Articles | Volume 37, issue 5
https://doi.org/10.5194/ejm-37-667-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-667-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The magmatic–hydrothermal transition record in zircon: implications for zircon texture, composition and rare-metal granite dating (Beauvoir granite, French Massif Central)
Nicolas Esteves
CORRESPONDING AUTHOR
Université de Lorraine, CNRS, CRPG, Nancy, 54000, France
Pierre Bouilhol
Université de Lorraine, CNRS, CRPG, Nancy, 54000, France
Urs Schaltegger
Department of Earth Sciences, Université de Genève, Genève, 1200, Switzerland
Maria Ovtcharova
Department of Earth Sciences, Université de Genève, Genève, 1200, Switzerland
André Navin Paul
Department of Earth Sciences, Université de Genève, Genève, 1200, Switzerland
Institute of Geosciences, Goethe University, Frankfurt am Main, Germany
Lydéric France
Université de Lorraine, CNRS, CRPG, Nancy, 54000, France
Institut Universitaire de France (IUF), France
Related authors
No articles found.
Dawid Szymanowski, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Blair Schoene, Urs Schaltegger, Mark D. Schmitz, Ryan B. Ickert, Cyril Chelle-Michou, Kevin R. Chamberlain, James L. Crowley, Joshua H. F. L. Davies, Michael P. Eddy, Sean P. Gaynor, Alexandra Käßner, Michael T. Mohr, André N. Paul, Jahandar Ramezani, Simon Tapster, Marion Tichomirowa, Albrecht von Quadt, and Corey J. Wall
Geochronology, 7, 409–425, https://doi.org/10.5194/gchron-7-409-2025, https://doi.org/10.5194/gchron-7-409-2025, 2025
Short summary
Short summary
We present the first community-wide evaluation of the reproducibility of U–Pb zircon geochronology by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). Eleven labs analysed aliquots of the same, homogenised, pre-spiked solution of natural zircon, which removed geological bias inherent to using heterogeneous natural zircon grain populations. We discuss remaining sources of inter-lab bias and propose areas of improvement to analytical procedures.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
André Navin Paul, Anders Lindskog, and Urs Schaltegger
Geochronology, 6, 325–335, https://doi.org/10.5194/gchron-6-325-2024, https://doi.org/10.5194/gchron-6-325-2024, 2024
Short summary
Short summary
The “Likhall” bed helps to constrain the timing of increased meteorite bombardment of the Earth during the Ordovician period. It is important to understand the timing of this meteorite bombardment when attempting to correlate it with biodiversity changes during the Ordovician period. Calibrating a good age for the “Likhall” bed is, however, challenging and benefited in this study from advances in sample preparation.
Perach Nuriel, Jörn-Frederik Wotzlaw, Maria Ovtcharova, Anton Vaks, Ciprian Stremtan, Martin Šala, Nick M. W. Roberts, and Andrew R. C. Kylander-Clark
Geochronology, 3, 35–47, https://doi.org/10.5194/gchron-3-35-2021, https://doi.org/10.5194/gchron-3-35-2021, 2021
Short summary
Short summary
This contribution presents a new reference material, ASH-15 flowstone with an age of 2.965 ± 0.011 Ma (95 % CI), to be used for in situ U–Pb dating of carbonate material. The new age analyses include the use of the EARTHTIME isotopic tracers and a large number of sub-samples (n = 37) with small aliquots (1–7 mg) each that are more representative of laser-ablation spot analysis. The new results could improve the propagated uncertainties on the final age with a minimal value of 0.4 %.
Cited articles
Abdalla, H. M., Helba, H., and Matsueda, H.: Chemistry of zircon in rare metal granitoids and associated rocks, Eastern Desert, Egypt, Resour. Geol., 59, 51–68, https://doi.org/10.1111/j.1751-3928.2008.00079.x, 2009.
Aïssa, M., Weisbrod, A., and Marignac, C.: Caractéristiques chimiques et thermodynamiques des circulations hydrothermales du site d'Echassières, Géologie Fr., 2–3, 335–350, 1987.
Alekseev, V. I., Polyakova, E. V., Machevariani, M. M., and Marin, Yu. B.: Evolution of zircons from postorogenic intrusive series with Li-F granites, Russian Far East, Geol. Ore Depos., 56, 513–530, https://doi.org/10.1134/S1075701514070034, 2014.
Aubert, G.: Les coupoles granitiques de Montebras et d'Echassières (Massif Central français) et la génèse de leurs mineralisations en étain, lithium, tungstène et béryllium, Mém. BRGM Orléans, 46, 349pp., 1969.
Ballouard, C., Poujol, M., Boulvais, P., Mercadier, J., Tartèse, R., Venneman, T., Deloule, E., Jolivet, M., Kéré, I., Cathelineau, M., and Cuney, M.: Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: The uranium mineralization associated with the Hercynian Guérande granite (Armorican Massif, France), Ore Geol. Rev., 80, 309–331, https://doi.org/10.1016/j.oregeorev.2016.06.034, 2017.
Barboni, M., Schoene, B., Ovtcharova, M., Bussy, F., Schaltegger, U., and Gerdes, A.: Timing of incremental pluton construction and magmatic activity in a back-arc setting revealed by ID-TIMS U/Pb and Hf isotopes on complex zircon grains, Chem. Geol., 342, 76–93, https://doi.org/10.1016/j.chemgeo.2012.12.011, 2013.
Barboni, M., Annen, C., and Schoene, B.: Evaluating the construction and evolution of upper crustal magma reservoirs with coupled U/Pb zircon geochronology and thermal modeling: A case study from the Mt. Capanne pluton (Elba, Italy), Earth Planet. Sc. Lett., 432, 436–448, https://doi.org/10.1016/j.epsl.2015.09.043, 2015.
Barrie Clarke, D., Harlov, D. E., Brenan, J. M., Jähkel, A., Cichy, S. B., Wilke, F. D., and Yang, X.: Assimilation of xenocrystic apatite in peraluminous granitic magmas, Am. Mineral., 108, 1421–1435, https://doi.org/10.2138/am-2022-8668, 2023.
Bowring, J. F., McLean, N. M., and Bowring, S. A.: Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux, Geochem. Geophys. Geosyst., 12, 1–19, https://doi.org/10.1029/2010GC003479, 2011.
Breiter, K. and Škoda, R.: Vertical zonality of fractionated granite plutons reflected in zircon chemistry: the Cínovec A-type versus the Beauvoir S-type suite, Geol. Carpathica, 63, 383–398, https://doi.org/10.2478/v10096-012-0030-6, 2012.
Breiter, K., Förster, H.-J., and Škoda, R.: Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic, Lithos, 88, 15–34, https://doi.org/10.1016/j.lithos.2005.08.011, 2006.
Carr, P. A., Zink, S., Bennett, V. C., Norman, M. D., Amelin, Y., and Blevin, P. L.: A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole Granite polymetallic system, eastern Australia, Chem. Geol., 539, 119539, https://doi.org/10.1016/j.chemgeo.2020.119539, 2020.
Carr, P. A., Mercadier, J., Harlaux, M., Romer, R. L., Moreira, E., Legros, H., Cuney, M., Marignac, C., Cauzid, J., Salsi, L., Lecomte, A., Rouer, O., and Peiffert, C.: U/Pb geochronology of wolframite by LA-ICP-MS; mineralogical constraints, analytical procedures, data interpretation, and comparison with ID-TIMS, Chem. Geol., 584, 120511, https://doi.org/10.1016/j.chemgeo.2021.120511, 2021.
Caruba, R., Baumer, A., Ganteaume, M., and Iacconi, P.: An experimental study of hydroxyl groups and water in synthetic and natural zircons: a model of the metamict state, Am. Mineral., 70, 1224–1231, 1985.
Cathelineau, M. and Kahou, Z. S.: Discrimination of Muscovitisation Processes Using a Modified Quartz–Feldspar Diagram: Application to Beauvoir Greisens, Minerals, 14, 746, https://doi.org/10.3390/min14080746, 2024.
Černý, P.: Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research, Appl. Geochem., 7, 393–416, https://doi.org/10.1016/0883-2927(92)90002-K, 1992.
Černý, P. and Siivola, J.: The Tanco pegmatite at Bernic Lake, Manitoba. XII. Hafnian zircon, Can. Mineral., 18, 313–321, 1980.
Černý, P., Meintzer, R. E., and Anderson, A. J.: Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms, Can. Mineral., 23, 381–421, 1985.
Charoy, B., Chaussidon, M., Le Carlier De Veslud, C., and Duthou, J.: Evidence of Sr mobility in and around the albite–lepidolite–topaz granite of Beauvoir (France): an in-situ ion and electron probe study of secondary Sr-rich phosphates, Contrib. Mineral. Petrol., 145, 673–690, https://doi.org/10.1007/s00410-003-0458-x, 2003.
Cheilletz, A., Archibald, D. A., Cuney, M., and Charoy, B.: Ages 40Ar/39Ar du leucogranite à topaze-lépidolit de Beauvoir et des pegmatites sodolithiques de Chédeville (Nord du Massif Central, France). Signification pétrologique et géodynamique., Comptes Rendus Académie Sci. Paris, 315, 329–336, 1992.
Chelle-Michou, C., Chiaradia, M., Ovtcharova, M., Ulianov, A., and Wotzlaw, J.-F.: Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru), Lithos, 198, 129–140, https://doi.org/10.1016/j.lithos.2014.03.017, 2014.
Cherniak, D. J., Lanford, W. A., and Ryerson, F.: Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques, Geochim. Cosmochim. Ac., 55, 1663–1673, https://doi.org/10.1016/0016-7037(91)90137-T, 1991.
Cherniak, D. J., Hanchar, J. M., and Watson, E. B.: Diffusion of tetravalent cations in zircon, Contrib. Mineral. Petrol., 127, 383–390, https://doi.org/10.1007/s004100050287, 1997.
Claiborne, L., Miller, C. F., Walker, B. A., Wooden, J. L., Mazdab, F. K., and Bea, F.: Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada, Mineral. Mag., 70, 517–543, https://doi.org/10.1180/0026461067050348, 2006.
Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., and Parrish, R. R.: Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I), Geochim. Cosmochim. Ac., 164, 464–480, https://doi.org/10.1016/j.gca.2015.05.026, 2015.
Courtney-Davies, L., Ciobanu, C. L., Verdugo-Ihl, M. R., Slattery, A., Cook, N. J., Dmitrijeva, M., Keyser, W., Wade, B. P., Domnick, U. I., Ehrig, K., Xu, J., and Kontonikas-Charos, A.: Zircon at the Nanoscale Records Metasomatic Processes Leading to Large Magmatic–Hydrothermal Ore Systems, Minerals, 9, 364, https://doi.org/10.3390/min9060364, 2019.
Cuney, M. and Autran, A.: Le forage scientifique d'Echassières (Allier). Une clé pour la compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares. Thème 8: évolution d'un apex granitique, Doc. BRGM, 124, BRGM, Orléans, France, 437 pp., 1988.
Cuney, M. and Brouand, M.: Minéralogie et géochimie de U et Th dans le granite de Beauvoir et les micaschistes encaissants, comparaison avec la géochimie de l'étain, Geol. Fr., 2–3, 247–257, 1987.
Cuney, M., Autran, A., and Burnol, L.: Programme Géologie profonde de la France. Troisième phase d'investigation: 1985–1986. Thème 8: Evolution géochimique et métallogénique d'un apex granitique (Echassières), Doc. BRGM, 100, BRGM, Orléans, France, 323 pp., 1985.
Cuney, M., Marignac, C., and Weisbrod, A.: The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization, Econ. Geol., 87, 1766–1794, https://doi.org/10.2113/gsecongeo.87.7.1766, 1992.
Dawson, P., Hargreave, M. M., and Wilkinson, G. R.: The vibrational spectrum of zircon (ZrSiO4), J. Phys. C, 4, 240–256, https://doi.org/10.1088/0022-3719/4/2/014, 1971.
Do Couto, D., Faure, M., Augier, R., Cocherie, A., Rossi, P., Li, X.-H., and Lin, W.: Monazite U–Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the Sioule series, French Massif Central, Int. J. Earth Sci., 105, 557–579, https://doi.org/10.1007/s00531-015-1184-0, 2016.
Dolníček, Z., René, M., Hermannová, S., and Prochaska, W.: Origin of the Okrouhlá Radouò episyenite-hosted uranium deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints, Miner. Deposita, 49, 409–425, https://doi.org/10.1007/s00126-013-0500-5, 2014.
Drabon, N., Kirkpatrick, H. M., Byerly, G. R., and Wooden, J. L.: Trace elements in zircon record changing magmatic processes and the multi-stage build-up of Archean proto-continental crust, Geochim. Cosmochim. Ac., 373, 136–150, https://doi.org/10.1016/j.gca.2024.03.014, 2024.
Esteves, N., Bouilhol, P., Cuney, M., and France, L.: Small pluton construction through sills stacking, amalgamation and differentiation: Insight from the Beauvoir granite (Massif Central, France), J. Petrol., submitted, https://doi.org/10.31223/X5KT5V, 2024a.
Esteves, N., Bouilhol, P., Schaltegger, U., Ovtcharova, M., Navin-Paul, A., and France, L.: Dataset related to the article “The magmatic-hydrothermal transition record in zircon: Implication on zircon texture, composition and rare-metal granite dating (Beauvoir granite, French Massif Central)”, OTELO [data set], https://doi.org/10.24396/ORDAR-155, 2024b.
Farina, F., Weber, G., Hartung, E., Rubatto, D., Forni, F., Luisier, C., and Caricchi, L.: Magma flux variations triggering shallow-level emplacement of the Takidani pluton (Japan): Insights into the volcanic-plutonic connection, Earth Planet. Sc. Lett., 635, 118688, https://doi.org/10.1016/j.epsl.2024.118688, 2024.
Faure, M., Grolier, J., and Pons, J.: Extensional ductile tectonics on the Sioule metamorphic series (Variscan French Massif Central), Geol. Rundsch., 82, 461–474, https://doi.org/10.1007/BF00212410, 1993.
Faure, M., Lardeaux, J.-M., and Ledru, P.: A review of the pre-Permian geology of the Variscan French Massif Central, Comptes Rendus Geosci., 341, 202–213, https://doi.org/10.1016/j.crte.2008.12.001, 2009.
Ferriss, E. D. A., Ewing, R. C., and Becker, U.: Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions, Am. Mineral., 95, 229–241, https://doi.org/10.2138/am.2010.3318, 2010.
Finch, R. J., Hanchar, J. M., Hoskin, P. W. O., and Burns, P. C.: Rare-earth elements in synthetic zircon: Part 2. A single-crystal X-ray study of xenotime substitution, Am. Mineral., 86, 681–689, https://doi.org/10.2138/am-2001-5-608, 2001.
Förster, H.-J.: Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite, Lithos, 88, 35–55, https://doi.org/10.1016/j.lithos.2005.08.003, 2006.
Fouillac, A. M., Kosakevitch, A., Merceron, T., Meunier, A., and Rossi, P.: Comportement des fluides dans l'évolution magmatique puis hydrothermale du granite à Ta, Nb, Li de Beauvoir, d'après la géochimie isotopique de l'oxygène et de l'hydrogène, Géologie Fr., 2–3 279–293, 1987.
Friedrich, M. H., Cuney, M., and Poty, B.: Uranium Geochemistry in Peraluminous Leucogranites, Uranium, 3, 353–385, 1987.
Fuchs, L. and Gebert, E.: X-ray studies of synthetic coffinite, thorite and uranothorites, Am. Mineral. J. Earth Planet. Mater., 43, 243–248, 1958.
Gagny, C.: Organisation séquentielle évolutive des intrusions successives du granite de Beauvoir dans son caisson: arguments géochimiques, Géologie Fr., 2–3, 199–208, 1987.
Geisler, T., Pidgeon, R. T., Van Bronswijk, W., and Kurtz, R.: Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions, Chem. Geol., 191, 141–154, https://doi.org/10.1016/S0009-2541(02)00153-5, 2002.
Geisler, T., Pidgeon, R. T., Kurtz, R., Van Bronswijk, W., and Schleicher, H.: Experimental hydrothermal alteration of partially metamict zircon, Am. Mineral., 88, 1496–1513, https://doi.org/10.2138/am-2003-1013, 2003a.
Geisler, T., Rashwan, A. A., Rahn, M. K. W., Poller, U., Zwingmann, H., Pidgeon, R. T., Schleicher, H., and Tomaschek, F.: Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt, Mineral. Mag., 67, 485–508, https://doi.org/10.1180/0026461036730112, 2003b.
Geisler, T., Trachenko, K., Ríos, S., Dove, M., and Salje, E. K. H.: Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO 4 ): implications for its suitability as a nuclear waste form, J. Phys. Condens. Matter, 15, L597–L605, https://doi.org/10.1088/0953-8984/15/37/L07, 2003c.
Geisler, T., Burakov, B. E., Zirlin, V., Nikolaeva, L., and Pöml, P.: A Raman spectroscopic study of high-uranium zircon from the Chernobyl “lava,” Eur. J. Mineral., 17, 883–894, https://doi.org/10.1127/0935-1221/2005/0017-0883, 2006.
Geisler, T., Schaltegger, U., and Tomaschek, F.: Re-equilibration of Zircon in Aqueous Fluids and Melts, Elements, 3, 43–50, https://doi.org/10.2113/gselements.3.1.43, 2007.
Gerstenberger, H. and Haase, G.: A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations, Chem. Geol., 136, 309–312, https://doi.org/10.1016/S0009-2541(96)00033-2, 1997.
Gillespie, J., Klein, B. Z., Moore, J., Müntener, O., and Baumgartner, L. P.: A dendritic growth mechanism for producing oscillatory zoning in igneous zircon, Geology, 53, 171–175, https://doi.org/10.1130/G52641.1, 2024.
Grolier, J.: Contribution à l'étude géologique des séries crystallophylliennes inverses du massif Central français: la série de la Sioule (Puy de Dôme, Allier), Mém BRGM, 64, 163pp., 1971.
Han, J., Hanchar, J. M., Pan, Y., Hollings, P., and Chen, H.: Hydrothermal alteration, not metamictization, is the main trigger for modifying zircon in highly evolved granites, Geol. Soc. Am. Bull., 136, 1878–1888, https://doi.org/10.1130/B36996.1, 2023.
Hanchar, J. M., Finch, R. J., Hoskin, P. W., Watson, E. B., Cherniak, D. J., and Mariano, A. N.: Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping, Am. Mineral., 86, 667–680, https://doi.org/10.2138/am-2001-5-607, 2001.
Harlaux, M., Mercadier, J., Bonzi, W. M.-E., Kremer, V., Marignac, C., and Cuney, M.: Geochemical Signature of Magmatic-Hydrothermal Fluids Exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France): Insights from LA-ICPMS Analysis of Primary Fluid Inclusions, Geofluids, 2017, 1–25, https://doi.org/10.1155/2017/1925817, 2017.
Harlaux, M., Blein, O., Ballouard, C., Kontak, D. J., Thiéblemont, D., Dabosville, A., and Gourcerol, B.: Geochemical footprints of peraluminous rare-metal granites and pegmatites in the northern French Massif Central and implications for exploration targeting, Ore Geol. Rev., 176, 106409, https://doi.org/10.1016/j.oregeorev.2024.106409, 2025.
Hetherington, C. J. and Harlov, D. E.: Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chemistry, Am. Mineral., 93, 806–820, https://doi.org/10.2138/am.2008.2635, 2008.
Holland, H. D. and Gottfried, D.: The effect of nuclear radiation on the structure of zircon, Acta Crystallogr., 8, 291–300, https://doi.org/10.1107/S0365110X55000947, 1955.
Hoskin, P. W.: Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia, Geochim. Cosmochim. Ac., 69, 637–648, https://doi.org/10.1016/j.gca.2004.07.006, 2005.
Hoskin, P. W. O. and Schaltegger, U.: The Composition of Zircon and Igneous and Metamorphic Petrogenesis, Rev. Mineral. Geochem., 53, 27–62, https://doi.org/10.2113/0530027, 2003.
Hoskin, P. W. O., Kinny, P. D., Wyborn, D., and Chappell, B. W.: Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: an Integrated Approach, J. Petrol., 41, 1365–1396, https://doi.org/10.1093/petrology/41.9.1365, 2000.
Jaffey, A., Flynn, K., Glendenin, L., Bentley, W. T., and Essling, A.: Precision measurement of half-lives and specific activities of U 235 and U 238, Phys. Rev. C, 4, 1889, https://doi.org/10.1103/PhysRevC.4.1889, 1971.
Jia, L., Wu, C.-Z., Lei, R.-X., Brzozowski, M. J., Wang, Y.-T., Qian, Z.-Z., and Deng, X.-H.: Geochronology and geochemistry of zircon and columbite–tantalite group minerals from the Weilasituo Sn–polymetallic deposit, northeastern China: Implications for the relationship between mineralization and the magmatic–hydrothermal transition, Ore Geol. Rev., 168, 106047, https://doi.org/10.1016/j.oregeorev.2024.106047, 2024.
Kryza, R., Schaltegger, U., Oberc-Dziedzic, T., Pin, C., and Ovtcharova, M.: Geochronology of a composite granitoid pluton: a high-precision ID-TIMS U–Pb zircon study of the Variscan Karkonosze Granite (SW Poland), Int. J. Earth Sci., 103, 683–696, https://doi.org/10.1007/s00531-013-0995-0, 2014.
Lafuente, B., Downs, R. T., Yang, H., and Stone, N.: The power of databases: the RRUFF project, Highlights Mineral. Crystallogr., edited by: Armbruster, T. and Danisi, R. M., Berl. Ger. W Gruyter, 1–30, https://doi.org/10.1515/9783110417104-003, 2015.
Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E. G., and Schwartz, S.: XMapTools: A MATLAB© -based program for electron microprobe X-ray image processing and geothermobarometry, Computers & Geosciences, 62, 227–240, https://doi.org/10.1016/j.cageo.2013.08.010, 2014.
Lanari, P., Vho, A., Bovay, T., Airaghi, L., & Centrella, S.: Quantitative compositional mapping of mineral phases by electron probe micro-analyser, Geological Society, London, Special Publications, 478, 39–63, https://doi.org/10.1144/SP478.4, 2019.
Large, S. J. E., Wotzlaw, J.-F., Guillong, M., von Quadt, A., and Heinrich, C. A.: Resolving the timescales of magmatic and hydrothermal processes associated with porphyry deposit formation using zircon U–Pb petrochronology, Geochronology, 2, 209–230, https://doi.org/10.5194/gchron-2-209-2020, 2020.
Le Roux, L. and Glendenin, L.: Half-life of 232Th, in: Proceedings of the National Meeting on Nuclear Energy, Pretoria, South Africa, 5–8 April 1963, 83–94, 1963.
Leuthold, J., Müntener, O., Baumgartner, L. P., Putlitz, B., Ovtcharova, M., and Schaltegger, U.: Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia), Earth Planet. Sc. Lett., 325–326, 85–92, https://doi.org/10.1016/j.epsl.2012.01.032, 2012.
Linnen, R. L. and Keppler, H.: Melt composition control of Zr/Hf fractionation in magmatic processes, Geochim. Cosmochim. Ac., 66, 3293–3301, https://doi.org/10.1016/S0016-7037(02)00924-9, 2002.
Linnen, R. L., Van Lichtervelde, M., and Cerny, P.: Granitic Pegmatites as Sources of Strategic Metals, Elements, 8, 275–280, https://doi.org/10.2113/gselements.8.4.275, 2012.
Liu, X.-H., Li, B., Lai, J.-Q., and Jiang, S.-Y.: Multistage in situ fractional crystallization of magma produced a unique rare metal enriched quartz-zinnwaldite-topaz rock, Ore Geol. Rev., 151, 105203, https://doi.org/10.1016/j.oregeorev.2022.105203, 2022.
London, D.: The application of experimental petrology to the genesis and crystallization of granitic pegmatites, Can. Mineral., 30, 499–540, 1992.
London, D.: Ore-forming processes within granitic pegmatites, Ore Geol. Rev., 101, 349–383, https://doi.org/10.1016/j.oregeorev.2018.04.020, 2018.
López-Moro, F. J., Díez-Montes, A., Timón-Sánchez, S. M., Llorens-González, T., and Sánchez-García, T.: Peraluminous Rare Metal Granites in Iberia: Geochemical, Mineralogical, Geothermobarometric, and Petrogenetic Constraints, Minerals, 14, 249, https://doi.org/10.3390/min14030249, 2024.
Lu, T.-Y., He, Z.-Y., and Klemd, R.: Different magma differentiation processes of post-onset collision adakitic rocks in the Gangdese Batholith: Evidence from zircon trace elements, Chem. Geol., 620, 121345, https://doi.org/10.1016/j.chemgeo.2023.121345, 2023.
Ludwig, K. R.: ISOPLOT: a plotting and regression program for radiogenic-isotope data; version 2.53, US Geological Survey Open-file Report 91-445, 39 pp., https://doi.org/10.3133/ofr91445, 1991.
Ludwig, K. R.: On the Treatment of Concordant Uranium-Lead Ages, Geochim. Cosmochim. Ac., 62, 665–676, https://doi.org/10.1016/S0016-7037(98)00059-3, 1998.
McKanna, A. J., Schoene, B., and Szymanowski, D.: Geochronological and geochemical effects of zircon chemical abrasion: insights from single-crystal stepwise dissolution experiments, Geochronology, 6, 1–20, https://doi.org/10.5194/gchron-6-1-2024, 2024.
McLean, N. M., Bowring, J. F., and Bowring, S. A.: An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation, Geochem. Geophys. Geosyst., 12, 1–26, https://doi.org/10.1029/2010GC003478, 2011.
McLean, N. M., Condon, D. J., Schoene, B., and Bowring, S. A.: Evaluating Uncertainties in the Calibration of Isotopic Reference Materials and Multi-Element Isotopic Tracers (EARTHTIME Tracer Calibration Part II), Geochem. Cosmochim. Ac., 164, 481–501, https://doi.org/10.1016/j.gca.2015.02.040, 2015.
Melleton, J., Gloaguen, E., and Frei, D.: Rare-Elements (Li-Be-Ta-Sn-Nb) Magmatism in the European Variscan Belt, a Review, Proceedings, 2, 807–810, 2015.
Merceron, T., Vieillard, P., Fouillac, A.-M., and Meunier, A.: Hydrothermal alterations in the Echassières granitic cupola (Massif central, france), Contrib. Mineral. Petrol., 112, 279–292, https://doi.org/10.1007/BF00310461, 1992.
Mezger, K. and Krogstad, E.: Interpretation of discordant U-Pb zircon ages: An evaluation, J. Metamorph. Geol., 15, 127–140, https://doi.org/10.1111/j.1525-1314.1997.00008.x, 1997.
Michaud, J. A.-S., Gumiaux, C., Pichavant, M., Gloaguen, E., and Marcoux, E.: From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: The Argemela area (central Portugal), Ore Geol. Rev., 116, 103215, https://doi.org/10.1016/j.oregeorev.2019.103215, 2020.
Monnier, L.: Utilisation de la signature LA-ICPMS des quartz et des micas pour la reconstruction du fonctionnement d'un système magmatique et hydrothermal polyphasé. Application au complexe Sn-W d'Echassières (Massif Central, France), Doctoral thesis, Université Paul Sabatier, Toulouse, 386 pp., 2018.
Monnier, L., Salvi, S., Jourdan, V., Sall, S., Bailly, L., Melleton, J., and Béziat, D.: Contrasting fluid behavior during two styles of greisen alteration leading to distinct wolframite mineralizations: The Echassières district (Massif Central, France), Ore Geol. Rev., 124, 103648, https://doi.org/10.1016/j.oregeorev.2020.103648, 2020.
Monnier, L., Salvi, S., Melleton, J., Lach, P., Pochon, A., Bailly, L., Béziat, D., and De Parseval, P.: Mica trace-element signatures: Highlighting superimposed W-Sn mineralizations and fluid sources, Chem. Geol., 600, 120866, https://doi.org/10.1016/j.chemgeo.2022.120866, 2022.
Monnier, L., Laurent, O., Salvi, S., Bernard, C., Leisen, M., Estrade, G., Parseval, P. de, Josse, C., Descamps-Mandine, A., Duan, Z., Gouy, S., Carmo, C. P. do, and Dusséaux, C.: Of zircons and zircons: The tumultuous story of Zr-Hf and REE during cooling of peralkaline granites, Geochim. Cosmochim. Ac., 402, 250–276, https://doi.org/10.1016/j.gca.2025.05.039, 2025.
Murakami, T., Chakoumakos, B. C., Ewing, R. C., Lumpkin, G. R., and Weber, W. J.: Alpha-decay event damage in zircon, Am. Mineral., 76, 1510–1532, 1991.
Nasdala, L., Pidgeon, R., Wolf, D., and Irmer, G.: Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study, Mineral. Petrol., 62, 1, https://doi.org/10.1007/BF01173760, 1998.
Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., and Kober, B.: Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage, Contrib. Mineral. Petrol., 141, 125–144, https://doi.org/10.1007/s004100000235, 2001.
Neves, J. C., Nunes, J. L., and Sahama, T. G.: High hafnium members of the zircon-hafnon series from the granite pegmatites of Zambézia, Mozambique, Contrib. Mineral. Petrol., 48, 73–80, https://doi.org/10.1007/BF00399111, 1974.
Ohnenstetter, D. and Piantone, P.: Géochimie et évolutions des minéraux du groupe des columbo-tantalites et des minéraux du groupe du pyrochlore du sondage GPF-1 Echassières (Allier), Doc. BRGM, 124, 113–163, 1988.
Paul, A. N., Spikings, R. A., Chew, D., and Daly, J. S.: The effect of intra-crystal uranium zonation on apatite U-Pb thermochronology: A combined ID-TIMS and LA-MC-ICP-MS study, Geochim. Cosmochim. Ac., 251, 15–35, https://doi.org/10.1016/j.gca.2019.02.013, 2019.
Paul, A. N., Spikings, R. A., and Gaynor, S. P.: U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites, Chem. Geol., 586, 120604, https://doi.org/10.1016/j.chemgeo.2021.120604, 2021.
Pérez-Soba, C., Villaseca, C., Orejana, D., and Jeffries, T.: Uranium-rich accessory minerals in the peraluminous and perphosphorous Belvís de Monroy pluton (Iberian Variscan belt), Contrib. Mineral. Petrol., 167, 1008, https://doi.org/10.1007/s00410-014-1008-4, 2014.
Pichavant, M.: Experimental crystallization of the Beauvoir granite as a model for the evolution of Variscan rare metal magmas, J. Petrol., 63, 1–28, https://doi.org/10.1093/petrology/egac120, 2022.
Pichavant, M., Kontak, D. J., Herrera, J. V., and Clark, A. H.: The Miocene-Pliocene Macusani Volcanics, SE Peru, Contrib. Mineral. Petrol., 300–324, https://doi.org/10.1007/BF00379741, 1988.
Pin, C.: Sr-Nd isotopic study of igneous and metasedimentary enclaves is some hercynian granitoids from the Massif Central, France. In: Didier, J., Barbarin, B. (Eds.), Enclaves and Granite Petrology (Developments in Petrology), Elsevier, 13, 33–343, 1991.
Popov, D., Spikings, R., Paul, A. N., Ovtcharova, M., Chiaradia, M., Kutzschbach, M., Ulianov, A., O'Sullivan, G., Chew, D., Kouzmanov, K., Badenszki, E., Daly, J. S., and Davies, J. H. F. L.: Excess 40Ar in Alkali Feldspar and 206,207Pb in Apatite Caused by Fluid-Induced Recrystallisation in a Semi-Closed Environment in Proterozoic (Meta)Granites of the Mt Isa Inlier, NE Australia, Geosciences, 14, 358, https://doi.org/10.3390/geosciences14120358, 2024.
Popov, D. V. and Spikings, R. A.: Numerical Modelling of Radiogenic Ingrowth and Diffusion of Pb in Apatite Inclusions with Variable Shape and U-Th Zonation, Minerals, 11, 364, https://doi.org/10.3390/min11040364, 2021.
Popov, D. V., Spikings, R. A., Scaillet, S., O'Sullivan, G., Chew, D., Badenszki, E., Daly, J. S., Razakamanana, T., and Davies, J. H. F. L.: Diffusion and fluid interaction in Itrongay pegmatite (Madagascar): Evidence from in situ 40Ar/39Ar dating of gem-quality alkali feldspar and U Pb dating of protogenetic apatite inclusions, Chem. Geol., 556, 119841, https://doi.org/10.1016/j.chemgeo.2020.119841, 2020.
Raimbault, L. and Burnol, L.: The Richemont rhyolite dyke, Massif central, France: A subvolcanic equivalent of rare-metal granites., Can. Mineral., 36, 265–282, 1998.
Raimbault, L., Cuney, M., Azencott, C., Duthou, J.-L., and Joron, J. L.: Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central, Econ. Geol., 90, 548–576, https://doi.org/10.2113/gsecongeo.90.3.548, 1995.
Ramakrishnan, S., Gokhale, K., and Subbarao, E.: Solid solubility in the system zircon-hafnon, Mater. Res. Bull., 4, 323–327, https://doi.org/10.1016/0025-5408(69)90036-1, 1969.
René, M.: Composition of coexisting zircon and xenotime in rare-metal granites from the Krušné Hory/Erzgebirge Mts. (Saxothuringian Zone, Bohemian Massif), Mineral. Petrol., 108, 551–569, https://doi.org/10.1007/s00710-013-0318-y, 2014.
Ribeiro, H. B., Guedes, K. J., Pinheiro, M. V. B., Greulich-Weber, S., and Krambrock, K.: About the blue and green colours in natural fluorapatite, Phys. Status Solidi C, 2, 720–723, https://doi.org/10.1002/pssc.200460274, 2005.
Rocher, O., Ballouard, C., Richard, A., Monnier, L., Carr, P. A., Laurent, O., Khebabza, Y., Lecomte, A., Bouden, N., Villeneuve, J., Barré, B., Fullenwarth, P., Leisen, M., and Mercadier, J.: Unravelling the magmatic and hydrothermal evolution of rare-metal granites through apatite geochemistry and geochronology: the Variscan Beauvoir granite (French Massif Central), Chem. Geol., 670, 122400, https://doi.org/10.1016/j.chemgeo.2024.122400, 2024.
Romer, R. L. and Lüders, V.: Direct dating of hydrothermal W mineralization: U–Pb age for hübnerite (MnWO4), Sweet Home Mine, Colorado, Geochim. Cosmochim. Ac., 70, 4725–4733, https://doi.org/10.1016/j.gca.2006.07.003, 2006.
Romer, R. L. and Smeds, S.-A.: Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield, Precambrian Res., 67, 141–158, https://doi.org/10.1016/0301-9268(94)90008-6, 1994.
Rossi, Autran, A., Azencott, C., Burnol, L., Cuney, M., Johan, V., Kosakevitch, A., Ohnenstetter, D., Monier, G., Piantone, P., Raimbault, L., and Viallefond, L.: Logs pétrographique et géochimique du granite de Beauvoir dans le sondage “Echassières I”, Minéralogie et géochimie comparées, Géologie Fr., 2–3, 111–135, 1987.
Salje, E., Chrosch, J., and Ewing, R.: Is “metamictization” of zircon a phase transition?, Am. Mineral., 84, 1107–1116, 1999.
Scaillet, B., Pichavant, M., and Roux, J.: Experimental crystallization of leucogranite magmas, J. Petrol., 36, 663–705, https://doi.org/10.1093/petrology/36.3.663, 1995.
Schaltegger, U.: Hydrothermal zircon, Elements, 3, 51–79, https://doi.org/10.2113/gselements.3.1.51, 2007.
Schaltegger, U., Ovtcharova, M., Gaynor, S. P., Schoene, B., Wotzlaw, J.-F., Davies, J. F. H. L., Farina, F., Greber, N. D., Szymanowski, D., and Chelle-Michou, C.: Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U–Pb geochronology, J. Anal. At. Spectrom., 36, 1466–1477, https://doi.org/10.1039/D1JA00116G, 2021.
Schaltegger, U., Ovtcharova, M., and Schoene, B.: High-precision CA-ID-TIMS U-Pb geochronology of zircon: Materials, methods, and interpretations, Methods Appl. Geochronol., 19–52, https://doi.org/10.1016/B978-0-443-18803-9.00012-2, 2024.
Schmitz, M. D. and Schoene, B.: Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using205 Pb-235 U-(233 U)-spiked isotope dilution thermal ionization mass spectrometric data, Geochem. Geophys. Geosys., 8, 2006GC001492, https://doi.org/10.1029/2006GC001492, 2007.
Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A., and Günther, D.: Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy, Earth Planet. Sc. Lett., 355–356, 162–173, https://doi.org/10.1016/j.epsl.2012.08.019, 2012.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Found. Crystallogr., 32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Speer, J. A.: Zircon, Mineral. Soc. Am. Rev. Mineral., 5, 67–112, 1980.
Speer, J. A. and Cooper, B. J.: Crystal structure of synthetic hafnon, HfSiO4, comparison with zircon and the actinide orthosilicates, Am. Mineral., 67, 804–808, 1982.
Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sc. Lett., 26, 207–221, https://doi.org/10.1016/0012-821X(75)90088-6, 1975.
Švecová, E., Èopjaková, R., Losos, Z., Škoda, R., Nasdala, L., and Cícha, J.: Multi-stage evolution of xenotime–(Y) from Písek pegmatites, Czech Republic: an electron probe micro-analysis and Raman spectroscopy study, Mineral. Petrol., 110, 747–765, https://doi.org/10.1007/s00710-016-0442-6, 2016.
Tanabe, K. and Hiraishi, J.: Correction of finite slit width effects on Raman line widths, Spectrochim. Acta Part Mol. Spectrosc., 36, 341–344, https://doi.org/10.1016/0584-8539(80)80141-3, 1980.
Troch, J., Ellis, B. S., Schmitt, A. K., Bouvier, A.-S., and Bachmann, O.: The dark side of zircon: textural, age, oxygen isotopic and trace element evidence of fluid saturation in the subvolcanic reservoir of the Island Park-Mount Jackson Rhyolite, Yellowstone (USA), Contrib. Mineral. Petrol., 173, 54, https://doi.org/10.1007/s00410-018-1481-2, 2018.
Uher, P. and Černý, P.: Zircon in Hercynian granitic pegmatites of the western Carpathians, Slovakia, Geol. Carpathica, 49, 261–270, 1998.
Ushakov, S. V., Gong, W., Yagovkina, M. M., Helean, K. B., Lutze, W., and Ewing, R. C.: Solid solutions of Ce, U and Th in zircon, Ceram. Trans., 93, 357–363, 1999.
Van Lichtervelde, M., Salvi, S., Beziat, D., and Linnen, R. L.: Textural Features and Chemical Evolution in Tantalum Oxides: Magmatic Versus Hydrothermal Origins for Ta Mineralization in the Tanco Lower Pegmatite, Manitoba, Canada, Econ. Geol., 102, 257–276, https://doi.org/10.2113/gsecongeo.102.2.257, 2007.
Van Lichtervelde, M., Melcher, F., and Wirth, R.: Magmatic vs. hydrothermal origins for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada, Am. Mineral., 94, 439–450, https://doi.org/10.2138/am.2009.2952, 2009.
Wang, X., Griffin, W. L., and Chen, J.: Hf contents and Zr/Hf ratios in granitic zircons, Geochem. J., 44, 65–72, https://doi.org/10.2343/geochemj.1.0043, 2010.
Wark, D. A. and Miller, C. F.: Accessory mineral behavior during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton, southeastern California, U.S.A., Chem. Geol., 110, 49–67, https://doi.org/10.1016/0009-2541(93)90247-G, 1993.
Watson, E. B., Wark, D. A., and Thomas, J. B.: Crystallization thermometers for zircon and rutile, Contrib. Mineral. Petrol., 151, 413–433, https://doi.org/10.1007/s00410-006-0068-5, 2006.
Widmann, P., Davies, J. H. F. L., and Schaltegger, U.: Calibrating chemical abrasion: Its effects on zircon crystal structure, chemical composition and U Pb age, Chem. Geol., 511, 1–10, https://doi.org/10.1016/j.chemgeo.2019.02.026, 2019.
Wyllie, P. J. and Tuttle, O. F.: Experimental investigation of silicate systems containing two volatile components. Part 3. The effect of SO3, P2O5, HCl, and Li2O, in addition to H2O, on the Melting Temperatures of Albite and Granite., Am. J. Sci., 262, 930–939, 1964.
Yang, M., Yang, Y.-H., Romer, R. L., Che, X.-D., Wang, R.-C., Wu, F.-Y., Fei, G.-C., Deng, Y., and Wu, T.: Characterization of reference materials for in situ U–Pb dating of columbite group minerals by LA-ICP-MS, J. Anal. At. Spectrom., 38, 1816–1829, https://doi.org/10.1039/D3JA00162H, 2023.
Zaraisky, G. P., Aksyuk, A. M., Devyatova, V. N., Udoratina, O. V., and Chevychelov, V. Yu.: Zr/Hf ratio as an indicator of fractionation of rare-metal granites by the example of the Kukulbei complex, eastern Transbaikalia, Petrology, 16, 710–736, https://doi.org/10.1134/S0869591108070047, 2008.
Zoheir, B., Lehmann, B., Emam, A., Radwan, A., Zhang, R., Bain, W. M., Steele-MacInnis, M., and Nolte, N.: Extreme fractionation and magmatic–hydrothermal transition in the formation of the Abu Dabbab rare-metal granite, Eastern Desert, Egypt, Lithos, 352–353, 105329, https://doi.org/10.1016/j.lithos.2019.105329, 2020.
Short summary
Zircon in highly differentiated systems such as rare-metal granites often exhibits unusual texture and composition that need to be clarified. Based on a detailed study on zircon from the Beauvoir rare-metal granite (France), we show that zircon crystals were partially replaced during the magmatic–hydrothermal transition of these systems, resulting in a significant change in their crystal texture and chemistry.
Zircon in highly differentiated systems such as rare-metal granites often exhibits unusual...