Bornhorst, T. J. and Mathur, R.: Copper Isotope Constraints on the Genesis of
the Keweenaw Peninsula Native Copper District, Michigan, USA, Minerals, 7,
185, https://doi.org/10.3390/min7100185, 2017.
Boulliard, J. C. and Sotto, M. P.: On the relations between the surface
structures and the stability of complex faces, Surf. Sci., 414, 131–147,
https://doi.org/10.1016/S0039-6028(98)00503-2, 1998.
Boulliard, J. C., Domange, J. L., and Sotto, M. P.: Structural changes of
vicinal copper surfaces induced by oxygen adsorption, Surf. Sci., 165,
434–446, https://doi.org/10.1016/0039-6028(86)90818-6, 1986.
Bravais, A.: Etudes cristallographiques, Journal de l'Ecole Polytechnique,
XXXIV, 101–276, 1851.
Burton, W. K., Cabrera, N., and Franck, F. C.: The growth of crystals and the
equilibrium structure of their surfaces, Philos. T. R. Soc. A, 243, 299–358,
https://doi.org/10.1098/rsta.1951.0006, 1951.
Catalan, E.: Mémoire sur la théorie des polyèdres, J. École
Polytechnique, 41, 1–71, 1895.
Chatain, D., Ghetta, V., and Wynblatt, P.: Equilibrium shape of copper crystals
grown on sapphire, Interface Sci., 12, 7–18,
https://doi.org/10.1023/B:INTS.0000012290.07441.a8, 2004.
Chen, Q. and Richardson, N. V.: Surface faceting induced by adsorbates,
Prog. Surf. Sci., 73, 59–77, https://doi.org/10.1016/j.progsurf.2003.09.002,
2003.
Cleland, C. E.: Rites of Conquest: The History and Culture of Michigan's
Native Americans, University of Michigan Regional Editor, 360 p., https://doi.org/10.3998/mpub.9272, 1992.
Coulman, D., Wintterlin, J., Barth, J. V., Ertl, G., and Behm, R. J.: An STM
investigation of the Cu (110)-C (
6×2)O system, Surf. Sci., 240, 151–162,
https://doi.org/10.1016/0039-6028(90)90738-T, 1990.
Dana, E. S.: On the crystallization of the native copper, Am. J. Sci., 32,
413–429, 1886.
Duke, C. B.: Surface Science: The First Thirty Years, Duke, North Holland, https://doi.org/10.1016/0039-6028(94)90678-5, 1994.
Friedel, G.: Sur la loi de Bravais considérée comme loi
d'observation, C. R. Acad. Sc., 139, 221–226, 1904.
Gattinoni, C. and Michaelides, A.: Atomistic details of oxide surfaces and
surface oxidation: the example of copper and its oxides, Surf. Sci. Rep.,
70, 424–447, https://doi.org/10.1016/j.surfrep.2015.07.001, 2015.
Goel, S., Sinha, N., Yadah, H., and Kumar, B.: On the prediction of external
shape of ZnO nanocrystals, Physica E Low Dimens. Syst. Nanostruct., 106,
291–297, https://doi.org/10.1016/j.physe.2018.08.014, 2019.
Goldschmidt, V.: Atlas des Krystallformen; band v, Carls Winters,
Heidelberg, 1918.
Günter, J.: Copper: its trade, manufacture, use, and environmental status, edited by: Kunding, K. J. A., ASM International, Materials Park, Ohio, 1999.
Hartman, P. and Perdok, W. G.: On the relations between structure and
morphology of crystal I., Acta Cryst., 8, 49–52,
https://doi.org/10.1107/S0365110X55000121, 1955a.
Hartman, P. and Perdok, W. G.: On the relations between structure and
morphology of crystal I., Acta Cryst., 8, 521–524,
https://doi.org/10.1107/S0365110X55001679, 1955b.
Haüy, R.-J.: Essai d'une théorie sur la structure des crystaux,
Gogué & Née de la Rochelle, Paris, 1784.
Herring, C.: The use of classical macroscopic concepts in surface-energy
problem, in: Structure and properties of solid surfaces, edited by: Gomer, R. and
Smith, C. S., 5–81, University of Chicago Press, Chicago, Illinois, 1953.
Heyraud, J. C. and Métois, J. J.: Establishment of the equilibrium shape of
metal crystallites on a foreign substrate: Gold on graphite, J. Cryst.
Growth, 50, 571–574, https://doi.org/10.1016/0022-0248(80)90112-8, 1980a.
Heyraud, J. C. and Métois, J. J.: Establishment of the equilibrium shape of
gold crystallites on a graphite cleavage surface: Surface energies and
interfacial energy, Acta Metall., 28, 1789–1797,
https://doi.org/10.1016/0001-6160(80)90032-2, 1980b.
Hintze, C.: Handbuch der Mineralogie, 1, Verlag Von Veit & Comp., Leipzig, 197–217, 1904.
Jensen, F., Besenbacher, F., and Stengaard, I.: Two new oxygen induced
reconstruction on Cu(111), Surf. Sci., 269–270, 400–404,
https://doi.org/10.1063/1.4921258, 1992.
Knight, P. J., Driver, S. M., and Woodruff, D. P.: Scanning tunneling
microscopy investigation of the oxygen-induced faceting and
“nano-faceting” of the vicinal copper surface, Surf. Sci., 376, 1–3,
374–388, https://doi.org/10.1016/S0039-6028(96)01328-3, 1997.
Krause, D. J.: The Making of a Mining District: Keweenaw Native Copper
1500–1870, Wayne State University Press, Detroit, ISBN 0-8143-2406-1, 1992.
Lahtonen, K., Hirsimäki, M., Lampimäki, M., and Valden, M.: Oxygen
adsorption-induced nanostructures and island formation on Cu (100): Bridging
the gap between the formation of surface confined chemisorption layer and
oxide formation, J. Chem. Phys., 129, 124703,
https://doi.org/10.1063/1.2980347, 2008.
Lankton, L.: Hollowed Ground: Copper Mining and Community Building on Lake
Superior, 1840s–1990s, Wayne State University
Press, Detroit, https://doi.org/10.2113/econgeo.105.7.1353, 2010.
Legrand-Bonnyns, E. and Ponslet, A.: Pre-oxidation structures at
650
∘C on Cu (100), (210) and (841) surfaces studied by RHEED and
microscopy, Surf. Sci., 53, 675–688, https://doi.org/10.1016/0039-6028(75)90163-6, 1975.
Lian, X., Xiao, P., and Liu, R.: Calculations of oxygen adsorption-induced
surface reconstruction and oxide formation on Cu(100), Chem. Mater., 29,
1472–1484, https://doi.org/10.1021/acs.chemmater.6b02722, 2017.
Liu, D.-J. and Thiel, P. A.: Oxygen and sulfur adsorption on vicinal
surfaces of copper and silver: Preferred adsorption sites, J. Chem. Phys.,
148, 123706, https://doi.org/10.1063/1.5021091, 2018.
McKee, C. S., Renny, L. V., and Roberts, M. W.: The adsorption of oxygen on
Cu (210), Surf. Sci., 75, 92–108,
https://doi.org/10.1016/0039-6028(78)90055-9, 1978.
Milne, R. H.: A RHEED study of oxygen adsorbed on copper, Surf. Sci., 121,
347–359, https://doi.org/10.1016/0039-6028(82)90247-3, 1982.
Niehus, N.: Surface reconstruction on Cu (111) upon oxygen adsorption, Surf.
Sci., 130, 41–49, https://doi.org/10.1016/0039-6028(83)90258-3, 1983.
Niu, W. and Xu, G.: Crystallographic control of noble metal nanocrystals,
Nanotoday, 6, 265–285, https://doi.org/10.1016/j.nantod.2011.04.006,
2011.
Pollinger, F., Schmitt, S., Sander, D., Tian, Z., Kirschner, J., Vrdoljak,
P., Stadler, C., Maier, F., Marchetto, H., Schmidt, T., Schöll, A., and
Umbach, E.: Nanoscale patterning, macroscopic reconstruction, and stress by
organic adsorption on vicinal surfaces, New J. Phys., 19, 013019,
https://doi.org/10.1088/1367-2630/aa55b8, 2017.
Prévot, G., Crozet, B., Girard, Y., Coati, A., Garreau, Y., Hohage, M.,
Sun, L. D., and Zeppenfeld, P.: Elastic origin of the O/Cu(110) self-ordering
evidenced by GIXD, Surf. Sci., 549, 52,
https://doi.org/10.1016/j.susc.2003.11.020, 2004.
Reinecke, N. and Taglauer, E.: The kinetics of oxygen-induced faceting of Cu
(115) and Cu(119) surfaces, Surf. Sci., 454–456, 94–100,
https://doi.org/10.1016/S0039-6028(00)00272-7, 2000.
Sheppard, D. C., Parkinson, G. S., Hentz, A., Quinn, P. D., Munoz-Marquez,
M. A., Woodruff, D. P., Bailey, P., and Noakes, T. C. Q.: Surface relaxation
in Cu (410)-O: A medium energy ion scattering study, Surf. Sci., 604,
788–796, https://doi.org/10.1016/j.susc.2010.02.001, 2010.
Sotto, M.: Oxygen induced reconstruction of (
h11) and (100) faces of copper,
Surf. Sci., 260, 235–244, https://doi.org/10.1016/0039-6028(92)90037-7,
1992.
Sunagawa, I.: Crystals, Cambridge University Press, Cambridge, 2005.
Sundquist, B. E.: A direct determination of the anisotropy of the surface
free energy of solid gold, silver, copper, nickel, and alpha and gamma iron,
Acta Metall., 12, 67–86, https://doi.org/10.1016/0001-6160(64)90055-0, 1964.
Tremsin, A. S., Rakovan, J., Shinohara, T., Kockelmann, W., Losko, A. S., and
Vogel, S. C.: Non-destructive study of bulk crystallinity and elemental
composition of natural gold single crysta
l samples by energy-resolved
neutron imaging, Sci. Rep.-UK, 7, 40759, https://doi.org/10.1038/srep40759,
2017.
Trepte, L., Menzel-Kopp, C. H. R., and Menzel, E.: Surface structures on
spherical copper crystals after adsorption of oxygen, Surf. Sci., 8,
223–232, https://doi.org/10.1016/0039-6028(67)90084-2, 1967.
Verma, A. R.: Crystal growth and dislocations, Butterworths, London, 1953.
Vlieg, E., Driver, S. M., Goedtkindt, P., Knight, P. J., Liu, W.,
Lüdecke, J., Mitchell, K. A. R., Murashov, V., Robinson, I. K., de Vries,
S. A., and Woodruff, D. P.: Structure determination of Cu(410)-O using X-Ray
diffraction and DFT calculations, Surf. Sci., 56, 16–32,
https://doi.org/10.1016/S0039-6028(02)02066-6, 2002.
Wang, J. and Wang, S. Q.: Surface energy and work function of fcc crystals:
Density functional study, Surf. Sci., 630, 216–224, 2014.
Wang, X., Jia, Y., Yao, Q., Wang, F., Ma, J., and Hu, X.: The calculation of the
surface energy of high-index surfaces in metal at zero temperature, Surf.
Sci., 551, 179–188, 2004.
Weege, R. J. and Pollack, J. P.: Recent developments in native-copper district
of Michigan. In: Proceedings of the Society of Economic Geologists Field
Conference, 30 September–2 October
1971, Michigan Copper District, MI, USA, 18–43, 1971.
Williams, E. D.: Surface steps and surface morphology: understanding
macroscopic phenomena from atomic observations, Surf. Sci., 299/300, 502–524,
https://doi.org/10.1016/0039-6028(94)90678-5, 1994.
Woll, C., Wilson, R. J., Chiang, S., Zeng, H. C., and Mitchell, K. A. R.:
Oxygen on Cu (100) surface structure studied by scanning tunnelling
microscopy and by low-energy-electron-diffraction multiple-scattering
calculations, Phys. Rev. B, 42, 11926–11929,
https://doi.org/10.1103/PhysRevB.42.11926, 1990.
Woodruff, D. P.: How does crystal grow? A commentary on Burton, Cabrera and
Frank (1951) “The growth of crystals and the equilibrium structure of their
surfaces”: Philos. Trans. A, 373, 20140230,
https://doi.org/10.1098/rsta.2014.0230, 2015.
Wulff, G.: Zur Frage der Geschwindigkeit des Wachsthums und des
Auflösung der Kristalflächen, Z. Kris. Min., 34, 449–530,
https://doi.org/10.1524/zkri.1901.34.1.449, 1901.