ballèvre, M.: Exhumation rates in the Gran Paradiso Massif (Western
Alps) constrained by in situ U–Th–Pb dating of accessory phases (monazite,
allanite and xenotime), Contrib. Mineral. Petrol., 173, 24,
https://doi.org/10.1007/s00410-018-1452-7, 2018.
Manzotti, P., Schiavi, F., Nosenzo, F., Pitra, P., and Ballèvre, M.: A
journey towards the forbidden zone: a new, cold, UHP unit in the Dora-Maira
Massif (Western Alps), Contrib. Mineral. Petrol., 177, 59,
https://doi.org/10.1007/s00410-022-01923-8, 2022.
Marguin, V. and Simpson, G.: Influence of fluids on earthquakes based on
numerical modeling, J. Geophys. Res.-Sol. Ea., 128, e2022JB025132,
https://doi.org/10.1029/2022JB025132, 2023.
Massonne, H.-J.: A comparison of the evolution of diamondiferous quartz-rich
rocks from the Saxonian Erzgebirge and the Kokchetav Massif: are so-called
diamondiferous gneisses magmatic rocks?, Earth Planet. Sc. Lett., 216, 347–364,
https://doi.org/10.1016/S0012-821X(03)00512-0, 2003.
Massonne, H.-J. and Fockenberg, T.: Melting of metasedimentary rocks at
ultrahigh pressure – Insights from experiments and thermodynamic
calculations, Lithosphere, 4, 269–285, https://doi.org/10.1130/L185.1,
2012.
Mayne, M. J., Moyen, J. F., Stevens, G., and Kaislaniemi, L.: Rcrust: a tool
for calculating path-dependent open system processes and application to melt
loss, J. Metamorph. Geol., 34, 663–682, https://doi.org/10.1111/jmg.12199,
2016.
Mazzucchelli, M. L., Angel, R. J., and Alvaro, M.: EntraPT: an online platform
for elastic geothermobarometry, Am. Mineral., 106, 830–837,
https://doi.org/10.2138/am-2021-7693CCBYNCND, 2021.
Melnik, A. E., Skublov, S. G., Rubatto, D., Müller, D., Li, X. H., Li,
Q. L., Berezin, A. V., Herwartz, D., and Machevariani, M. M.: Garnet and zircon
geochronology of the Paleoproterozoic Kuru-Vaara eclogites, northern
Belomorian Province, Fennoscandian Shield, Precambrian Res., 353, 106014,
https://doi.org/10.1016/j.precamres.2020.106014, 2021.
Mingardi, G., Campomenosi, N., Gilio, M., Chopin, C., Scambelluri, M., and
Alvaro, M.: Elastic thermobarometry of ultrahigh-pressure metapelites from
the Brossasco Isasca unit (Dora-Maira Massif, Western Alps), Lithos,
448–449, 107167, https://doi.org/10.1016/j.lithos.2023.107167, 2023.
Moulas, E., Podladchikov, Y. Y., Aranovich, L. Y., and Kostopoulos, D.: The
problem of depth in geology: When pressure does not translate into depth,
Petrology, 21, 527–538, https://doi.org/10.1134/S0869591113060052, 2013.
Moulas, E., Schmalholz, S., Podladchikov, Y., Tajčmanová, L.,
Kostopoulos, D., and Baumgartner, L.: Relation between mean stress,
thermodynamic, and lithostatic pressure, J. Metamorph. Geol., 37, 1–14,
https://doi.org/10.1111/jmg.12446, 2019.
Moulas, E., Kaus, B., and Jamtveit, B.: Dynamic pressure variations in the
lower crust caused by localized fluid-induced weakening, Commun. Earth
Environ., 3, 157, https://doi.org/10.1038/s43247-022-00478-7, 2022.
Muñoz-Montecinos, J., Angiboust, S., García-Casco, A., and
Raimondo, T.: Shattered veins elucidate brittle creep processes in the deep
slow slip and tremor region, Tectonics, 42, e2022TC007605, https://doi.org/10.1029/2022TC007605, 2023.
Murri, M., Mazzucchelli, M. L., Campomenosi, N., Korsakov, A. V., Prencipe,
M., Mihailova, B. D., Scambelluri, M., Angel, R. J., and Alvaro, M.: Raman
elastic geobarometry for anisotropic mineral inclusions, Am. Mineral., 103,
1869–1872, https://doi.org/10.2138/am-2018-6625CCBY, 2018.
Murri, M., Gonzalez, J. P., Mazzucchelli, M. L., Prencipe, M., Mihailova, B.,
Angel, R. J., and Alvaro, M.: The role of symmetry-breaking strains on quartz
inclusions in anisotropic hosts: Implications for Raman elastic
geobarometry, Lithos, 422, 106716,
https://doi.org/10.1016/j.lithos.2022.106716, 2022.
Ogasawara, Y., Fukasawa, K., and Maruyama, S.: Coesite exsolution from
supersilicic titanite in UHP marble from the Kokchetav Massif, northern
Kazakhstan, Am. Mineral., 87, 454–461, https://doi.org/10.2138/am-2002-0409,
2002.
O'Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H., and Lee, C. T. A.:
Episodic Precambrian subduction, Earth Planet. Sc. Lett., 262, 552–562,
https://doi.org/10.1016/j.epsl.2007.04.056, 2007.
O'Neill, C., Marchi, S., Zhang, A., and Bottke, W.: Impact-driven subduction
on the Hadean Earth, Nat. Geosci., 10, 793–797,
https://doi.org/10.1038/ngeo3029, 2017.
O'Neill, C., Marchi, S., Bottke, W., and Fu, R.: The role of impacts on
Archaean tectonics, Geology, 48, 174–178, https://doi.org/10.1130/G46533.1, 2020.
O'Neill, C., Brown, M., Schaefer, B., and Gazi, J. A.: Earth's anomalous
middle-age magmatism driven by plate slowdown, Sci. Rep., 12,
10460, https://doi.org/10.1038/s41598-022-13885-9, 2022.
Osborne, Z. R., Thomas, J. B., Nachlas, W. O., Angel, R. J., Hoff, C. M., and
Watson, E. B.: TitaniQ revisited: expanded and improved Ti-in-quartz
solubility model for thermobarometry, Contrib. Mineral. Petrol., 177, 31,
https://doi.org/10.1007/s00410-022-01896-8, 2022.
Palin, R. and White, R.: Emergence of blueschists on Earth linked to secular
changes in oceanic crust composition, Nat. Geosci., 9, 60–64,
https://doi.org/10.1038/ngeo2605, 2016.
Palin, R. M., Weller, O. M., Waters, D. J., and Dyck, B.: Quantifying
geological uncertainty in metamorphic phase equilibria modelling; a Monte
Carlo assessment and implications for tectonic interpretations, Geosci.
Front., 7, 591–607, https://doi.org/10.1016/j.gsf.2015.08.005,
2016.
Peacock, S. M. and Wang, K.: Seismic consequences of warm versus cool
subduction metamorphism: examples from southwest and northeast Japan,
Science, 286, 937–939, https://doi.org/10.1126/science.286.5441.937, 1999.
Penniston-Dorland, S. C., Kohn, M. J., and Manning, C. E.: The global range of
subduction zone thermal structures from exhumed blueschists and eclogites:
Rocks are hotter than models, Earth Planet. Sc. Lett., 428, 243–254,
https://doi.org/10.1016/j.epsl.2015.07.031, 2015.
Perchuk A. L., Zakharov V. S., Gerya T. V., and Brown, M.: Hotter mantle but
colder subduction in the Precambrian: what are the implications?, Precambrian
Res., 330, 20–34, https://doi.org/10.1016/j.precamres.2019.04.023, 2019.
Perraki, M. and Faryad, S. W.: First finding of microdiamond, coesite and
other UHP phases in felsic granulites in the Moldanubian Zone: Implications
for deep subduction and a revised geodynamic model for Variscan Orogeny in
the Bohemian Massif, Lithos, 203, 157–166,
https://doi.org/10.1016/j.lithos.2014.05.025, 2014.
Petrini, K. and Podladchikov, Y.: Lithospheric pressure-depth relationship
in compressive regions of thickened crust, J. Metamorph. Geol., 18, 67–77,
https://doi.org/10.1046/j.1525-1314.2000.00240.x, 2000.
Piccoli, F., Rubatto, D., Ovtcharova, M., Hermann, J., Guillong, M., and
Brovarone, A. V.: Dating fluid infiltration and deformation in the subducted
ultramafic oceanic lithosphere by perovskite geochronology, Chem. Geol., 615,
121205, https://doi.org/10.1016/j.chemgeo.2022.121205, 2023.
Pleuger, J. and Podladchikov, Y. Y.: A purely structural restoration of the
NFP20-East cross section and potential tectonic overpressure in the Adula
nappe (central Alps), Tectonics, 33, 656–685,
https://doi.org/10.1002/2013TC003409, 2014.
Plümper, O., John, T., Podladchikov, Y. Y., Vrijmoed,
J. C., and Scambelluri, M.: Fluid escape from subduction zones controlled by
channel-forming reactive porosity, Nat. Geosci., 10, 150–156,
https://doi.org/10.1038/ngeo2865, 2017.
Powell, R. and Holland, T. J. B.: An internally consistent dataset with
uncertainties and correlations: 3. Applications to geobarometry, worked
examples and a computer program, J. Metamorph. Geol., 6, 173–204,
https://doi.org/10.1111/j.1525-1314.1988.tb004 15.x, 1988.
Powell, R. and Holland, T. J. B.: Optimal geothermometry and geobarometry, Am. Mineral., 79, 120–133, 1994.
Powell, R. and Holland, T. J. B.: On thermobarometry, J. Metamorph. Geol., 26,
155–179, https://doi.org/10.1111/j.1525-1314.2007.00756.x, 2008.
Powell, R., Holland, T. J. B., and Worley, B.: Calculating phase diagrams
involving solid solutions via non-linear equations, with examples using
THERMOCALC, J. Metamorph. Geol.,16, 577–588,
https://doi.org/10.1111/j.1525-1314.1998.00157.x, 1998.
Powell, R., Evans, K. A., Green, E. C. R., and White, R. W.: On equilibrium in
non-hydrostatic metamorphic systems, J. Metamorph. Geol., 36, 419–438,
https://doi.org/10.1111/jmg.12298, 2018.
Putnis, A., Moore, J., Prent, A. M., Beinlich, A., and Austrheim, H.:
Preservation of granulite in a partially eclogitized terrane: Metastable
phenomena or local pressure variations?, Lithos, 400/401, 106413,
https://doi.org/10.1016/j.lithos.2021.106413, 2021.
Qu R., Zhu, W., Ji, Y., Xie, C., Zeng, D., and Zhang, F.: Subduction thermal
regime, petrological metamorphism and seismicity under the Mariana arc, Sci.
Rep., 13, 1948, https://doi.org/10.1038/s41598-023-29004-1,
2023.
Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., and Engi,
M.: Multiple metamorphic stages within an eclogite-facies terrane (Sesia
Zone, Western Alps) revealed by Th–U–Pb petrochronology, J. Petrol., 55,
1429–1456, https://doi.org/10.1093/petrology/egu029, 2014.
Rogowitz, A. and Huet, B.: Evolution of fluid pathways during eclogitization
and their impact on formation and deformation of eclogite: A microstructural
and petrological investigation at the type locality (Koralpe, Eastern Alps,
Austria), Tectonophysics, 819, 229079,
https://doi.org/10.1016/j.tecto.2021.229079, 2021.
Rosenfeld, J. L. and Chase, A. B.: Pressure and temperature of crystallization
from elastic effects around solid inclusions in minerals?, Am. J. Sci., 259,
519–541, https://doi.org/10.2475/ajs.259.7.519, 1961.
Rubatto, D., Gebauer, D., and Fanning, M.: Jurassic formation and Eocene
subduction of the Zermatt–Saas-Fee ophiolites: implications for the
geodynamic evolution of the Central and Western Alps, Contrib. Mineral. Petrol., 132, 269–287, https://doi.org/10.1007/s004100050421, 1998.
Rubatto, D., Gebauer, D., and Compagnoni, R.: Dating of eclogite-facies
zircons: the age of Alpine metamorphism in the Sesia–Lanzo Zone (Western
Alps), Earth Planet. Sc. Lett., 167, 141–158,
https://doi.org/10.1016/S0012-821X(99)00031-X, 1999.
Rutland, R. W. R.: Tectonic overpressures, in: Controls of Metamorphism, edited by: Pitcher, W. S. and Flinn, G. W., Oliver & Boyd, Edinburgh, 119–139,
1965.
Schertl, H.-P., Schreyer, W., and Chopin, C.: The pyrope-coesite rocks and
their country rocks at Parigi, Dora-Maira Massif, Western Alps: detailed
petrography, mineral chemistry and P–T path, Contrib. Mineral. Petrol., 108,
1–21, https://doi.org/10.1007/BF00307322, 1991.
Schönig, J., Meinhold, G., von Eynatten, H., and Lünsdorf, N. K.: Tracing ultrahigh-pressure metamorphism at the catchment
scale, Sci. Rep., 8, 2931,
https://doi.org/10.1038/s41598-018-21262-8, 2018a.
Schönig, J., Meinhold, G., von Eynatten, H., and Lünsdorf, N. K.: Provenance information recorded bymineral inclusions in
detrital garnet, Sed. Geol., 376, 32–49,
https://doi.org/10.1016/j.sedgeo.2018.07.009, 2018b.
Schönig, J., von Eynatten, H., Meinhold, G., and Lünsdorf, N. K.: Diamond and coesite inclusions in detrital garnet of the
Saxonian Erzgebirge, Germany, Geology, 47, 715–718, https://doi.org/10.1130/G46253.1, 2019.
Schönig, J., von Eynatten, H., Meinhold, G., and Lünsdorf, N. K.: Life-cycle analysis of coesite-bearing garnet, Geol. Mag., 158,
1421–1440, https://doi.org/10.1017/S0016756821000017, 2021.
Schönig, J., von Eynatten, H., Meinhold, G., and Lünsdorf, N. K.: The
sedimentary record of ultrahigh-pressure metamorphism: a perspective review,
Earth Sci. Rev., 227, 103985, https://doi.org/10.1016/j.earscirev.2022.103985,
2022.
Schorn, S.: Self-induced incipient “eclogitization” of metagranitoids at
closed-system conditions, J. Metamorph. Geol., 40, 1271–1290,
https://doi.org/10.1111/jmg.12665, 2022.
Schwarzenbach, E. M., Zhong, X., Caddick, M. J., Schmalholz, S. M., Menneken,
M., Hecht, L., and John, T.: On exhumation velocities of high-pressure units
based on insights from chemical zoning in garnet (Tianshan, NW China), Earth Planet. Sc. Lett., 570, 117065, https://doi.org/10.1016/j.epsl.2021.117065,
2021.
Scibiorski, E., Tohver, E., and Jourdan, F.: Rapid cooling and exhumation in
the western part of the Mesoproterozoic Albany-Fraser Orogen, Western
Australia, Precambrian Res., 265, 232–248,
https://doi.org/10.1016/j.precamres.2015.02.005, 2015.
Shirey, S. B. and Richardson, S. H.: Start of the Wilson cycle at 3 Ga shown
by diamonds from subcontinental mantle, Science, 333, 434–36,
https://doi.org/10.1126/science.1206275, 2011.
Shirey, S. B., Wagner, L. S., Walter, M. J., Pearson, D. G., and van Keken,
P. E.: Slab transport of fluids to deep focus earthquake depths – thermal
modeling constraints and evidence from diamonds, AGU Advances, 2,
e2020AV000304, https://doi.org/10.1029/2020AV000304, 2021.
Simon, M., Pitra, P., Yamato, P., and Poujol, M.: Isothermal compression of
an eclogite from the Western Gneiss Region (Norway), J. Metamorph. Geol., 41,
181–203, https://doi-org/10.1111/jmg.12692, 2023.
Simpson, A., Gilbert, S., Tamblyn, R., Hand, M., Spandler, C., Gillespie,
J., Nixon, A., and Glorie, S.: In-situ Lu–Hf geochronology of garnet,
apatite and xenotime by LA ICP MS/MS, Chem. Geol., 577, 120299,
https://doi.org/10.1016/j.chemgeo.2021.120299, 2021.
Simpson, A., Glorie, Hand, M., Spandler, C., and Gilbert, S.: Garnet Lu-Hf
speed dating: A novel method to rapidly resolve polymetamorphic histories,
Gondwana Res., 121, 215–234, https://doi.org/10.1016/j.gr.2023.04.011, 2023.
Sizova, E., Gerya, T., Brown, M., and Perchuk, L.: Subduction styles in the
Precambrian: Insight from numerical experiments, Lithos, 116, 209–229,
https://doi.org/10.1016/j.lithos.2009.05.028, 2010.
Sizova, E., Gerya, T., and Brown, M.: Exhumation mechanisms of melt-bearing
ultrahigh pressure crustal rocks during collision of spontaneously moving
plates, J. Metamorph. Geol., 30, 927–955,
https://doi.org/10.1111/j.1525-1314.2012.01004.x, 2012.
Sizova E., Gerya T., and Brown M.: Contrasting styles of Phanerozoic and
Precambrian continental collision, Gondwana Res., 25, 522–545,
https://doi.org/10.1016/j.gr.2012.12.011, 2014.
Sizova, E., Hauzenberger, C., Fritz, H., Faryad, S. W., and Gerya, T.: Late
orogenic heating of (ultra)high pressure rocks: Slab Rollback vs. Slab
Breakoff, Geosciences, 9, 1–28,
https://doi.org/10.3390/geosciences9120499, 2019.
Skogby, H., Janák, M., and Broska, I.: Water incorporation in omphacite:
concentrations and compositional relations in ultrahigh-pressure eclogites
from Pohorje, Eastern Alps, Europ. J. Mineral., 28, 631–639,
https://doi.org/10.1127/ejm/2016/0028-2533, 2016.
Smit, K. V., Timmerman, S., Aulbach, S., Shirey, S. B., Richardson, S. H.,
Phillips, D., and Pearson, D. G.: Geochronology of Diamonds, Rev. Mineral.
Geochem., 88, 567–636, https://doi.org/10.2138/rmg.2022.88.11, 2022.
Smith, D. C.: Coesite in clinopyroxene in the Caledonides and its
implications for geodynamics, Nature, 310, 641–644,
https://doi.org/10.1038/310641a0, 1984.
Smith, E. M., Shirey, S. B., Richardson, S. H., Nestola, F., Bullock, E. S.,
Wang, J., and Wang, W.: Blue boron-bearing diamonds from Earth's lower
mantle, Nature, 560, 84–87, https://doi.org/10.1038/s41586-018-0334-5,
2018.
Smye, A. J. and England, P. C.: Metamorphism and deformation on subduction
interfaces: 2. Petrological and tectonic implications, Geochem. Geophy.
Geosy., 24, e2022GC010645, https://doi.org/10.1029/2022GC010645, 2023.
Smye, A. J., Marsh, J. H., Vermeesch, P., Garber, J. M., and Stockli, D. F.:
Applications and limitations of U-Pb thermochronology to middle and lower
crustal thermal histories, Chem. Geol., 494, 1–18,
https://doi.org/10.1016/j.chemgeo.2018.07.003, 2018.
Sobolev, N. V. and Shatsky, V. S.: Diamond inclusions in garnet from
metamorphic rocks: a new environment for diamond formation, Nature, 343,
742–746, https://doi.org/10.1038/343742a0, 1990.
Sobolev, S. V. and Brown, M.: Surface erosion events controlled the evolution
of plate tectonics on Earth, Nature, 570, 52–57,
https://doi.org/10.1038/s41586-019-1258-4, 2019.
Spear, F. S., Wolfe, O. M., and Cheney, J. T.: On the interpretation of TitaniQ
and ZiR thermobarometry in subduction complexes, Contrib. Mineral. Petrol.,
178, 8, https://doi.org/10.1007/s00410-022-01989-4, 2023.
Spencer, C. J., Mitchell, R. N., and Brown, M.: Enigmatic Mid-Proterozoic
orogens: Hot, thin, and low, Geophys. Res. Lett., 48, e2021GL093312,
https://doi.org/10.1029/2021GL093312, 2021.
Spengler, D. and Alifirova, T. A.: New UHP eclogite in between UHP areas,
WGR, Norway, IEC-14, Lyon, France, Unpubl Abstract, 2022.
Spengler, D., Alifirova, T. A., and van Roermund, H. L. M.: Subcratonic and
tectonic evolution of pyroxenite and eclogite with lamellar inclusions in
garnet, Western Gneiss Region, Norway, J. Petrol., 62, egab008,
https://doi.org/10.1093/petrology/egab008, 2021.
Spránitz, T., Szabó, C., Gilio, M., Alvaro, M., Blazeková, M.,
Konecný, P., Váczi, T., and Berkesi, M.: Estimation of P-T
entrapment conditions of a subduction fluid using elastic thermobarometry: A
case study from Cabo Ortegal Complex, Spain, Lithos, 448–449, 107171,
https://doi.org/10.1016/j.lithos.2023.107171, 2023.
Stepanov, A. S., Hermann, J., Korsakov, A. V., and Rubatto, D.: Geochemistry
of ultrahigh-pressure anatexis: fractionation of elements in the Kokchetav
gneisses during melting at diamond-facies conditions, Contrib. Mineral. Petrol., 167, 1002, https://doi.org/10.1007/s00410-014-1002-x, 2014.
Stepanov, A. S., Hermann, J., Rubatto, D., Korsakov, A. V., and Danyushevsky,
L. V.: Melting history of an ultrahigh-pressure paragneiss revealed by
multiphase solid inclusions in garnet, Kokchetav massif, Kazakhstan, J.
Petrol., 57, 1531–1554, https://doi.org/10.1093/petrology/egw049, 2016.
Stern, R. J. and Gerya, T.: Subduction initiation in nature and models: A
review, Tectonophys, 746, 173–198,
https://doi.org/10.1016/j.tecto.2017.10.014, 2018.
Taetz, S., John, T.,
Bröcker, M., Spandler, C., and Stracke, A.: Fast intraslab fluid-flow
events linked to pulses of high pore fluid pressure at the subducted plate,
Earth Planet. Sc. Lett., 482, 33–43,
https://doi.org/10.1016/j.epsl.2017.10.044, 2018.
Tajčmanová, L., Podladchikov, Y., Powell, R., Moulas, E., Vrijmoed,
J. C., and Connolly, J. A. D.: Grain-scale pressure variations and chemical
equilibrium in high-grade metamorphic rocks, J. Metamorph. Geol., 32, 195–207,
https://doi.org/10.1111/jmg.12066, 2014.
Tajčmanová, L., Vrijmoed, J., and Moulas, E.: Grain-scale pressure
variations in metamorphic rocks: implications for the interpretation of
petrographic observations, Lithos, 216, 338–351,
https://doi.org/10.1016/j.lithos.2015.01.006, 2015.
Tajčmanová, L., Manzotti, P., and Alvaro, M.: Under pressure:
high-pressure metamorphism in the Alps, Elements, 17, 17–22,
https://doi.org/10.2138/gselements.17.1.17, 2021.
Tamblyn, R., Hasterok, D., Hand, M., and Gard, M.: Mantle heating at ca. 2 Ga by continental insulation: Evidence from granites and eclogites, Geology,
50, 91–95, https://doi.org/10.1130/G49288.1, 2022a.
Tamblyn, R., Hand, M., Simpson, A., Gilbert, S., Wade, B., and Glorie, S.:
In situ laser ablation Lu–Hf geochronology of garnet across the Western
Gneiss Region: campaign-style dating of metamorphism, J. Geol. Soc Lond.,
179, https://doi.org/10.1144/jgs2021-094, 2022b.
Thomas, J. B. and Spear, F. S.: Experimental study of quartz inclusions in
garnet at pressures up to 3.0 GPa: Evaluating validity of the
quartz-in-garnet inclusion elastic thermobarometer, Contrib.
Mineral. Petrol., 173, 1–14,
https://doi.org/10.1007/s00410-018-1469-y, 2018.
Thomas, J. B., Watson, E. B., Spear, F. S., Shemella, P. T., Nayak, S. K., and
Lanzirotti, A.: TitaniQ under pressure: the effect of pressure and
temperature on the solubility of Ti in quartz, Contrib. Mineral. Petrol., 160,
743–759, https://doi-org/10.1007/s00410-010-0505-3, 2010.
Tomkins, H. S., Powell, R., and Ellis, D. J.: The pressure dependence of the
zirconium-in-rutile thermometer, J. Metamorph. Geol., 25, 703–713,
https://doi.org/10.1111/j.1525-1314.2007.00724.x, 2007.
Tual, L., Smit, M. A., Cutts, J., Kooijman, E., Kielman-Schmitt, M., Majka,
J., and Foulds, I.: Rapid, paced metamorphism of blueschists (Syros, Greece)
from laser-based zoned Lu-Hf garnet chronology and LA-ICPMS trace element
mapping, Chem. Geol., 607, 121003,
https://doi.org/10.1016/j.chemgeo.2022.121003, 2022.
van Hunen, J. and van den Berg, A.: Plate tectonics on the early Earth:
limitations imposed by strength and buoyancy of subducted lithosphere,
Lithos, 103, 217–235, https://doi.org/10.1016/j.lithos.2007.09.016, 2008.
van Keken, P. E., Hacker, B. R., Syracuse, E. M., and Abers, G. A.: Subduction
factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res., 116, B01401, https://doi.org/10.1029/2010jb007922, 2011.
van Keken, P. E., Wada, I., Abers, G. A., Hacker, B. R., and Wang, K.: Mafic
high-pressure rocks are preferentially exhumed from warm subduction
settings, Geochem. Geophy. Geosy., 19, 2934–2961,
https://doi.org/10.1029/2018GC007624, 2018.
van Roermund, H. L. M. and Drury, M. R.: Ultra-high pressure (P > 6 GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from
> 185 km depth, Terra Nova, 10, 295–301,
https://doi.org/10.1046/j.1365-3121.1998.00213.x, 1998.
Vho, A., Lanari, P., Rubatto, D., and Hermann, J.: Tracing fluid transfers
in subduction zones: an integrated thermodynamic and δ18O
fractionation modelling approach, Solid Earth, 11, 307–328,
https://doi.org/10.5194/se-11-307-2020, 2020.
Vho, A., Rubatto, D., Lanari, P., and Regis, D.: The evolution of the Sesia
Zone (Western Alps) from Carboniferous to Cretaceous: insights from zircon
and allanite geochronology, Swiss J. Geosci., 113, 24, https://doi.org/10.1186/s00015-020-00372-4, 2020.
Viete, D. R. and Lister,
G. S.: On the significance of short-duration regional metamorphism, J. Geol.
Soc. Lond., 174, 377–392, https://doi.org/10.1144/jgs2016-060, 2017.
Viete, D. R., Hacker, B. R., Allen, M. B., Seward, G. G. E., Tobin, M. J., Kelley,
C. S., Cinque, G., and Duckworth, A. R.: Metamorphic records of multiple
seismic cycles during subduction, Sci. Adv., 4, eaaq0234,
https://doi.org/10.1126/sciadv.aaq0234, 2018.
Wan, B., Yang, X., Tian, X., Yuan, H., Kirscher, U., and Mitchell, R. N.:
Seismological evidence for the earliest global subduction network at 2 Ga
ago, Sci. Adv., 6, eabc5491, https://doi.org/10.1126/sciadv.abc5491, 2020.
Wang, H., Xiao, W. J., Windley, B. F., Zhang, Q. W. L., Tan, Z., Wu, C. M., and
Shi, M. G.: Diverse P–T–t paths reveal high-grade metamorphosed forearc complexes
in NW China, China, J. Geophys. Res.-Sol. Ea., 127, e2022JB024309,
https://doi.org/10.1029/2022JB024309, 2022.
Wang, J., Li, X., Ning, W., Kusky, T., Wang, L., Polat, A., and Deng, H.:
Geology of a Neoarchean suture: Evidence from the Zunhua ophiolitic
mélange of the Eastern Hebei Province, North China Craton, Geol. Soc. Am. Bull., 131, 1943–1964,https://doi.org/10.1130/B35138.1, 2019.
Wang, J.-M., Lanari, P., Wu, F.-Y., Zhang, J.-J., Khanal, G. P., and Yang,
L.: First evidence of eclogites overprinted by ultrahigh temperature
metamorphism in Everest East, Himalaya: Implications for collisional
tectonics on early Earth, Earth Planet. Sc. Lett., 558, 116760,
https://doi.org/10.1016/j.epsl.2021.116760, 2021.
Wang, L., Kusky, T. M., Polat, A., Wang, S. J., Jiang, X. F., Zong, K. Q., Wang,
J. P., Deng, H., and Fu, J. M.: Partial melting of deeply subducted eclogite
from the Sulu orogen in China, Nat. Commun., 5, 5604,
https://doi.org/10.1038/ncomms6604, 2014.
Wang, L., Wang, S.-J., Brown, M., Zhang, J. F., Feng, P., and Jin, Z. M.: On
the survival of intergranular coesite in UHP eclogite, J. Metamorph. Geol., 36,
173–194, https://doi.org/10.1111/jmg.12288, 2018.
Wang, S., Wang, L., Brown, M., and Feng, P.: Multi-stage barite
crystallization in partially melted UHP eclogite from the Sulu belt, China,
Am. Mineral., 101, 564–579, https://doi.org/10.2138/am-2016-5384, 2016.
Wang, S.-J., Wang, L., Brown, M., Piccoli, P. M., Johnson, T., Feng, P.,
Deng, H., Kitajima, K., and Huang, Y.: Composite granite–quartz veins in
the Sulu belt, China: evidence of supercritical fluid flow during exhumation
of deeply subducted UHP continental crust, China, J. Metamorph. Geol., 35,
601–629, https://doi.org/10.1111/jmg.12248, 2017.
Wang, S.-J., Wang, L., Brown, M., Johnson, T., Piccoli, P., Feng, P., and
Wang, Z.-L.: Petrogenesis of leucosome sheets in migmatitic UHP
eclogites – Evolution from silicate-rich supercritical fluid to hydrous
melt, Lithos, 360/361, 105442, https://doi.org/10.1016/j.lithos.2020.105442,
2020.
Wang, S.-J., Brown, M., Wang, L., Johnson, T. E., Olierook, H. K. H., Kirkland,
C. L., Kylander-Clark, A., Evans, N. J., and McDonald, B. J.: Two-stage
exhumation of deeply-subducted continental crust: Insight from zircon,
titanite and apatite petrochronology, Geol. Soc. Am. Bull., 135, 48–66,
https://doi.org/10.1130/B36309.1, 2023.
Wang, Y., Wang, K., He, J., and Zhang, L.: On unusual conditions for the
exhumation of subducted oceanic crustal rocks: How to make rocks hotter than
models, Earth Planet. Sc. Lett., 615, 118213, https://doi.org/10.1016/j.epsl.2023.118213, 2023.
Weller, O. M., Mottram,
C. M., St-Onge, M. R., Möller, C., Strachan, R., Rivers, T., and Copley,
A.: The metamorphic and magmatic record of collisional orogens, Nat. Rev.
Earth Environ., 2, 781–799, https://doi.org/10.1038/s43017-021-00218-z,
2021.
Wheeler, J.: A unifying basis for the interplay of stress and chemical
processes in the Earth: support from diverse experiments, Contrib. Mineral.
Petrol., 175, 116, https://doi.org/10.1007/s00410-020-01750-9, 2020.
Willigers, B. J. A., van Gool Willigers, J. A. M., Wijbrans, J. R., Krogstad, E.
J., and Mezger, K.: Posttectonic cooling of the Nagssugtoqidian Orogen and a
comparison of contrasting cooling histories in Precambrian and Phanerozoic
orogens, J. Geol., 110, 503–517, https://doi.org/10.1086/341595, 2002.
Xiang, H. and Connolly, J. A. D.: GeoPS: An interactive visual computing tool
for thermodynamic modelling of phase equilibria, J. Metamorph. Geol., 40,
243–255, https://doi.org/10.1111/jmg.12626, 2022.
Xu, Z., Wang,
Q., Tang, Z., and Chen, F.: Fabric kinematics of the ultrahigh-pressure
metamorphic rocks from the main borehole of the Chinese Continental
Scientific Drilling Project: Implications for continental subduction and
exhumation, Tectonophysics, 475, 235–250,
https://doi.org/10.1016/j.tecto.2009.02.041, 2009.
Yamato, P., Agard, P., Burov, E., Le Pourhiet, L., Jolivet, L., and Tiberi,
C.: Burial and exhumation in a subduction wedge: Mutual constraints from
thermomechanical modeling and natural P-T-t data (Schistes Lustrés,
western Alps), J. Geophys. Res., 112, B07410,
https://doi.org/10.1029/2006JB004441, 2007.
Yamato, P., Duretz, T.,
Baïsset, M., and Luisier, C.: Reaction-induced volume change triggers
brittle failure at eclogite facies conditions, Earth Planet. Sc. Lett., 584,
117520, https://doi.org/10.1016/j.epsl.2022.117520, 2022.
Yardley, B. W. and Valley, J. W.: The petrologic case for a dry lower
crust, J. Geophys. Res.-Sol. Ea., 102, 12173–12185,
https://doi.org/10.1029/97JB00508, 1997.
Yoshida, K., Oyanagi, R., Kimura, M., Plümper, O.,
Fukuyama, M., and Okamoto, A.: Geological records of transient fluid drainage
into the shallow mantle wedge, Sci. Adv., 9, eade6674,
https://doi.org/10.1126/sciadv.ade6674, 2023.
Young, D. J. and Kylander-Clark, A. R. C.: Does continental crust transform
during eclogite facies metamorphism?, J. Metamorph. Geol., 33, 337–351,
https://doi.org/10.1111/jmg.12123, 2015.
Zhao, L., Tyler, I. M., Gorczyk, W., Murdie, R. E., Gessner, K., Lu, Y.,
Smithies, H., Li, T., Yang, J., Zhan, A., Wan, B., Sun, B., Yuan, H., and
the CWAS Group: Seismic evidence of two cryptic sutures in Northwestern
Australia: Implications for the style of subduction during the
Paleoproterozoic assembly of Columbia, Earth Planet. Sc. Lett., 579, 117342,
https://doi.org/10.1016/j.epsl.2021.117342, 2022.
Zhong, X., Vrijmoed, J., Moulas, E., and Tajčmanová, L.: A coupled
model for intragranular deformation and chemical diffusion, Earth Planet. Sc. Lett., 474, 387–396, https://doi.org/10.1016/j.epsl.2017.07.005, 2017.
Zou, Y., Mitchell, R. N., Chu, X., Brown, M., Li, Q. L., Zhao, L., and Zhai,
M. G.: Surface evolution during the mid-Proterozoic stalled by mantle warming
under Columbia–Rodinia, Earth Planet. Sc. Lett., 607, 118055,
https://doi.org/10.1016/j.epsl.2023.118055, 2023.
Short summary
The past 40 years have been a golden age for eclogite studies, supported by an ever wider range of instrumentation and enhanced computational capabilities, linked with ongoing developments in the determination of the temperatures and pressures of metamorphism and the age of these rocks. These data have been used to investigate the spatiotemporal distribution of metamorphism and secular change but not without controversy in relation to the emergence of plate tectonics on Earth.
The past 40 years have been a golden age for eclogite studies, supported by an ever wider range...