Articles | Volume 33, issue 2
https://doi.org/10.5194/ejm-33-221-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-221-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A gemmological study of the reliquary crown of Namur, Belgium
Yannick Bruni
CORRESPONDING AUTHOR
Laboratory of Mineralogy, University of Liège B18, 4000
Liège, Belgium
Frédéric Hatert
Laboratory of Mineralogy, University of Liège B18, 4000
Liège, Belgium
Philippe George
Liège Treasure of the Cathedral, Rue Bonne Fortune 6, 4000
Liège, Belgium
Hélène Cambier
Musée Diocésain, Cathédrale Saint-Aubain, Place Saint
Aubain, 5000 Namur, Belgium
David Strivay
European Centre of Archaeometry, University of Liège B15,
4000 Liège, Belgium
Related authors
Simon Philippo, Frédéric Hatert, Yannick Bruni, Pietro Vignola, and Jiří Sejkora
Eur. J. Mineral., 32, 449–455, https://doi.org/10.5194/ejm-32-449-2020, https://doi.org/10.5194/ejm-32-449-2020, 2020
Short summary
Short summary
Luxembourgite, ideally AgCuPbBi4Se8, is a new selenide discovered at Bivels, Grand Duchy of Luxembourg. The mineral forms tiny fibres deposited on dolomite crystals. Its crystal structure is similar to those of litochlebite and watkinsonite, and can be described as an alternation of two types of anionic layers: a pseudotetragonal layer four atoms thick and a pseudohexagonal layer one atom thick. The species named for the city of Luxembourg, close to its locality of discovery.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, https://doi.org/10.5194/ejm-36-1005-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Martin Depret, Frédéric Hatert, Michel Blondieau, Stéphane Puccio, Muriel M. L. Erambert, Fabrice Dal Bo, and Florent Bomal
Eur. J. Mineral., 36, 687–708, https://doi.org/10.5194/ejm-36-687-2024, https://doi.org/10.5194/ejm-36-687-2024, 2024
Short summary
Short summary
Ardennite is a rare Mn-rich aluminosilicate that was originally described in Salmchâteau, Belgium. In the last few years, new samples of ardennites have been found at several localities close to Salmchâteau. These samples were analysed by electron microprobe, single-crystal X-ray diffraction, and infrared spectroscopy. The results given in this paper allow us to identify the main substitution mechanisms that occur in Belgian ardennites and to discuss the nomenclature of the ardennite group.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Fabrice Dal Bo, Henrik Friis, Marlina A. Elburg, Frédéric Hatert, and Tom Andersen
Eur. J. Mineral., 36, 73–85, https://doi.org/10.5194/ejm-36-73-2024, https://doi.org/10.5194/ejm-36-73-2024, 2024
Short summary
Short summary
We report the description and the characterization of a new mineral species, found in a rock sample from the geological formation called the Pilanesberg Complex, South Africa. This is a silicate mineral that contains a significant amount of sodium, calcium, iron, titanium and fluorine. Its atomic structure shows that it is related to other wöhlerite-group minerals. This work provides new insights into the crystallization conditions that ruled the formation of the Pilanesberg complex.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Lyudmila M. Lyalina, Ekaterina A. Selivanova, and Frédéric Hatert
Eur. J. Mineral., 35, 427–437, https://doi.org/10.5194/ejm-35-427-2023, https://doi.org/10.5194/ejm-35-427-2023, 2023
Short summary
Short summary
There are unresolved problems related to the nomenclature and identification of mineral species belonging to the triphylite group of minerals. They can be solved by discarding the traditional views on succession of mineral species during oxidation. In other words, it is necessary to separate the concepts of the origin of the mineral and the boundaries of the species.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 591–601, https://doi.org/10.5194/ejm-34-591-2022, https://doi.org/10.5194/ejm-34-591-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 463–468, https://doi.org/10.5194/ejm-34-463-2022, https://doi.org/10.5194/ejm-34-463-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 385–391, https://doi.org/10.5194/ejm-34-385-2022, https://doi.org/10.5194/ejm-34-385-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 359–364, https://doi.org/10.5194/ejm-34-359-2022, https://doi.org/10.5194/ejm-34-359-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 253–257, https://doi.org/10.5194/ejm-34-253-2022, https://doi.org/10.5194/ejm-34-253-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 143–148, https://doi.org/10.5194/ejm-34-143-2022, https://doi.org/10.5194/ejm-34-143-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 1–6, https://doi.org/10.5194/ejm-34-1-2022, https://doi.org/10.5194/ejm-34-1-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 639–646, https://doi.org/10.5194/ejm-33-639-2021, https://doi.org/10.5194/ejm-33-639-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 479–484, https://doi.org/10.5194/ejm-33-479-2021, https://doi.org/10.5194/ejm-33-479-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 299–304, https://doi.org/10.5194/ejm-33-299-2021, https://doi.org/10.5194/ejm-33-299-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 203–208, https://doi.org/10.5194/ejm-33-203-2021, https://doi.org/10.5194/ejm-33-203-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 139–143, https://doi.org/10.5194/ejm-33-139-2021, https://doi.org/10.5194/ejm-33-139-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 645–651, https://doi.org/10.5194/ejm-32-645-2020, https://doi.org/10.5194/ejm-32-645-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 495–499, https://doi.org/10.5194/ejm-32-495-2020, https://doi.org/10.5194/ejm-32-495-2020, 2020
Simon Philippo, Frédéric Hatert, Yannick Bruni, Pietro Vignola, and Jiří Sejkora
Eur. J. Mineral., 32, 449–455, https://doi.org/10.5194/ejm-32-449-2020, https://doi.org/10.5194/ejm-32-449-2020, 2020
Short summary
Short summary
Luxembourgite, ideally AgCuPbBi4Se8, is a new selenide discovered at Bivels, Grand Duchy of Luxembourg. The mineral forms tiny fibres deposited on dolomite crystals. Its crystal structure is similar to those of litochlebite and watkinsonite, and can be described as an alternation of two types of anionic layers: a pseudotetragonal layer four atoms thick and a pseudohexagonal layer one atom thick. The species named for the city of Luxembourg, close to its locality of discovery.
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 443–448, https://doi.org/10.5194/ejm-32-443-2020, https://doi.org/10.5194/ejm-32-443-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 367–371, https://doi.org/10.5194/ejm-32-367-2020, https://doi.org/10.5194/ejm-32-367-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 275–283, https://doi.org/10.5194/ejm-32-275-2020, https://doi.org/10.5194/ejm-32-275-2020, 2020
Jan Parafiniuk and Frédéric Hatert
Eur. J. Mineral., 32, 215–217, https://doi.org/10.5194/ejm-32-215-2020, https://doi.org/10.5194/ejm-32-215-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 209–213, https://doi.org/10.5194/ejm-32-209-2020, https://doi.org/10.5194/ejm-32-209-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 1–11, https://doi.org/10.5194/ejm-32-1-2020, https://doi.org/10.5194/ejm-32-1-2020, 2020
Related subject area
Archaeometry
Crack-enhanced weathering in inscribed marble: a possible application in epigraphy
Stylianos Aspiotis, Jochen Schlüter, Kaja Harter-Uibopuu, and Boriana Mihailova
Eur. J. Mineral., 33, 189–202, https://doi.org/10.5194/ejm-33-189-2021, https://doi.org/10.5194/ejm-33-189-2021, 2021
Short summary
Short summary
A Raman scattering study of authentic inscribed marble demonstrates that cracks formed during the engraving enhance the development of weathering-related products whose signals could be potentially used to improve the readability of an inscribed text affected by rock weathering. Comprehensive analyses of different marble inscriptions reveal the effect of the environmental conditions, inscription age, grain size, and letter colouring on the abundance and penetration depth of alteration products.
Cited articles
Abu-Lughod, J. L.: Before European hegemony: The World System, A.D.,
1250–1350, The business History Rev., 64, 362–364, 1990.
Amar, Z. and Lev, E.: Most-Cherished Gemstones in the Medieval Arab World,
J. Royal Asiatic Soc., Series 3, 27, 377–401, 2017.
Athavale, S. A. and Hambarde, M. S.: Raman scattering: Fingersprint for
Identification of nature and color origin of Pearls, Int. Res. J.
Eng. Technol. (IRJET), 7, 2065–2078, 2020.
Atikarnsakul, U., Vertriest, W., and Soonthorntantikul, W.: Characterization
of blue sapphires from the Mogok stone tract, Mandalay region, Burma
(Myanmar), GIA News from Research, Special Issue, 1–56, 2018.
Aurisicchio, C., Conte, A. M., Medeghini, L., Ottolini, L., and De Vito, C.:
Major and trace element geochemistry of emerald from several deposit:
Implications for genetic models and classification schemes, Ore Geol. Rev., 94,
351–366, 2018.
Bariand, P. and Poirot, J.-P.: Larousse des pierres précieuses,
Larousse-Bordas, Paris, 288 pp., 1998.
Brose, H. W.: A Short History of Faceting, Lapidary J., 2, 446–452, 1954.
Bruni, Y., Hatert, F., George, P., and Strivay, D.: The Reliquary bust of
Saint Lambert from the Liège cathedral, Belgium: gemstones and glass
beads analysis by pXRF and Raman spectroscopy, Archaeometry, 62, 297–313,
2019.
Bruni, Y., Hatert, F., George, P., and Strivay, D.: An archaeometric
investigation of glass beads decorating the reliquary of Saint Simètre
from Lierneux, Belgium, J. Archaeol. Sci. Report, 32, 1–6, 2020.
Calligaro, T., Périn, P., Vallet, F., and Poirot, J-P.: Contribution
à l'étude des grenats mérovingiens (Basilique de Saint-Denis et
autres collections du musée d'Archéologie nationale, diverses
collections publiques et objets de fouilles récents), Antiquités
Nationales, 38, 111–144, 2007.
Calligaro, T. and Périn, P.: Le commerce des grenats à l'époque
mérovingienne, Archéopages, HS 5, 109–120, 2019.
Carò, F., Schorsch, D., and Santarelli, B.: Proveniencing Turquoise
Artifacts from Ancient Egyptian Contexts: A Non-invasive XRF Approach, Sci.
of Anc. Egypt. Mat. and Tech. (SAEMT) conference, Abstract book, 2017.
Chen, Q., Yin, Z., Qi, L., and Xiong, Y.: Turquoise from Zhushan County,
Hubei province, China, Gems Gemol., 48, 198–204, 2012.
Chulapakorn, T., Intarasiri, S., Bootkul, D., and Singkarat, S.:
Identification of deposit types of natural corundum by PIXE, Nuclear
Instruments and Methods in Physics Research, B331, 108–112, 2014.
Collet, E.: Trésors classés de la Cathédrale de Namur, Fondation
roi Baudouin, Belgium, 40 pp., 2013.
Culka, A. and Jehlička, J.: A database of Raman spectra of precious
gemstones and minerals used as cut gems obtained using portable sequentially
shifted excitation Raman spectrometer, J. Raman Spectrosc., 50, 262–280,
2019.
Demaude, M.: Etude gemmologique de pièces d'orfèvrerie du Trésor
de la Cathédrale Saint-Paul de Liège, Master thesis, University of
Liège, 81 pp., 2016.
Demaude, M., Bruni, Y., Hatert, F., and Strivay, D.: Étude gemmologique
de la croix-reliquaire à double traverse du Trésor de la
Cathédrale de Liège, Trésor de Liège, Bulletin trimestriel, 50, 9–15, 2017.
Ferreira de Araújo Neto, J., de Brito Barreto, S., Andressa Carrino, T.,
Müller, A., and Montefalco de Lira Santos, L. C.: Mineralogical and
gemological characterization of emerald crystals from Paraná deposit, NE
Brazil: a study of mineral chemistry, absorption and reflectance
spectroscopy and thermal analysis, Brazilian J. Geol., 49, 1–15, 2019.
Fritsch, E. and Rossman, G. R.: An update on color in gems. Part1:
Introduction and colors caused by dispersed metal ions, Gems Gemol.,
23, 126–139, 1987.
Fritsch, E. and Rossman, G. R.: An update on color in gems. Part2: Colors
involving multiple atoms and colors centers, Gems Gemol., 24, 3–15,
1988.
Gaborit-Chopin, D.: Les couronnes du sacre des rois et des reines au
trésor de Saint-Denis, Bull. Monumental, 133, 165–174, 1975.
Gilg, H. A., Gast, N., and Calligaro, T.: Vom Karfunkelstein,
Archäologische Staatssammlung, 37, 87–100, 2010.
Giuliani, G., Chaussidon, M., Schubnel, H.-J., Piat, D. H., Rollion-Bard, C.,
France-Lanord, C., Giard, D., de Narvaez, D., and Rondeau, B.: Oxygen
Isotopes and Emerald Trade Routes since Antiquity, Sciences, 287, 631–633,
2000.
Giuliani, G., Ohnenstetter, D., Fallick, A. E., Groat, L., and Fagan, A.,J.:
The geology and genesis of gem corundum deposits, Mineral. Assoc. Canada
Short Course, 44, 29–112, 2014.
Giuliani, G., Fallick, A. E., Boyce, J., Pardieu, V., and Pham, V.-L.: Pink and
red Spinels in marble: Trace elements, Oxygen isotopes, and Sources, Can.
Mineral., 55, 743–761, 2017.
Giuliani, G., Groat, L. A., Marshall, D., Fallick, A. E., and Branquet, Y.:
Emerald Deposits: A Review and Enhanced Classification, Minerals, 9,
1–63, 2019.
Gontero-Lauze, V: Les pierres du Moyen Age, Les Belles Lettres, Paris,
France, 222 pp., 2012
Greiff, S.: Naturwissenschaftliche Untersuchungen zur Frage der
Rohsteinquellen für frühmittelalterlichen Almandingranatschmuck
rheinfränkischer Provenienz, Jahrb. Römisch-Germanischen Zentral
Museums Mainz, 45, 599–645, 1999.
Groat, L. A., Giuliani, G., Marshall, D. D., and Turner, D.: Emerald deposits
and occurrences: A review, Ore Geol. Rev., 34, 87–112, 2008.
Gübelin, E. J.: Gemstones of Pakistan: Emerald, Ruby, and Spinel, Gems
Gemol., 18, 123–139, 1982.
Habermann, D., Banerjee, A., Meijer, J., and Stephan, A.: Investigation of
manganese in salt- and freshwater pearls, Nuclear Instrum. Methods Phys.
Res. B, 181, 739–743, 2001.
Harrell, J. A.: Archaeological Geology of the World's First Emerald Mine,
Geosci. Canada, 31, 69–76, 2004.
Jehlička, J., Culka, A., Vandenabeele, P., and Edwards, H. G. M.: Critical
evaluation of a handheld Raman spectrometer with near infrared (785 nm)
excitation for field identification of minerals, Spectrochim. Acta, A80,
36–40, 2011.
Kadleíková, M., Breza, J., and Vesely, M.: Raman spectra of
synthetic sapphire, Microelectronics J., 32, 955–958, 2001.
Karampelas, S., Fritsch, E., Makhlooq, F., Mohamed, F., and Al-Alawi, A.:
Raman spectroscopy of natural and cultured pearls and pearl producing
mollusc shells, J. Raman Spectrosc., Special Issue, 1–9, 2019.
Khorassani, A. and Abedini, M.: A new study of turquoise from Iran, Mineral.
Mag., 40, 640–642, 1976.
Klein, G.: Faceting History: cutting diamonds & colored stones, Xlibris
Corporation, USA, 242 pp., 2005.
Krzemnicki, M. S.: Spinel: A Gemstone on the rise, SSEF, Hong Kong
conference, 27 pp., 2010.
Kunz, G. F. and Stevenson, C. H.: The book of the Pearl: The History, Art,
Science, and Industry of the Queen of Gems, The Century Company, New York,
USA, 552 pp., 1908.
Lucas, A., Sammoon, A., Jayarajah, A. P., Hsu, T., and Padua, P.: Sri Lanka:
Expedition to the Island of jewels, Gems Gemol., 50, 1–59, 2014.
Malsy, A. and Klemm, L.: Distinction of Gem Spinels from the Himalayan
Mountain Belt, Chimia, 64, 741–746, 2010.
Nagai, K.: A History of the Cultured Pearl Industry, Zool. Sci., 30,
783–793, 2013.
Ovissi, M., Yazdi, M., and Ghorbani, M.: Turquoise grading in Persian historical and modern times; a comparative study, 35th National Geosciences Conference of Geological Survey of Iran, Tehran, 19–21 February 2017, 1–6, 2017.
Pardieu, V. and Farkhodova, T.: Spinel from Tajikistan: The Gem that Made
Famous the World “Ruby”, InColor Magazine, Special Spinel, 43, 30–33,
2019.
Pehrson, E. A. K.: Identification methods of Sri Lanka corundum in comparison
to other common gemstones, Uppsala University, Department of Earth Sciences,
5, 1–32, 2017.
Pogue, J. E.: The turquoise: A study of its History, Mineralogy, Geology,
Ethnology, Archaeology, Mythology, Folklore and Technology, Memoirs of the
National Academy of Sciences, Cornell University Library, USA, 12, 642 pp.,
1915.
RRUFF: Integrated Database of Raman Spectra, available at: http://rruff.info/ (last access: 5 January 2021), 2020.
Saeseaw, S., Sangsawong, S., Vertriest, W., Atikarnsakul, U.,
Raynaud-Flattot, L. V., Khowpong, C., and Weeramonkhonlert, V.: A study of
sapphire from Chanthaburi, Thailand and its gemological characteristics, GIA
News from Research, Special Issue, 1–42, 2017.
Salet, F.: La chasse des Saints-Innocents au trésor de la cathédrale
de Cologne, Bull. Monumental, 125, 311–312, 1967.
Sevillano-López, D. and González F. J.: Mining and Minerals trade on
the silk road to the ancient literary sources: 2 BC to 10 AD centuries, in:
History of Research in Mineral Resources, edited by: Ortiz, J. E., Puche, O., Rábano, I., and Mazadiego, L. F., Cuadernos del Museo Geominero,
Instituto Geológico y Minero de España, Madrid, Spain, 13, 43–53, 2011.
Shor, R. and Weldon, R.: Ruby and sapphire production and distribution: A
quarter century of change, Gems Gemol., 45, 236–259, 2009.
Simonet, C., Fritsch, E., and Lasnier, B.: A classification of gem corundum
deposits aimed towards gem exploration, Ore Geol. Rev., 34, 127–133, 2008.
Sutherland, F. L., Zaw, K., Meffre, S., Yui, T.-F., and Thu, K.: Advances in
trace element “Fingerprinting” of gem corundum, ruby and sapphire, Mogok
area, Myanmar, Minerals, 5, 61–79, 2015.
Thoresen, L. and Schmetzer, K.: Greek, Etruscan and Roman garnets in the
antiquities collection of the J. Paul Getty Museum, J. Gemmol., 33,
201–222, 2013.
Van Long, P., Pardieu, V., and Giuliani, G.: Update on Gemstone Mining in Luc
Yen, Vietnam, Gems Gemol., 49, 233–245, 2013.
Vanrillaer, L.: Un écrin sous-estimé au sein du Trésor de la
cathédrale Saint-Aubin de Namur: le coffret des Saintes Épines,
Analyses techniques, morphologiques et iconographiques accompagnées
d'une typologie des coffrets, Mémoire de Master, Faculté de
philosophie, arts et lettres, Université catholique de Louvain, 2017.
Van Tricht, F.: La gloire de l'empire : l'idée impériale de Henri de
Flandre-Hainaut, deuxième empereur latin de Constantinople (1206–1216),
Byzantion, 70, 211–241, 2000.
Wehrmeister, U., Jacob, D. E., Soldati, A. L., Hager, T., and Hofmeister, W.:
Vaterite in freshwater cultured pearls from China and Japan, J. Gemmol., 31,
269–276, 2007.
Wodiska, J.: A Book of Precious Stones: The identification of gems and
minerals, and an account of their scientific, commercial, artistic, and
historical aspects, Putnam, New-York, USA, 370 pp., 1909.
Zwaan, P. C.: Sri Lanka: The gem island, Gems Gemol., 18, 62–71, 1982.
Short summary
The reliquary crown, hosted in the diocesan museum of Namur (Belgium), was produced during the beginning of the 13th century. This beautiful piece of goldsmithery is decorated with approximately 400 pearls and coloured stones which were investigated by Raman and pXRF techniques. Emeralds, pink spinels, sapphires, almandine garnets, turquoises, and pearls were identified. The gemstones, contemporary with the crown, probably arrived in Europe by the silk trade road.
The reliquary crown, hosted in the diocesan museum of Namur (Belgium), was produced during the...