Articles | Volume 37, issue 6
https://doi.org/10.5194/ejm-37-841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Formation of the Ertelien and Langedalen magmatic Ni–Cu sulfide deposits in Norway: investigating the evolution of platinum-group-element-depleted systems at convergent margins
Eduardo Mansur
CORRESPONDING AUTHOR
Geological Survey of Norway, P.O. Box 6315 Torgarden, Trondheim, 7491, Norway
Alf Andre Orvik
Geological Survey of Norway, P.O. Box 6315 Torgarden, Trondheim, 7491, Norway
Iain Henderson
Geological Survey of Norway, P.O. Box 6315 Torgarden, Trondheim, 7491, Norway
Ana Carolina Miranda
Geological Survey of Norway, P.O. Box 6315 Torgarden, Trondheim, 7491, Norway
Trond Slagstad
Geological Survey of Norway, P.O. Box 6315 Torgarden, Trondheim, 7491, Norway
Sarah Dare
Département de Sciences Appliquées, Université du Québec à Chicoutimi, QC G7H 2B1, Chicoutimi, Canada
Terje Bjerkgård
Geological Survey of Norway, P.O. Box 6315 Torgarden, Trondheim, 7491, Norway
Jan Sverre Sandstad
Geological Survey of Norway, P.O. Box 6315 Torgarden, Trondheim, 7491, Norway
Cited articles
Åhäll, K.-I. and Connelly, J. N.: Long-term convergence along SW Fennoscandia: 330 my of Proterozoic crustal growth, Precambrian Research, 161, 452–474, 2008.
Andersen, T., Griffin, W., Jackson, S., Knudsen, T.-L., and Pearson, N.: Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield, Lithos, 73, 289–318, 2004.
Arndt, N. T., Lesher, C. M., and Czamanske, G. K.: Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits: Economic Geology 100th Anniversary Volume, 5–24, 2005.
Barnes, S.-J. and Lightfoot, P. C.: Formation of magmatic nickel sulfide deposits and processes affecting their copper and platinum group element contents: Economic Geology, 100th Anniversary Volume, 179–213, 2005.
Barnes, S.-J. and Maier, W. D.: The fractionation of Ni, Cu and the noble metals in silicate and sulphide liquids, Short Course Notes-Geological Association of Canada, 13, 69–106, 1999.
Barnes, S.-J. and Mansur, E. T.: Distribution of Te, As, Bi, Sb, and Se in Mid-Ocean Ridge Basalt and Komatiites and in Picrites and Basalts from Large Igneous Provinces: Implications for the Formation of Magmatic Ni-Cu-Platinum Group Element Deposits, Economic Geology, 117, 1919–1933, https://doi.org/10.5382/econgeo.4887, 2022.
Barnes, S.-J. and Ripley, E. M.: Highly siderophile and strongly chalcophile elements in magmatic ore deposits, Reviews in Mineralogy and Geochemistry, 81, 725–774, 2016.
Barnes, S.-J., Boyd, R., Korneliussen, A., Nilsson, L., Often, M., Pedersen, R., and Robins, B.: The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: examples from Norway, Geo-platinum 87, 113–143, 1988.
Barnes, S.-J., Cox, R. A., and Zientek, M. L.: Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril'sk, Russia, Contributions to Mineralogy and Petrology, 152, 187–200, 2006.
Barnes, S.-J., Maier, W. D., and Curl, E. A.: Composition of the Marginal Rocks and Sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: Implications for the Formation of the Platinum-Group Element Deposits, Economic Geology, 105, 1491–1511, https://doi.org/10.2113/econgeo.105.8.1491, 2010.
Barnes, S. J., Osborne, G. A., Cook, D., Barnes, L., Maier, W. D., and Godel, B.: The Santa Rita nickel sulfide deposit in the Fazenda Mirabela intrusion, Bahia, Brazil: Geology, sulfide geochemistry, and genesis, Economic Geology, 106, 1083–1110, 2011.
Barnes, S. J., Cruden, A. R., Arndt, N., and Saumur, B. M.: The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits, Ore geology reviews, 76, 296–316, 2016.
Barnes, S. J., Le Vaillant, M., and Lightfoot, P. C.: Textural development in sulfide-matrix ore breccias in the Voisey's Bay Ni-Cu-Co deposit, Labrador, Canada, Ore Geology Reviews, 90, 414–438, 2017.
Barnes, S. J., Piña, R., and Le Vaillant, M.: Textural development in sulfide-matrix ore breccias in the Aguablanca Ni-Cu deposit, Spain, revealed by X-ray fluorescence microscopy, Ore Geology Reviews, 95, 849–862, 2018a.
Barnes, S. J., Staude, S., Le Vaillant, M., Piña, R., and Lightfoot, P. C.: Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Massive, semi-massive and sulfide-matrix breccia ores, Ore Geology Reviews, 101, 629–651, 2018b.
Barnes, S. J., Taranovic, V., Schoneveld, L. E., Mansur, E. T., Le Vaillant, M., Dare, S., Staude, S., Evans, N. J., and Blanks, D.: The Occurrence and Origin of Pentlandite-Chalcopyrite-Pyrrhotite Loop Textures in Magmatic Ni-Cu Sulfide Ores, Economic Geology, 115, 1777–1798, https://doi.org/10.5382/econgeo.4757, 2020.
Bédard, É., de Vazelhes, V. D. B., and Beaudoin, G.: Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration, Journal of Geochemical exploration, 236, 106959, https://doi.org/10.1016/j.gexplo.2022.106959, 2022.
Begg, G. C., Hronsky, J. A. M., Arndt, N. T., Griffin, W. L., O'Reilly, S. Y., and Hayward, N.: Lithospheric, Cratonic, and Geodynamic Setting of Ni-Cu-PGE Sulfide Deposits, Economic Geology, 105, 1057–1070, https://doi.org/10.2113/econgeo.105.6.1057, 2010.
Bézos, A., Lorand, J. P., Humler, E., and Gros, M.: Platinum-group element systematics in Mid-Oceanic Ridge basaltic glasses from the Pacific, Atlantic, and Indian Oceans, Geochimica et Cosmochimica Acta, 69, 2613–2627, https://doi.org/10.1016/j.gca.2004.10.023, 2005.
Bingen, B. and Viola, G.: The early-Sveconorwegian orogeny in southern Norway: tectonic model involving delamination of the sub-continental lithospheric mantle, Precambrian Research, 313, 170–204, 2018.
Bingen, B., Birkeland, A., Nordgulen, Ø., and Sigmond, E. M.: Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments, Precambrian Research, 108, 293–318, 2001.
Bingen, B., Skår, Ø., Marker, M., Sigmond, E. M. O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R. D., and Liégeois, J.-P.: Timing of continental building in the Sveconorwegian orogen, SW Scandinavia, Norwegian Journal of Geology, 85, 87–116, 2005.
Bingen, B., Viola, G., Möller, C., Vander Auwera, J., Laurent, A., and Yi, K.: The Sveconorwegian orogeny, Gondwana Research, 90, 273–313, 2021.
Bjerkgård, T., Dahlgren, S., Raaness, A., Sandstad, J. S., and Heldal, T.: Mineralressurser i området Kongsberg-Modum-Ringerike, Buskerud, Norwegian Geological Survey (NGU), https://www.ngu.no/publikasjon/mineralressurser-i-omradet-kongsberg-modum-ringerike-buskerud (last access: 31 October 2025) 2020.
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J., and Foudoulis, C.: TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology, Chemical geology, 200, 155–170, 2003.
Blanks, D. E., Holwell, D. A., Ezad, I. S., Giuliani, A., L. Fiorentini, M., and Foley, S. F.: The mineralogical distribution of Ni in mantle rocks controls the fertility of magmatic Ni-sulfide systems, Mineralium Deposita, 60, 1325–1337, https://doi.org/10.1007/s00126-025-01349-9, 2025.
Boyd, R. and Nixon, F.: Norwegian nickel deposits: a review, Bulletin-Geological survey of Finland, 333, 363–394, 1985.
Campbell, I. and Naldrett, A.: The influence of silicate: sulfide ratios on the geochemistry of magmatic sulfides, Economic Geology, 74, 1503–1506, 1979.
Caraballo, E., Dare, S., and Beaudoin, G.: Variation of trace elements in chalcopyrite from worldwide Ni-Cu sulfide and Reef-type PGE deposits: implications for mineral exploration, Mineralium Deposita, 57, 1293–1321, 2022.
Dare, S. A., Barnes, S.-J., and Prichard, H. M.: The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite, Mineralium Deposita, 45, 765–793, 2010.
Dare, S. A., Barnes, S.-J., Prichard, H. M., and Fisher, P. C.: Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite, Mineralium Deposita, 46, 381–407, 2011.
Djon, M. L. N. and Barnes, S.-J.: Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High Grade Zones of the Lac des Iles Complex, Ontario, Canada, Mineralium Deposita, 47, 875–896, 2012.
Duran, C. J., Barnes, S. J., and Corkery, J. T.: Chalcophile and platinum-group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Implications for post-cumulus re-equilibration of the ore and the use of pyrite compositions in exploration, Journal of Geochemical Exploration, 158, 223–242, https://doi.org/10.1016/j.gexplo.2015.08.002, 2015.
Duran, C. J., Barnes, S. J., and Corkery, J. T.: Trace element distribution in primary sulfides and Fe–Ti oxides from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Constraints on processes controlling the composition of the ore and the use of pentlandite compositions in exploration, Journal of Geochemical Exploration, 166, 45–63, https://doi.org/10.1016/j.gexplo.2016.04.005, 2016.
Duran, C. J., Dubé-Loubert, H., Pagé, P., Barnes, S.-J., Roy, M., Savard, D., Cave, B. J., Arguin, J.-P., and Mansur, E. T.: Applications of trace element chemistry of pyrite and chalcopyrite in glacial sediments to mineral exploration targeting: Example from the Churchill Province, northern Quebec, Canada, Journal of Geochemical Exploration, 196, 105–130, https://doi.org/10.1016/j.gexplo.2018.10.006, 2019.
Ezad, I. S., Blanks, D. E., Foley, S. F., Holwell, D. A., Bennett, J., and Fiorentini, M. L.: Lithospheric hydrous pyroxenites control localisation and Ni endowment of magmatic sulfide deposits, Mineralium Deposita, 59, 227–236, https://doi.org/10.1007/s00126-023-01238-z, 2024.
Ferreira Filho, C. F., Ferraz de Oliveira, M. M., Mansur, E. T., and Rosa, W. D.: The Jaguar hydrothermal nickel sulfide deposit: Evidence for a nickel-rich member of IOCG-type deposits in the Carajás Mineral Province, Brazil, Journal of South American Earth Sciences, 111, 103501, https://doi.org/10.1016/j.jsames.2021.103501, 2021.
Foley, S. F., Prelevic, D., Rehfeldt, T., and Jacob, D. E.: Minor and trace elements in olivines as probes into early igneous and mantle melting processes, Earth and Planetary Science Letters, 363, 181–191, https://doi.org/10.1016/j.epsl.2012.11.025, 2013.
Foley, S. F., Ezad, I. S., van der Laan, S. R., and Pertermann, M.: Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts, Geoscience Frontiers, 13, 101380, https://doi.org/10.1016/j.gsf.2022.101380, 2022.
Genna, D. and Gaboury, D.: Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: an example from the Bracemac-McLeod deposits, Abitibi, Canada, and implications for exploration, Economic Geology, 110, 2087–2108, 2015.
Genna, D. and Gaboury, D.: Use of semi-volatile metals as a new vectoring tool for VMS exploration: Example from the Zn-rich McLeod deposit, Abitibi, Canada, Journal of Geochemical Exploration, 207, 106358, https://doi.org/10.1016/j.gexplo.2019.106358, 2019.
Godel, B. and Barnes, S.-J.: Platinum-group elements in sulfide minerals and the whole rocks of the JM Reef (Stillwater Complex): Implication for the formation of the reef, Chemical Geology, 248, 272–294, 2008.
Godel, B., Barnes, S.-J., and Maier, W. D.: Platinum-group elements in sulphide minerals, platinum-group minerals, and whole-rocks of the Merensky Reef (Bushveld Complex, South Africa): implications for the formation of the reef, Journal of Petrology, 48, 1569–1604, 2007.
Godel, B., Barnes, S.-J., and Maier, W. D.: Parental magma composition inferred from trace element in cumulus and intercumulus silicate minerals: an example from the Lower and Lower Critical Zones of the Bushveld Complex, South-Africa, Lithos, 125, 537–552, 2011.
González-Álvarez, I., Pirajno, F., and Kerrich, R.: Hydrothermal nickel deposits: Secular variation and diversity, Ore Geology Reviews, 52, 1–3, 2013.
Gorbatschev, R.: The Precambrian development of southern Sweden, Geologiska Föreningen i Stockholm Förhandlingar, 102, 129–136, 1980.
Gregory, D. D., Large, R. R., Halpin, J. A., Baturina, E. L., Lyons, T. W., Wu, S., Danyushevsky, L., Sack, P. J., Chappaz, A., and Maslennikov, V. V.: Trace element content of sedimentary pyrite in black shales, Economic Geology, 110, 1389–1410, 2015.
Griffin, W., Begg, G., and O'reilly, S. Y.: Continental-root control on the genesis of magmatic ore deposits, Nature Geoscience, 6, 905–910, 2013.
Holwell, D. A., Adeyemi, Z., Ward, L. A., Smith, D. J., Graham, S. D., McDonald, I., and Smith, J. W.: Low temperature alteration of magmatic Ni-Cu-PGE sulfides as a source for hydrothermal Ni and PGE ores: A quantitative approach using automated mineralogy, Ore Geology Reviews, 91, 718–740, 2017.
Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A.: The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chemical geology, 211, 47–69, 2004.
Jesus, A. P., Mateus, A., Benoit, M., Tassinari, C. C. G., and Bento dos Santos, T.: The timing of sulfide segregation in a Variscan synorogenic gabbroic layered intrusion (Beja, Portugal): Implications for Ni-Cu-PGE exploration in orogenic settings, Ore Geology Reviews, 126, 103767, https://doi.org/10.1016/j.oregeorev.2020.103767, 2020.
Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A. W.: GeoReM: a new geochemical database for reference materials and isotopic standards, Geostandards and Geoanalytical Research, 29, 333–338, 2005.
Keays, R. R. and Jowitt, S. M.: The Avebury Ni deposit, Tasmania: A case study of an unconventional nickel deposit, Ore Geology Reviews, 52, 4–17, 2013.
Keays, R. R. and Lightfoot, P. C.: Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan Trap basalts, Mineralium deposita, 45, 241–257, 2010.
Keith, M., Häckel, F., Haase, K. M., Schwarz-Schampera, U., and Klemd, R.: Trace element systematics of pyrite from submarine hydrothermal vents, Ore Geology Reviews, 72, 728–745, 2016.
Kuniko: 23Mt Mineral Resource Estimate for Ertelien Unveils Sustainable Nickel & Copper Potential, Australian Securities Exchange, ASX, Kuniko, https://kuniko.eu/asx-announcements/ (last access: 31 October 2025), 2024.
Latypov, R. M., Namur, O., Bai, Y., Barnes, S. J., Chistyakova, S., Holness, M. B., Iacono-Marziano, G., Kruger, W. A., O'Driscoll, B., and Smith, W. D.: Layered intrusions: Fundamentals, novel observations and concepts, and controversial issues, Earth-Science Reviews, 104653, https://doi.org/10.1016/j.earscirev.2023.104653, 2023.
Lesher, C.: Roles of xenomelts, xenoliths, xenocrysts, xenovolatiles, residues, and skarns in the genesis, transport, and localization of magmatic Fe-Ni-Cu-PGE sulfides and chromite, Ore Geology Reviews, 90, 465–484, 2017.
Le Vaillant, M., Barnes, S. J., Fiorentini, M. L., Miller, J., McCuaig, T. C., and Muccilli, P.: A hydrothermal Ni-As-PGE geochemical halo around the Miitel komatiite-hosted nickel sulfide deposit, Yilgarn Craton, Western Australia, Economic Geology, 110, 505–530, 2015.
Le Vaillant, M., Saleem, A., Barnes, S. J., Fiorentini, M. L., Miller, J., Beresford, S., and Perring, C.: Hydrothermal remobilisation around a deformed and remobilised komatiite-hosted Ni-Cu-(PGE) deposit, Sarah's Find, Agnew Wiluna greenstone belt, Yilgarn Craton, Western Australia, Mineralium Deposita, 51, 369–388, 2016.
Lightfoot, P. C., Keays, R. R., Evans-Lamswood, D., and Wheeler, R.: S saturation history of Nain Plutonic Suite mafic intrusions: origin of the Voisey's Bay Ni–Cu–Co sulfide deposit, Labrador, Canada, Mineralium Deposita, 47, 23–50, 2012.
Liu, Y. and Brenan, J.: Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled fO2–fS2 conditions, Geochimica et Cosmochimica Acta, 159, 139–161, https://doi.org/10.1016/j.gca.2015.03.021, 2015.
Lorand, J.-P. and Luguet, A.: Chalcophile and Siderophile Elements in Mantle Rocks: Trace Elements Controlled By Trace Minerals, Reviews in Mineralogy and Geochemistry, 81, 441–488, https://doi.org/10.2138/rmg.2016.81.08, 2016.
Lorand, J.-P., Luguet, A., and Alard, O.: Platinum-group element systematics and petrogenetic processing of the continental upper mantle: A review, Lithos, 164–167, 2–21, https://doi.org/10.1016/j.lithos.2012.08.017, 2013.
Lu, Y., Lesher, C. M., and Deng, J.: Geochemistry and genesis of magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) deposits in China, Ore Geology Reviews, 107, 863–887, 2019.
Lyubetskaya, T. and Korenaga, J.: Chemical composition of Earth's primitive mantle and its variance: 1. Method and results, Journal of Geophysical Research: Solid Earth, 112, https://doi.org/10.1029/2005JB004223, 2007.
Maier, W. D. and Groves, D. I.: Temporal and spatial controls on the formation of magmatic PGE and Ni–Cu deposits, Mineralium Deposita, 46, 841–857, https://doi.org/10.1007/s00126-011-0339-6, 2011.
Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., Grunsky, E. C., McClenaghan, M. B., Duchesne, C., and Boutroy, E.: Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration, Ore Geology Reviews, 78, 388–408, 2016.
Mansur, E. T. and Barnes, S.-J.: The role of Te, As, Bi, Sn and Sb during the formation of platinum-group-element reef deposits: Examples from the Bushveld and Stillwater Complexes, Geochimica et Cosmochimica Acta, 272, 235–258, https://doi.org/10.1016/j.gca.2020.01.008, 2020a.
Mansur, E. T. and Barnes, S.-J.: Concentrations of Te, As, Bi, Sb and Se in the Marginal Zone of the Bushveld Complex: Evidence for crustal contamination and the nature of the magma that formed the Merensky Reef, Lithos, 358–359, 105407, https://doi.org/10.1016/j.lithos.2020.105407, 2020b.
Mansur, E. T., Barnes, S.-J., and Duran, C. J.: Textural and compositional evidence for the formation of pentlandite via peritectic reaction: Implications for the distribution of highly siderophile elements, Geology, 47, 351–354, https://doi.org/10.1130/g45779.1, 2019.
Mansur, E. T., Barnes, S.-J., Duran, C. J., and Sluzhenikin, S. F.: Distribution of chalcophile and platinum-group elements among pyrrhotite, pentlandite, chalcopyrite and cubanite from the Noril'sk-Talnakh ores: implications for the formation of platinum-group minerals, Mineralium Deposita, 55, 1215–1232, https://doi.org/10.1007/s00126-019-00926-z, 2020.
Mansur, E. T., Barnes, S.-J., and Duran, C. J.: An overview of chalcophile element contents of pyrrhotite, pentlandite, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits, Mineralium Deposita, 56, 179–204, 2021.
Mansur, E. T., Dare, S. A. S., Filho, C. F. F., Miranda, A. C. R., and Monteiro, L. V. S.: The distribution of trace elements in sulfides and magnetite from the Jaguar hydrothermal nickel deposit: Exploring the link with IOA and IOCG deposits within the Carajás Mineral Province, Brazil, Ore Geology Reviews, 152, 105256, https://doi.org/10.1016/j.oregeorev.2022.105256, 2023a.
Mansur, E. T., Sandstad, J. S., Slagstad, T., Miranda, A. C. R., Dare, S. A. S., and Nilsson, L. P.: Geology, sulphide geochemistry and geochronology of the Romsås Ni-Cu-Co mineralisation, Norway: Implications for ore formation and regional prospectivity, Lithos, 454–455, 107244, https://doi.org/10.1016/j.lithos.2023.107244, 2023b.
Mansur, E. T., Slagstad, T., Dare, S. A. S., and Sandstad, J. S.: Geology and sulphide geochemistry of the Ni-Cu-Co mineralisation of the Espedalen Complex, Norway: Constraints for the distribution of magmatic sulphides within a variably deformed anorthosite suite, Ore Geology Reviews, 161, 105666, https://doi.org/10.1016/j.oregeorev.2023.105666, 2023c.
Mathiesen, C. O.: Vurdering av Ringerike nikkelfelter, Norges Geologiske Undersøkelse, Norway, Norwegian Geological Survey (NGU), 21, https://www.ngu.no/publikasjon/vurdering-av-ringerike-nikkelfelter (last access: 31 October 2025), 1977.
Miranda, A. C. R., Beaudoin, G., and Rottier, B.: Scheelite chemistry from skarn systems: implications for ore-forming processes and mineral exploration, Mineralium Deposita, 57, 1469–1497, 2022.
Miranda, A. C. R., Beaudoin, G., Rottier, B., Pašava, J., Bohdálek, P., and Malec, J.: Trace element signatures in Scheelite associated with various deposit types: a tool for mineral targeting, Journal of Geochemical Exploration, 266, 107555, https://doi.org/10.1016/j.gexplo.2024.107555, 2024.
Mungall, J. E. and Brenan, J. M.: Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements, Geochimica et Cosmochimica Acta, 125, 265–289, https://doi.org/10.1016/j.gca.2013.10.002, 2014.
Munz, I. A., Wayne, D., and Austrheim, H.: Retrograde fluid infiltration in the high-grade modum complex South Norway: evidence for age, source and REE mobility, Contributions to Mineralogy and Petrology, 116, 32–46, 1994.
Naldrett, A. J.: Fundamentals of Magmatic Sulfide Deposits, in: Magmatic Ni-Cu and PGE Deposits: Reviews in Economic Geology, 17, 1–50, https://doi.org/10.5382/Rev.17.01, 2011.
Naldrett, A. J.: Magmatic sulfide deposits: geology, geochemistry and exploration, Springer, Berlin, 727 pp., 2004.
Niarezka, A.: A Petrographic and Paragenetic Characterization of the Ertelien Ni-Cu Deposit (Norway), M.Sc. thesis, ISSN 1650-6553, 57 pp., 2023.
Orvik, A. A., Mansur, E. T., Henderson, I., Slagstad, T., Huyskens, M., and Bjerkgård, T.: Isotopic identification of paleo rift zones within the Sveconorwegian Province; implications for nickel sulphide mineralisations in the SW Fennoscandian Shield, Precambrian Research, 427, 107836, https://doi.org/10.1016/j.precamres.2025.107836, 2025.
Park, R., Åhäll, K.-I., and Bland, M.: The Sveconorwegian shear-zone network of SW Sweden in relation to mid-Proterozoic plate movements, Precambrian Research, 49, 245–260, 1991.
Patton, C., Hellstrom, J., Paul, B., Woodhead, J. H., and Hergt, J.: Iolite: freeware for the visualization and processing of mass spectrometry data, Journal of Analytical Atomic Spectrometry, 26, 2508–2518, 2011.
Piña, R., Gervilla, F., Barnes, S.-J., Ortega, L., and Lunar, R.: Platinum-group elements-bearing pyrite from the Aguablanca Ni-Cu sulphide deposit (SW Spain): A LA-ICP-MS study, European Journal of Mineralogy, 25, 241–252, 2013.
Piña, R., Gervilla, F., Barnes, S.-J., Oberthür, T., and Lunar, R.: Platinum-group element concentrations in pyrite from the Main Sulfide Zone of the Great Dyke of Zimbabwe, Mineralium Deposita, 51, 853–872, 2016.
Reddick, J. and Armstrong, T.: Technical Report on Resource Estimates for the Ertelien, Stormyra and Dalen Deposits, Southern Norway, Reddick Consulting Inc, BLACKSTONE VENTURES INC., Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, 58 pp., 2009.
Ripley, E. M. and Li, C.: Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits, Economic Geology, 98, 635–641, 2003.
Ripley, E. M. and Li, C.: Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis?, Economic geology, 108, 45–58, 2013.
Roberts, N. M. and Slagstad, T.: Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 1.86–0.9 Ga accretionary orogeny in southwest Fennoscandia, International Geology Review, 57, 1582–1606, 2015.
Roberts, N. M., Slagstad, T., Parrish, R. R., Norry, M. J., Marker, M., and Horstwood, M. S.: Sedimentary recycling in arc magmas: geochemical and U–Pb–Hf–O constraints on the Mesoproterozoic Suldal Arc, SW Norway, Contributions to Mineralogy and Petrology, 165, 507–523, 2013.
Sandstad, J., Bjerkgård, T., Boyd, R., Ihlen, P., Korneliussen, A., Nilsson, L., Often, M., Eilu, P., and Hallberg, A.: Metallogenic areas in Norway, Mineral deposits and metallogeny of Fennoscandia (P. Eilu Ed.), Geological Survey of Finland, Special Paper, 53, 35–138, 2012.
Sappin, A.-A., Constantin, M., Clark, T., and van Breemen, O.: Geochemistry, geochronology, and geodynamic setting of Ni–Cu ± PGE mineral prospects hosted by mafic and ultramafic intrusions in the Portneuf–Mauricie Domain, Grenville Province, QuebecGéologie Québec Contribution 8439-2008-2009-5. Geological Survey of Canada Contribution 20080511, Canadian Journal of Earth Sciences, 46, 331–353, https://doi.org/10.1139/e09-022, 2009.
Sappin, A.-A., Constantin, M., and Clark, T.: Origin of magmatic sulfides in a Proterozoic island arc – an example from the Portneuf–Mauricie Domain, Grenville Province, Canada, Mineralium Deposita, 46, 211–237, https://doi.org/10.1007/s00126-010-0321-8, 2011.
Saumur, B. and Cruden, A.: Ingress of magmatic Ni-Cu sulphide liquid into surrounding brittle rocks: Physical & structural controls, Ore Geology Reviews, 90, 439–445, 2017.
Savard, D., Barnes, S. J., and Meisel, T.: Comparison between nickel-sulfur fire assay Te co-precipitation and isotope dilution with high-pressure asher acid digestion for the determination of platinum-group elements, rhenium and gold, Geostandards and Geoanalytical Research, 34, 281–291, 2010.
Scheiber, T., Viola, G., Bingen, B., Peters, M., and Solli, A.: Multiple reactivation and strain localization along a Proterozoic orogen-scale deformation zone: the Kongsberg-Telemark boundary in southern Norway revisited, Precambrian Research, 265, 78–103, 2015.
Scheiber, T., Viola, G., Ganerød, M., and Bingen, B.: 40Ar/39Ar constraints on the tectonic evolution of the central part of the Mesoproterozoic Sveconorwegian orogen, Journal of Structural Geology, 166, 104777, https://doi.org/10.1016/j.jsg.2022.104777, 2023.
Sciuba, M., Beaudoin, G., Grzela, D., and Makvandi, S.: Trace element composition of scheelite in orogenic gold deposits, Mineralium Deposita, 55, 1149–1172, 2020.
Slagstad, T., Marker, M., Roberts, N. M., Saalmann, K., Kirkland, C. L., Kulakov, E., Ganerød, M., Røhr, T. S., Møkkelgjerd, S. H., and Granseth, A.: The Sveconorwegian orogeny–Reamalgamation of the fragmented southwestern margin of Fennoscandia, Precambrian Research, 350, 105877, https://doi.org/10.1016/j.precamres.2020.105877, 2020.
Slagstad, T., Henderson, I. H., Roberts, N. M., Kulakov, E. V., Ganerød, M., Kirkland, C. L., Dalslåen, B., Creaser, R. A., and Coint, N.: Anorthosite formation and emplacement coupled with differential tectonic exhumation of ultrahigh-temperature rocks in a Sveconorwegian continental back-arc setting, Precambrian research, 376, 106695, https://doi.org/10.1016/j.precamres.2022.106695, 2022.
Slagstad, T., Skår, Ø., Bjerkan, G., Coint, N., Granseth, A., Kirkland, C. L., Kulakov, E., Mansur, E., Orvik, A. A., Petersson, A., and Roberts, N. M. W.: Subduction and loss of continental crust during the Mesoproterozoic Sveconorwegian Orogeny, Precambrian Research, 409, 107454, https://doi.org/10.1016/j.precamres.2024.107454, 2024.
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L., and Norberg, N.: Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis, Chemical geology, 249, 1–35, 2008.
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., and Nikogosian, I. K.: An olivine-free mantle source of Hawaiian shield basalts, Nature, 434, 590–597, 2005.
Song, X., Wang, Y., and Chen, L.: Magmatic Ni-Cu-(PGE) deposits in magma plumbing systems: Features, formation and exploration, Geoscience Frontiers, 2, 375–384, https://doi.org/10.1016/j.gsf.2011.05.005, 2011.
Spandler, C. J., Eggins, S. M., Arculus, R. J., and Mavrogenes, J. A.: Using melt inclusions to determine parent-magma compositions of layered intrusions: Application to the Greenhills Complex (New Zealand), a platinum group minerals–bearing, island-arc intrusion, Geology, 28, 991–994, https://doi.org/10.1130/0091-7613(2000)28<991:Umitdp>2.0.Co;2, 2000.
Steadman, J. A., Large, R. R., Olin, P. H., Danyushevsky, L. V., Meffre, S., Huston, D., Fabris, A., Lisitsin, V., and Wells, T.: Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study, Ore Geology Reviews, 128, 103878, https://doi.org/10.1016/j.oregeorev.2020.103878, 2021.
Stephens, M. B. and Wahlgren, C.-H.: Chapter 17 Accretionary orogens reworked in an overriding plate setting during protracted continent–continent collision, Sveconorwegian orogen, southwestern Sweden, Geological Society, London, Memoirs, 50, 435–448, 2020.
Stephens, M. B., Wahlgren, C.-H., Weijermars, R., and Cruden, A. R.: Left-lateral transpressive deformation and its tectonic implications, Sveconorwegian orogen, Baltic Shield, southwestern Sweden, Precambrian Research, 79, 261–279, 1996.
Torgersen, E., Gabrielsen, R. H., Ganerød, M., van der Lelij, R., Schönenberger, J., Nystuen, J. P., and Brask, S.: Repeated brittle reactivations of a pre-existing plastic shear zone: combined K–Ar and 40Ar–39Ar geochronology of the long-lived (>700 Ma) Himdalen–Ørje Deformation Zone, SE Norway, Geological Magazine, 159, 2110–2131, 2022.
Ulmius, J., Andersson, J., and Möller, C.: Hallandian 1.45 Ga high-temperature metamorphism in Baltica: P–T evolution and SIMS U–Pb zircon ages of aluminous gneisses, SW Sweden, Precambrian Research, 265, 10–39, 2015.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geoscience Frontiers, 9, 1479–1493, 2018.
Viola, G., Henderson, I., Bingen, B., and Hendriks, B.: The Grenvillian–Sveconorwegian orogeny in Fennoscandia: back-thrusting and extensional shearing along the “Mylonite Zone”, Precambrian Research, 189, 368–388, 2011.
Viola, G., Bingen, B., and Solli, A.: Berggrunnskart, Kongsberg litotektoniske enhet, Kongsberg-Modum-Hønefoss M 1:100 000, Norwegian Geological Survey (NGU), https://www.ngu.no/publikasjon/berggrunnskart-kongsberg-litotektoniske-enhet-kongsberg (last access: 31 October 2025), 2016.
Wahlgren, C.-H., Cruden, A. R., and Stephens, M. B.: Kinematics of a major fan-like structure in the eastern part of the Sveconorwegian orogen, Baltic Shield, south-central Sweden, Precambrian Research, 70, 67–91, 1994.
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F. v., Quadt, A. v., Roddick, J., and Spiegel, W.: Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostandards newsletter, 19, 1–23, 1995.
Wilson, A. H.: A Chill Sequence to the Bushveld Complex: Insight into the First Stage of Emplacement and Implications for the Parental Magmas, Journal of Petrology, 53, 1123–1168, https://doi.org/10.1093/petrology/egs011, 2012.
Short summary
The Ertelien and Langedalen Ni–Cu sulfide deposits are hosted in gabbronorite intrusions formed in a convergent margin. The Ertelien deposit contains contact-related sulfides, whereas the Langedalen deposit hosts massive sulfides within extensively deformed gabbronorite lenses. Both are depleted in platinum-group elements (PGEs), which could be related to a metasomatized pyroxenitic mantle source. Isotopic data support a subduction-related origin around 1550 Ma, with magmatic signatures preserved despite later alteration.
The Ertelien and Langedalen Ni–Cu sulfide deposits are hosted in gabbronorite intrusions formed...