Articles | Volume 38, issue 1
https://doi.org/10.5194/ejm-38-39-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-38-39-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Zhenruite, (MoO3)2 ⋅ H2O, and tianhuixinite, (MoO3)3 ⋅ H2O, two new minerals in the MoO3–MoO3 ⋅ 2H2O system
Xiangping Gu
CORRESPONDING AUTHOR
School of Gemology and Mineral Resources, Jiangxi Institute of Applied Science and Technology, Nanchang, Jiangxi 330100, China
School of Geosciences and Infophysics, Central South University, Changsha, Hunan 410083, China
Hexiong Yang
Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
Ronald B. Gibbs
Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
Guanghua Liu
School of Gemology and Mineral Resources, Jiangxi Institute of Applied Science and Technology, Nanchang, Jiangxi 330100, China
Related authors
Kai Qu, Xianzhang Sima, Xiangping Gu, Weizhi Sun, Guang Fan, Zeqiang Yang, and Yanjuan Wang
Eur. J. Mineral., 36, 397–409, https://doi.org/10.5194/ejm-36-397-2024, https://doi.org/10.5194/ejm-36-397-2024, 2024
Short summary
Short summary
In this paper, the full description of the extremely rare [Ag6]4+-cluster-containing new tetrahedrite-group mineral kenoargentotetrahedrite-(Zn) is reported. The structure refinement result confirms the coupling between the site occupancy factor of subvalent hexasilver clusters at the M(2) site and that of the vacancy at the S(2) site. This relationship further substantiates the charge balance substitution mechanism of S-deficiency tetrahedrites: 6M(2)Ag+ + S(2)S2– = M(2)[Ag6]4+ + S(2)□.
Yanjuan Wang, Fabrizio Nestola, Zengqian Hou, Xiangping Gu, Guochen Dong, Zhusen Yang, Guang Fan, Zhibin Xiao, and Kai Qu
Eur. J. Mineral., 35, 65–74, https://doi.org/10.5194/ejm-35-65-2023, https://doi.org/10.5194/ejm-35-65-2023, 2023
Short summary
Short summary
Bobtraillite is an extremely rare cyclosilicate with a unique composition and complex structure. In this paper, we describe the second occurrence of the extremely rare complex zirconium silicate. The results suggest that the ideal formula of bobtraillite could be written as (Na, □)12(□, Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O.
Kai Qu, Xianzhang Sima, Xiangping Gu, Weizhi Sun, Guang Fan, Zeqiang Yang, and Yanjuan Wang
Eur. J. Mineral., 36, 397–409, https://doi.org/10.5194/ejm-36-397-2024, https://doi.org/10.5194/ejm-36-397-2024, 2024
Short summary
Short summary
In this paper, the full description of the extremely rare [Ag6]4+-cluster-containing new tetrahedrite-group mineral kenoargentotetrahedrite-(Zn) is reported. The structure refinement result confirms the coupling between the site occupancy factor of subvalent hexasilver clusters at the M(2) site and that of the vacancy at the S(2) site. This relationship further substantiates the charge balance substitution mechanism of S-deficiency tetrahedrites: 6M(2)Ag+ + S(2)S2– = M(2)[Ag6]4+ + S(2)□.
Yanjuan Wang, Fabrizio Nestola, Zengqian Hou, Xiangping Gu, Guochen Dong, Zhusen Yang, Guang Fan, Zhibin Xiao, and Kai Qu
Eur. J. Mineral., 35, 65–74, https://doi.org/10.5194/ejm-35-65-2023, https://doi.org/10.5194/ejm-35-65-2023, 2023
Short summary
Short summary
Bobtraillite is an extremely rare cyclosilicate with a unique composition and complex structure. In this paper, we describe the second occurrence of the extremely rare complex zirconium silicate. The results suggest that the ideal formula of bobtraillite could be written as (Na, □)12(□, Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O.
Cited articles
Andersson, G. and Magnéli, A.: On the crystal structure of molybdenum trioxide, Acta Chemica Scandinavica, 4, 793–797, 1950.
Bénard, P., Sequin, L., Louër, D., and Figlarz, M.: Structure of MoO3⋅1/2H2O by conventional X-ray powder diffraction, Journal of Solid State Chemistry, 108, 170–176, 1994.
Boudjada, N., Rodriguez-Carvajal, J., Anne, M., and Figlarz, M.: Dehydration of MoO3.2H2O: A neutron thermodiffractometry study, Journal of Solid State Chemistry, 105, 211–222, 1993.
Böschen, V. I. and Krebs, B.: Kristallstruktur der “weissen molybdänsäure” α-MoO3.H2O, Acta Crystallographica, B30, 1795–1800, 1974.
Bräkken, H.: Die kristallstrukturen der trioxyde von chrom, molybdän und wolfram, Zeitschrift für Kristallographie, 78, 484–488, 1931.
Brophy, G. P. and Kerr, P. F.: Hydrous uranium molybdate in Maryvale ore. in Annual Report for June 30, 1952 to April 1, 1953 RME-3046, U.S. Atomic Energy Commission, 45–51, 1953.
Brown, I. D.: Recent developments in the methods and applications of the bond valence model, Chem. Rev., 109, 6858–6919, 2009.
Čech, F. and Povondra, P.: Natural occurrence of molybdenum trioxide, MoO3, in Krupka (Molybdite, a new mineral), Acta Universitatis Carolinae – Geologica, 1, 1–14, 1963.
Césbron, F. and Ginderow, D.: La sidwillite, MoO3⋅2H2O; une nouvelle espèce minérale de Lake Como, Colorado, U.S.A. Bulletin de Minéralogie, 108, 813–823, 1985.
Cunningham, C. G., Rasmussen, J. D., Steven, T. A., Rye, R. O., Rowley, P. D., Romberger, S. B., and Selverstone, J.: Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah, Mineralium Deposita, 33, 477–494, 1998.
de Castro, I. A., Datta, R. S., Ou, J. Z., Castellanos-Gomez, A., Sriram, S., Daeneke, T., and Kalantar-zadeh, K.: Molybdenum Oxides – From Fundamentals to Functionality, Advanced Materials, 28, 1701619, https://doi.org/10.1002/adma.201701619, 2017.
Deki, S., Béléké, A. B., Kotani, Y., and Mizuhata, M.: Liquid phase deposition synthesis of hexagonal molybdenum trioxide thin films, Journal of Solid State Chemistry, 182, 2362–2367, 2009.
Fellows, R. L., Lloyd, M. H., Knight, J. F., and Yakel, H. L.: X-ray diffraction and thermal analysis of molybdenum(VI) oxide hemihydrate: monoclinic MoO3⋅1/2H2O, Inorganic Chemistry, 22, 2468–2470, 1983.
Ferraris, G. and Ivaldi, G.: Bond valence vs bond length in O⋯O hydrogen bonds, Acta Crystallographica, B44, 341–344, 1988.
Fu, G., Xu, X., Lu, X., and Wan, H.: Mechanisms of Methane Activation and Transformation on Molybdenum Oxide Based Catalysts, J. Am. Chem. Soc., 127, 3989–3996, 2005.
Garin, J. L. and Blanc, J. M.: Refinamiento de la estructura cristalina del NH3(MoO3)3, Contribuciones Cientificas y Technologicas, 13, 43–55, 1983.
Ghalehghafi, E. and Rahmani, M. B.: Hydrothermal temperature effect on the growth of h-MoO3 thin films using seed layers and their photoluminescence properties, Materials Science in Semiconductor Processing, 137, 106243, https://doi.org/10.1016/j.mssp.2021.106243, 2022.
Günter, J. R.: Topotactic dehydration of molybdenum trioxide-hydrates, Journal of Solid State Chemistry, 5, 354–359, 1972.
Guo, J., Zavalij, P., and Whittingham, M. S.: Preparation and characterization of a MoO3 with hexagonal structure, European Journal of Solid State and Inorganic Chemistry, 31, 833–842, 1994.
Holland, T. J. B. and Redfern, S. A. T.: Unit cell refinement from powder diffraction data: the use of regression diagnostics, Mineralogical Magazine, 61, 65–77, 1997.
Kaur, J., Kaur, K., Pervaiz, N., and Mehta, S. K.: Spherical MoO3 nanoparticles for photocatalytic removal of eriochrome black T, ACS Applied Nano Materials, 4, 12766–12778, 2021.
Kihlborg, L.: Least squares refinement of the crystal structure of molybdenum trioxide, Arkiv för Kemi, 21, 357–364, 1963.
Li, L., Zhao, Y., Wang, J.J., Cui, R., Li, Y., Qi, L., and Dang, D.: Hexagonal phase MoO3 with three-dimensional crystal structure as heterogeneous photocatalyst for tetracycline degradation: Degradation pathways and mechanism, Journal of Molecular Structure, 1295, 136681, https://doi.org/10.1016/j.molstruc.2023.136681, 2024.
Lindqvist, I.: The crystal structure of the yellow molybdic acid, MoO3⋅2H2O, Acta Chemica Scandinavica, 4, 650–657, 1950.
Liu, D., Lei, W. W., Hao, J., Liu, D. D., Liu, B. B., Wang, X., Chen, X. H., Cui, Q. L., Zou, G. T., Liu, J., and Jiang, S.: High-pressure Raman scattering and x-ray diffraction of phase transitions in MoO3, J. Appl. Phys., 105, 023513, https://doi.org/10.1063/1.3056049, 2009.
Lunk, H. J., Hartl, H., Hartl, M. A., Fait, M. J., Shenderovich, I. G., Feist, M., Frisk, T. A., Daemen, L. L., Mauder, D., Eckelt, R., and Gurinov, A. A.: “Hexagonal molybdenum trioxide” – known for 100 years and still a fount of new discoveries, Inorganic Chemistry, 49, 9400–9408, 2010.
Mandarino, J. A.: The Gladstone–Dale relationship. IV. The compatibility concept and its application, Canadian Mineralogist, 19, 441–450, 1981.
McCarron, E. M.: β-MoO3: a metastable analogue of WO3, Journal of the Chemical Society, Chemical Communications, 1986, 336, https://doi.org/10.1039/C39860000336, 1986.
McCarron, E. M. and Calabrese, J. C.: The growth and single crystal structure of a high pressure phase of molybdenum trioxide: MoO3-II, Journal of Solid State Chemistry, 91, 121–125, 1991.
McLemore, V. T., Donahue, K., Breese, M., Jackson, M. L., Arbuckle, J., and Jones, G.: Mineral resource assessment of Luna County, New Mexico, New Mexico Bureau of Geology and Mineral Resources Open-file Report OF-459, 85 pp., 2001.
Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, 44, 1272–1276, 2011.
Mougin, O., Dubois, J., and Mathieu, F.: Metastable Hexagonal Vanadium Molybdate Study, Journal of Solid State Chemistry, 152, 353–360, 2000.
Oswald, H. R., Gunter, J. R., and Dubler, E.: Topotactic decomposition and crystal structure of white molybdenum trioxide-monohydrate: Prediction of structure by topotaxy, Journal of Solid State Chemistry, 13, 330–338, 1975.
Parise, J. B., McCarron, E. M., Dreele, R. V., and Goldstone, J. A.: β-MoO3 produced from a novel freeze drying route, Journal of Solid State Chemistry, 93, 193–201, 1991.
Rosenheim, A. and Davidsohn, I.: Die hydrate der molybdänsäure, Zeitschrift für Anorganische und Allgemeine Chemie, 37, 314–325, 1903.
Rosenheim, A. Z.: Die Darstellung von Molybdansauredihydrat, Zeitschrift für Anorganische Chemie, 50, 320–320, 1906 (in German).
Schultén, A. B. A.: Recherches sur l'arséniate dicalcique, Reproduction artificielle de la pharmacolite et de la haidingerite, Bulletin de Minéralogie, 26, 18–24, 1903.
Seguin, L., Figlarz, M., Cavagnat, R., and Lasskgues, J.-C.: Infrared and Raman spectra of MoO3, molybdenum trioxides and MoO3⋅xH2O molybdenum trioxide hydrates, Spectrochimica Acta Part A, 51, 1323–1344, 1995.
Sheldrick, G. M.: SHELXT – Integrated space-group and crystal structure determination, Acta Crystallographica A71, 3–8, 2015a.
Sheldrick, G. M.: Crystal structure refinement with SHELX, Acta Crystallographica, C71, 3–8, 2015b.
Simmons, P.: Cookes Peak Mining District, Luna County, New Mexico, Rocks Miner., 94, 214–239, 2019.
Sitepu, H.: Texture and structural refinement using neutron diffraction data from molybdite (MoO3) and calcite (CaCO3) powders and a Ni-rich Ni50.7Ti49.30 alloy, Powder Diffraction, 24, 315–326, 2009.
Wang, S. Y., Dong, X., and Zhou, Z. H.: Novel isopolymolybdates with different configurations of hexagram, double dish, and triangular dodecahedron, Journal of Solid State Chemistry, 300, 122229, https://doi.org/10.1016/j.jssc.2021.122229, 2021.
Wooster, N.: The crystal structure of Molybdenum Trioxide, MoO3, Zeitschrift für Kristallographie, 80, 504–512, 1931.
Yang, H., Gu, X., Gibbs, R. B., and Downs, R. T.: Virgilluethite: a new mineral and the natural analogue of synthetic β-MoO3⋅H2O, from Cookes Peak, Luna County, New Mexico, USA, Can. J. Miner. Petrol., 61, 1151–1162, 2023a.
Yang, H., Gu, X., Sousa, F. X., Gibbs, R. B., McGlasson, J. A., and Downs, R. T.: Raydemarkite, the natural analogue of synthetic α-MoO3⋅H2O, from Cookes Peak, Luna County, New Mexico, U.S.A, Can. J. Miner. Petrol., 61, 203–213, 2023b.
Zhao, J., Ma, P., Wang, J., and Niu, J.: Synthesis and structural characterization of a novel three-dimensional molybdenum–oxygen framework constructed from Mo3O9 units, Chem. Lett., 38, 694–695, 2009.
Short summary
Two new minerals, zhenruite, ideally (MoO3)2·H2O, and tianhuixinite, ideally (MoO3)3·H2O, are described. Zhenruite is monoclinic with space group P21/m and unit-cell parameters a = 9.6790(6), b = 3.70653(19), c = 7.1029(4) Å, β = 102.391(5)°, V = 248.89(2) Å3, and Z =2. Tianhuixinite is hexagonal with space group P63/m and unit-cell parameters a = 10.5963(12), c = 3.7216(4) Å, V = 361.88(9) Å3, and Z =2.
Two new minerals, zhenruite, ideally (MoO3)2·H2O, and tianhuixinite, ideally (MoO3)3·H2O, are...