Buxeda i Garrigos, J., Mommsen, H., and Tsolakidou, A.: Alterations of Na, K
and Rb concentrations in Mycenean pottery and a proposed explanation using
X-Ray Diffraction, Archaeometry, 44, 187–198,
https://doi.org/10.1111/1475-4754.t01-1-00052, 2002.
Çelik, A., Kadir, S., Kapur, S., Zorlu, K., Akça, E., Akşit,
Í., and Cebeci, Z.: The effect of high temperature minerals and
microstructure on the compressive strength of bricks, Appl. Clay Sci., 169,
91–101, https://doi.org/10.1016/j.clay.2018.11.020, 2019.
Cizer, O., Rodriguez-Navarro, C., Ruiz-Agudo, E., Elsen J., Van Gemert, D.,
and Van Balen, K.: Phase and morphology evolution of calcium carbonate
precipitated by carbonation of hydrated lime, J. Mater. Sci., 47, 6151–616,
https://doi.org/10.1007/s10853-012-6535-7, 2012.
Cucato, M., de Vecchi, G. P., Mozzi, P., Abbà, T., Paiero, G., and Sedea,
R. (Eds.): CARG Progetto, Note illustrative della Carta Geologica d'Italia
alla scalla 1 : 50.000, Foglio 147, Padova Sud, Istituto Superiore per la
Protezione e la Ricerca Ambientale (ISPRA), Regione del Veneto, Italia,
https://www.isprambiente.gov.it/Media/carg/note_illustrative/147_Padova_Sud.pdf (last access: 19 December 2021),
2008.
Cultrone, G.: The use of Mount Etna volcanic ash in the production of bricks
with good physical-mechanical performance: Converting a problematic waste
product into a resource for the construction industry, Ceram. Int., 48, 5724–5736,
https://doi.org/10.1016/j.ceramint.2021.11.119, 2022.
Cultrone, G. and Carrillo, F. J.: Growth of metastable phases during brick
firing: Mineralogical and microtextural changes induced by the composition
of the raw material and the presence of additives, Appl. Clay Sci., 185,
105419, https://doi.org/10.1016/j.clay.2019.105419, 2020.
Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., and De la
Torre, M. J.: Carbonate and silicate phase reactions during ceramic firing,
Eur. J. Mineral., 13, 621–634, https://doi.org/10.1127/0935-1221/2001/0013-0621, 2001.
Cultrone, G., Molina, E., and Arizzi, A.: The combined use of petrographic,
chemical and physical techniques to define the technological features of
Iberian ceramics from the Canto Tortoso area (Granada, Spain), Ceram. Int.,
40, 10803–10816, https://doi.org/10.1016/j.ceramint.2014.03.072, 2014.
Darweesh, H. H. M.: Building materials from siliceous clay and low grade
dolomite rocks, Ceram. Int., 27, 45–50, https://doi.org/10.1016/S0272-8842(00)00040-7, 2001.
Duminuco, P., Messiga, B., and Riccardi, M. P.: Firing process of natural
clays. Some microtextures and related phase compositions, Thermochim. Acta,
321, 185–190, https://doi.org/10.1016/S0040-6031(98)00458-4, 1998.
Daghmehchi, M., Omrani, H., Emami, M., and Nokandeh, J.: Mineralogical and
thermo-chemical characteristics of the Hellenistic ceramics and raw clay
from Qizlar Qal'eh (northeastern Iran), Mater. Charact., 120, 143–151,
https://doi.org/10.1016/j.matchar.2016.08.030, 2016.
Dondi, M., Ercolani, G., Fabbri, B., and Marsigli, M.: An approach to the
chemistry of pyroxenes formed during the firing of Ca-rich silicate
ceramics, Clay Miner., 33, 443–452, https://doi.org/10.1180/000985598545741, 1998.
Donnici, S., Serandrei-Barbero, R., Bini, C., Bonardi, M., and Lezziero, A.:
The Caranto Paleosol and its role in the early urbanization of Venice,
Geoarchaeology, 26, 514–543, https://doi.org/10.1002/gea.20361, 2011.
Elert, K., Cultrone, G., Rodriguez-Navarro, C., and Sebastian, E.:
Durability of bricks used in the conservation of historic buildings.
Influence of composition and microstructure, J. Cult. Herit., 4, 91–99,
https://doi.org/10.1016/S1296-2074(03)00020-7, 2003.
Elias, M. L. and Cultrone, G.: On the use of sodium chloride and calcined
diatomite sludge as additives to improve the engineering properties of
bricks made with a clay earth from Jun (Granada, Spain), Minerals, 9, 64,
https://doi.org/10.3390/min9010064, 2019.
Everhart, J. O.: Use of auxiliary fluxes to improve structural clay bodies,
Bull. Am. Ceram., 36, 268–271, 1957.
Fabbri, B., Gualtieri, S., and Shoval, S.: The presence of calcite in
archaeological ceramics, J. Eur. Ceram. Soc., 34, 1899–1911,
https://doi.org/10.1016/j.jeurceramsoc.2014.01.007, 2014.
García-Labiano, F., Abad, A., de Diego, L. F., Gayán, P., and
Adánez, J.: Calcination of calcium-based sorbents at pressure in a broad
range of CO
2 concentrations, Chem. Eng. Sci., 57, 2381–2393,
https://doi.org/10.1016/S0009-2509(02)00137-9, 2002.
Germinario, L., Siegesmund, S., Maritan, L., Simon, K., and Mazzoli, C.:
Trachyte weathering in the urban built environment related to air quality,
Herit. Sci., 5, 44, https://doi.org/10.1186/s40494-017-0156-z, 2017.
Gliozzo, E.: Ceramic technology. How to reconstruct the firing process,
Archaeol. Anthrop. Sci., 12, 260, https://doi.org/10.1007/s12520-020-01133-y, 2020.
Grapes, R. H.: Pyrometamorphism, Springer, Berlin, Germany, https://doi.org/10.1007/3-540-29454-6, 2006.
Heimann, R. B. and Maggetti, M.: Experiments on simulated burial of
calcareous terra sigillata: mineralogical changes-preliminary results, in:
Scientific studies in ancient ceramics, British Museum: Occasional Paper 19,
edited by: Hughes, M. J., British Museum Press, London, United Kingdom, ID: 130165336,
163–177, 1981.
Heimann, R. B. and Maggetti, M.: The struggle between thermodynamics and
kinetics: Phase evolution of ancient and historical ceramics, Eur. Mineral.
Union Notes Mineral., 20, 233–281, https://doi.org/10.1180/EMU-notes.20.6, 2019.
Holland, T. J. B. and Powel, R.: An internally consistent thermodynamic data
set for phases of petrological interest, J. Metamorph. Geol., 16, 309–343,
1998.
Iordanidis, A., Garcia-Guinea, J., and Karamitrou-Mentessidic, G.: Analytical study of ancient pottery from the archaeological site of Aiani, northern Greece, Mater. Charact., 60, 292–302, https://doi.org/10.1016/j.matchar.2008.08.0013, 2009.
Issi, A.: Estimation of ancient firing technique by the characterization of semi-fused, Hellenistic potsherds from Harabebezikan/Turkey, Ceram. Int., 38, 2375–2380, https://doi.org/10.1016/j.ceramint.2011.11.002, 2012.
Issi, A. and Kara, A.: An investigation of pottery production technology for
the West Slope wares from Dorylaion (Eskişehir/Turkey), Bol. Soc. Esp.
Ceram. V., 52, 42–47, https://doi.org/10.3989/cyv.52013, 2012.
Jackson, M. D., Mulcahy, S. R., Chen, H., Li, Y., Li, Q., Cappelletti, P.,
and Wenk, H. R.: Phillipsite and Al-tobermorite mineral cements produced
through low-temperature water-rock reactions in Roman marine concrete, Am.
Mineral., 102, 1435–1450, https://doi.org/10.2138/am-2017-5993CCBY, 2017.
Klaarenbeek, W.: The development of yellow calcareous bricks, Trans. Br.
Ceram. Soc., 60, 738–772, 1961.
Khalfaoui, A. and Hajjaji, M.: A chloritic-illitic clay from Morocco:
Temperature-time transformation and neoformation, Appl. Clay Sci., 45,
83–89, https://doi.org/10.1016/j.jeurceramsoc.2004.10.030, 2009.
Kiseleva, I., Navrotski, A., Belitski, I., and Fursenko, B. A.:
Thermochemistry of phase equilibria in calcium zeolites, Am. Mineral., 81,
658–667, 1996.
Lagzdina, S., Bidermanis, L., Liepins J., and Sedmalis, U.: Low temperature
dolomitic ceramics, J. Eur. Ceram. Soc., 18, 1717–1720,
https://doi.org/10.1016/S0955-2219(98)00100-9, 1998.
Madivate, C. M. de O., Malate, A. M., Verryn, S., and Loubser, M.: Energy requirement for firing porcelain, B. Chem. Soc. Ethiopa, 18, 1, 73–80, https://doi.org/10.4314/BCSE.V18I1.61640, 2004.
Maggetti, M., Neururer, C., and Ramseyer, D.: Temperature evolution inside a
pot during experimental surface (bonfire) firing, Appl. Clay Sci., 53,
500–508, https://doi.org/10.1016/j.clay.2010.09.013, 2011.
Maritan, L.: Archaeometric study of Etruscan-Padan type pottery from the
Veneto region: petrographic, mineralogical and geochemical-physical
characterisation, Eur. J. Mineral., 16, 297–307,
https://doi.org/10.1127/0935-1221/2004/0016-0297, 2004.
Maritan, L.: Ceramic abandonment: How to recognize post-depositional
transformations, Archaeol. Anthropol. S., 12, 199,
https://doi.org/10.1007/s12520-020-01141-y, 2020.
Maritan, L., Nodari, L., Mazzoli, C., Milano, A., and Russo, U.: Influence of
firing conditions on ceramic products: Experimental study on clay rich in
organic matter, Appl. Clay Sci., 31, 1–15, https://doi.org/10.1016/j.clay.2005.08.007,
2006.
Mozzi, P., Bini, C., Zilocchi, L., Becattini, R., and Mariotti Lippi, M.:
Stratigraphy, palaeopedology and palynology of Late Pleistocene and Holocene
deposits in the landward sector of the Lagoon of Venice (Italy), in relation
to the Caranto Level, Il Quaternario, Italian Journal of Quaternary
Sciences, 16, 193–210, 2003.
Nodari, L., Marcuz, E., Maritan, L., Mazzoli, C., and Russo, U.: Hematite
nucleation and growth in the firing of carbonate-rich clay for pottery
production, J. Eur. Ceram. Soc., 27, 4665–4673,
https://doi.org/10.1016/j.jeurceramsoc.2007.03.031, 2007.
Pacheco-Torgal, F., Castro-Gomes, J., and Jalali, S.: Alkali-activated
binders: A review-Part 1. Historical background, terminology, reaction
mechanisms and hydration products, Constr. Build. Mater., 22, 1305–1314,
https://doi.org/10.1016/j.conbuildmat.2007.10.015, 2008.
Palomo, A., Monteiro, P., Martauz, P., Bilek, V., and
Fernández-Jiménez, A.: Hybrid binders: A journey from the past to a
sustainable future (opus caementicium futurum), Cem. Concr. Res., 124,
105829, https://doi.org/10.1016/j.cemconres.2019.105829, 2019.
Pérez-Monserrat, E. M., Maritan, L., Garbin, E., and Cultrone, G.:
Production technologies of ancient bricks from Padua, Italy: Changing colors
and resistance over time, Minerals, 11, 744, https://doi.org/10.3390/min11070744, 2021.
Pérez-Monserrat, E. M., Causarano, M. A., Maritan, L., Chavarria, A.,
Brogiolo, G. P., and Cultrone, G.: Roman brick production technologies in
Padua (Northern Italy) along the Late Antiquity and Medieval times: Durable
bricks on high humid environs, J. Cult. Herit., 54, 12–20,
https://doi.org/10.1016/j.culher.2022.01.007, 2022.
Peters, T. and Iberg, R.: Mineralogical changes during firing of
calcium-rich bricks clays, Bull. Am. Ceram., 57, 503–509, 1978.
Rathossi, C. and Pontikes, Y.: Effect of firing temperature and atmosphere
on ceramics made of NW Peloponnese clay sediments. Part I: Reaction paths,
crystalline phases, microstructure and colour, J. Eur. Ceram. Soc., 30,
1841–1851, https://doi.org/10.1016/j.jeurceramsoc.2010.02.002, 2010.
Riccardi, M. P., Messiga, B., and Duminuco, P.: An approach to the dynamics
of clay firing, Appl. Clay Sci., 15, 393–409,
https://doi.org/10.1016/S0169-1317(99)00032-0, 1999.
Rodriguez-Navarro, C., Ruiz-Agudo, E., Luque, A., Rodriguez-Navarro, A.B.,
and Ortega-Huertas, M.: Thermal decomposition of calcite: Mechanisms of
formation and textural evolution of CaO nanocrystals, Am. Mineral., 94,
578–593, https://doi.org/10.2138/am.2009.3021, 2009.
Rodriguez-Navarro, C., Kudlacz, K., and Ruiz-Agudo, E.: The mechanism of
thermal decomposition of dolomite: New insights from 2D-XRD and TEM
analyses, Am. Mineral., 97, 38–51, https://doi.org/10.2138/am.2011.3813, 2012.
Sakata, Y.: Unit-cell dimensions of synthetic aluminian diopsides, Jpn. J.
Geol. Geogr., 28, 161–168, 1957.
Saenz, N., Sebastián, E., and Cultrone, G.: Analysis of tempered bricks:
from raw materials and additives to fired bricks for use in construction and
heritage conservation, Eur. J. Mineral., 31, 301–312,
https://doi.org/10.1127/ejm/2019/0031-2832, 2019.
Schwedt, A., Mommsen, H., Zacharias, N., and Buxeda i Garrigos, J.: Analcime
crystallization and compositional profiles-comparing approaches to detect
post-depositional alterations in archaeological pottery, Archaeometry, 48,
237–251, https://doi.org/10.1111/j.1475-4754.2006.00254.x, 2006.
Secco, M., Addis, A., Artioli, G., Marzaioli, F., Passariello, I., and
Terrasi, F.: I materiali leganti della Cappella degli Scrovegni e
dell'Arena: analisi e datazioni, in: La Cappella degli Scrovegni
nell'anfiteatro romano di Padova: nuove ricerche e questioni irrisolte,
edited by: Deiana, R., Padova University Press, Padova, Italia, 101–116,
2018.
Shoval, S.: Mineralogical changes upon heating calcitic and dolomitic marl
rocks, Thermochim. Acta, 135, 243–252, https://doi.org/10.1016/0040-6031(88)87393-3,
1988.
Shoval, S., Gaft, M., Beck, P., and Kirsh, Y.: The thermal behavior of
limestone and monocrystalline calcite tempers during firing and their use in
ancient vessels, J. Therm. Anal., 40, 263–273, 1993.
Sondi, I. and Juracic, M.: Whiting events and the formation of aragonite in
the Mediterranean Karstic Marine Lakes: new evidence on its biologically
induced organic origin, Sedimentology, 57, 85–95,
https://doi.org/10.1111/j.1365-3091.2009.01090.x, 2010.
Sondi, I. and Slovenec, D.: The mineralogical characteristics of the
Lamboglia 2 Roman-age amphorae from the Central Adriatic (Croatia),
Archaeometry, 45, 251–262, https://doi.org/10.1111/1475-4754.00107, 2003.
Tenconi, M., Maritan, L., Leonardi, G., Prosdocimi, B., and Mazzoli, C.:
Ceramic production and distribution in north-east Italy: study of a possible
trade network between Friuli Venezia Giulia and Veneto regions during the
final Bronze Age and early Iron Age through analysis of peculiar `flared rim
and flat lip' pottery, Appl. Clay. Sci., 82, 121–134,
https://doi.org/10.1016/j.clay.2013.06.020, 2013.
Tite, M.: Technological investigations of Italian Renaissance ceramics, in:
Italian renaissance pottery, edited by: Wilson, T., British Museum Press,
London, United Kingdom, 280–285, 1991.
Toledo, D. R., dos Santos Jr., R. T., Faria, J. G., Carrio, L., Auler, T.,
and Vargas, H.: Gas release during clay firing and evolution of ceramic
properties, App. Clay Sci., 27, 151–157, https://doi.org/10.1016/j.clay.2004.06.001,
2004.
Traoré, K., Kabre, T. S., and Blanchart, P.: Low temperature sintering
of a clay for pottery from Burkina Faso, Appl. Clay Sci., 17, 279–292,
https://doi.org/10.1016/S0169-1317(00)00020-X, 2000.
Trindade, M. J., Dias, M. I., Coroado, J., and Rocha, F.: Mineralogical
transformations of calcareous rich clays with firing: a comparative study
between calcite and dolomite rich clays from Algarve, Portugal, App. Clay
Sci., 42, 345–355, https://doi.org/10.1016/j.clay.2008.02.008, 2009.
Tschegg, C., Ntaflos, T., and Hein, I.: Thermally triggered two-stage
reaction of carbonates and clay during ceramic firing – A case study on
Bronze Age Cypriot ceramics, App. Clay Sci., 43, 69–78,
https://doi.org/10.1016/j.clay.2008.07.029, 2009.
UNE-EN 15886: Conservation of Cultural Property. Test Methods. Color
Measurement of Surfaces, AENOR, Madrid, Spain, 2011.
Wang, G., Wang, H., and Zhang, N.: In situ high temperature X-ray
diffraction study of illite, Appl. Clay Sci., 146, 254–263,
https://doi.org/10.1016/j.clay.2017.06.006, 2017.
Warr, L. N.: IMA–CNMNC approved mineral symbols, Mineral. Mag., 85,
291–320, https://doi.org/10.1180/mgm.2021.43, 2021.
Webb, T. L.: Chemical aspects of the unsoundness and plasticity in building
limes, South African Ind. Chemist., 6, 290–294, 1952.
Yardley, B.: Contact Metamorphism. Edited by: Kerrick, D.M., Washington D.C. (Mineralogical Society of America: Reviews in Mineralogy, Vol. 26), 1992, xvi 847 pp., Mineral. Mag., 57, 387, 359–360, https://doi.org/10.1180/minmag.1993.057.387.22, 1993.