Articles | Volume 37, issue 3
https://doi.org/10.5194/ejm-37-353-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-353-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Moabite, NiFe3+(PO4)O, a new natural oxyphosphate
Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia
Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Apatity 184209, Russia
Mikhail N. Murashko
Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia
Maria G. Krzhizhanovskaya
Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia
Yevgeny Vapnik
Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
Natalia S. Vlasenko
Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia
Oleg S. Vereshchagin
Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia
Dmitrii V. Pankin
Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia
Evgeny A. Vasiliev
Saint Petersburg Mining University, 2, 21st Line, St Petersburg 199106, Russia
Related authors
Oleg S. Vereshchagin, Sergey N. Britvin, Aleksey I. Brusnitsyn, Anastasiia K. Shagova, Elena N. Perova, Igor V. Pekov, Vladimir V. Shilovskikh, Natalia S. Vlasenko, Evgeniya Y. Avdontseva, Natalia V. Platonova, and Vladimir N. Bocharov
Eur. J. Mineral., 37, 829–840, https://doi.org/10.5194/ejm-37-829-2025, https://doi.org/10.5194/ejm-37-829-2025, 2025
Short summary
Short summary
Kayupovaite is a new mineral named in honor of Maria Mikhailovna Kayupova (1921–1980), the mineralogist who studied the Ushkatyn-III deposit (Kazakhstan), the type of locality of the described mineral. Kayupovaite is monoclinic and of space group C2/c. The mineral belongs to the group of modulated manganese phyllosilicates and is structurally related to stilpnomelane. The absence of iron in the mineral is a result of oxidative Mn–Fe fractionation during the formation of braunite-rich Mn ores.
Oleg S. Vereshchagin, Sergey N. Britvin, Dmitrii V. Pankin, Marina S. Zelenskaya, Maria G. Krzhizhanovskaya, Maria A. Kuz'mina, Natalia S. Vlasenko, and Olga V. Frank-Kamenetskaya
Eur. J. Mineral., 37, 63–74, https://doi.org/10.5194/ejm-37-63-2025, https://doi.org/10.5194/ejm-37-63-2025, 2025
Short summary
Short summary
Andreybulakhite, ideally Ni(C2O4) · 2H2O, is a new oxalate mineral, which was discovered on the Kola Peninsula, Russia. Andreybulakhite forms segregations of crystals up to 2 × 1 × 1 mm in size disseminated within the fruiting bodies of Lecanora cf. polytropa lichen, whose colonies overgrow the oxidized surfaces of pyrrhotite–pentlandite–chalcopyrite ore. Andreybulakhite is named in honour of Andrey Glebovich Bulakh of Saint Petersburg State University.
Victor V. Sharygin, Sergey N. Britvin, Felix V. Kaminsky, Richard Wirth, Elena N. Nigmatulina, Grigory A. Yakovlev, Konstantin A. Novoselov, and Mikhail N. Murashko
Eur. J. Mineral., 33, 727–742, https://doi.org/10.5194/ejm-33-727-2021, https://doi.org/10.5194/ejm-33-727-2021, 2021
Short summary
Short summary
Ellinaite, a natural analog of β-CaCr2O4, was discovered at Hatrurim Basin, Israel, and in an inclusion within the super-deep diamond from the Sorriso Creek placer, Brazil. Chemical composition, structural data and physical properties are given for this mineral. It is related to multiple oxides AB2O4 with tunnel structure. This group now includes eight minerals. The overview of ellinaite from all localities suggests different PT–X–fO2 conditions for the mineral and its host rocks.
Oleg S. Vereshchagin, Sergey N. Britvin, Aleksey I. Brusnitsyn, Anastasiia K. Shagova, Elena N. Perova, Igor V. Pekov, Vladimir V. Shilovskikh, Natalia S. Vlasenko, Evgeniya Y. Avdontseva, Natalia V. Platonova, and Vladimir N. Bocharov
Eur. J. Mineral., 37, 829–840, https://doi.org/10.5194/ejm-37-829-2025, https://doi.org/10.5194/ejm-37-829-2025, 2025
Short summary
Short summary
Kayupovaite is a new mineral named in honor of Maria Mikhailovna Kayupova (1921–1980), the mineralogist who studied the Ushkatyn-III deposit (Kazakhstan), the type of locality of the described mineral. Kayupovaite is monoclinic and of space group C2/c. The mineral belongs to the group of modulated manganese phyllosilicates and is structurally related to stilpnomelane. The absence of iron in the mineral is a result of oxidative Mn–Fe fractionation during the formation of braunite-rich Mn ores.
Oleg S. Vereshchagin, Sergey N. Britvin, Dmitrii V. Pankin, Marina S. Zelenskaya, Maria G. Krzhizhanovskaya, Maria A. Kuz'mina, Natalia S. Vlasenko, and Olga V. Frank-Kamenetskaya
Eur. J. Mineral., 37, 63–74, https://doi.org/10.5194/ejm-37-63-2025, https://doi.org/10.5194/ejm-37-63-2025, 2025
Short summary
Short summary
Andreybulakhite, ideally Ni(C2O4) · 2H2O, is a new oxalate mineral, which was discovered on the Kola Peninsula, Russia. Andreybulakhite forms segregations of crystals up to 2 × 1 × 1 mm in size disseminated within the fruiting bodies of Lecanora cf. polytropa lichen, whose colonies overgrow the oxidized surfaces of pyrrhotite–pentlandite–chalcopyrite ore. Andreybulakhite is named in honour of Andrey Glebovich Bulakh of Saint Petersburg State University.
Victor V. Sharygin, Sergey N. Britvin, Felix V. Kaminsky, Richard Wirth, Elena N. Nigmatulina, Grigory A. Yakovlev, Konstantin A. Novoselov, and Mikhail N. Murashko
Eur. J. Mineral., 33, 727–742, https://doi.org/10.5194/ejm-33-727-2021, https://doi.org/10.5194/ejm-33-727-2021, 2021
Short summary
Short summary
Ellinaite, a natural analog of β-CaCr2O4, was discovered at Hatrurim Basin, Israel, and in an inclusion within the super-deep diamond from the Sorriso Creek placer, Brazil. Chemical composition, structural data and physical properties are given for this mineral. It is related to multiple oxides AB2O4 with tunnel structure. This group now includes eight minerals. The overview of ellinaite from all localities suggests different PT–X–fO2 conditions for the mineral and its host rocks.
Biljana Krüger, Evgeny V. Galuskin, Irina O. Galuskina, Hannes Krüger, and Yevgeny Vapnik
Eur. J. Mineral., 33, 341–355, https://doi.org/10.5194/ejm-33-341-2021, https://doi.org/10.5194/ejm-33-341-2021, 2021
Short summary
Short summary
This is the first description of the new mineral kahlenbergite, found in the Hatrurim Basin, Israel, which is a region with unusual pyrometamorphic rocks. Kahlenbergite is chemically and structurally characterized. It is very similar to β-alumina compounds, which are synthetic materials known for their properties as fast ion conductors. Research in the Hatrurim Basin is needed to understand the complex mechanisms that created this mineralogically diverse
hotspotof new minerals.
Evgeniy Nikolaevich Kozlov, Ekaterina Nikolaevna Fomina, Vladimir Nikolaevich Bocharov, Mikhail Yurievich Sidorov, Natalia Sergeevna Vlasenko, and Vladimir Vladimirovich Shilovskikh
Eur. J. Mineral., 33, 283–297, https://doi.org/10.5194/ejm-33-283-2021, https://doi.org/10.5194/ejm-33-283-2021, 2021
Short summary
Short summary
Carbonophosphates (sidorenkite, bonshtedtite, and bradleyite) with the general formula Na3MCO3PO4 (M is Mn, Fe, and Mg) are often found in inclusions of carbonatite and kimberlite minerals. This article presents the results of Raman spectroscopic study and a simple algorithm for diagnosing mineral phases of the carbonophosphate group. This work may be of interest both to researchers of carbonatites and/or kimberlites and to a wide range of specialists in the field of Raman spectroscopy.
Mikhail Rogov, Victoria Ershova, Oleg Vereshchagin, Kseniia Vasileva, Kseniia Mikhailova, and Aleksei Krylov
Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, https://doi.org/10.5194/essd-13-343-2021, 2021
Short summary
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
Cited articles
Abzalov, M. Z., Van Der Heyden, A., Saymeh, A., and Abuqudaira, M.: Geology and metallogeny of Jordanian uranium deposits, Appl. Earth Sci. Trans. Inst. Min., 124, 63–77, https://doi.org/10.1179/1743275815Y.0000000009, 2015.
Aziam, H., Garhi, G., Tamraoui, Y., Ma, L., Wu, T., Xu, G. L., Manoun, B., Alami, J., Amine, K., and Saadoune, I.: Understanding the electrochemical lithiation delithiation process in the anode material for lithium ion batteries NiFeOPO4 C using ex-situ X-ray absorption near edge spectroscopy and in-situ synchrotron X-ray, Electrochim. Ac., 283, 1238–1244, https://doi.org/10.1016/j.electacta.2018.07.038, 2018.
Aziam, H., Youcef, H. B., and Saadoune, I.: Evidence of CoFeOPO4 activity in Na-ion batteries, J. Electroanal. Chem., 874, 114450, https://doi.org/10.1016/j.jelechem.2020.114450, 2020.
Ben-Avraham, Z., Garfunkel, Z., and Lazar, M.: Geology and evolution of the Southern Dead Sea Fault with emphasis on subsurface structure, Ann. Rev. Earth Planet. Sci., 36, 357–387, https://doi.org/10.1146/annurev.earth.36.031207.124201, 2008.
Borodaev, Y. S., Bogdanov, Y. A., and Vyalsov, L. N.: New nickel-free variety of schreibersite Fe3P, Proc. All-Union Mineral. Soc., 111, 682–687, 1982 (in Russian).
Britvin, S. N., Murashko, M. N., Vapnik, Y., Polekhovsky, Y. S., and Krivovichev, S. V.: Earth's Phosphides in Levant and insights into the source of Archean prebiotic phosphorus, Sci. Rep., 5, 8355, https://doi.org/10.1038/srep08355, 2015.
Britvin, S. N., Dolivo-Dobrovolsky, D. V., and Krzhizhanovskaya, M. G.: Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zap. Ross. Mineral. Obshch., 146, 104–107, 2017 (in Russian).
Britvin, S. N., Murashko, M. N., Vapnik, Ye., Polekhovsky, Yu. S., Krivovichev, S. V., Krzhizhanovskaya, M. G., Vereshchagin, O. S., Shilovskikh, V. V., and Vlasenko, N. S.: Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite–transjordanite (hexagonal Fe2P–Ni2P). Am. Mineral., 105, 428–436, https://doi.org/10.2138/am-2020-7275, 2020a.
Britvin, S. N., Murashko, M. N., Vapnik, Ye., Polekhovsky, Yu. S., Krivovichev, S. V., Vereshchagin, O. S., Shilovskikh, V. V., Vlasenko, N. S., and Krzhizhanovskaya, M. G.: Halamishite, Ni5P4, a new terrestrial phosphide in the Ni-P system, Phys. Chem. Miner., 47, 3, https://doi.org/10.1007/s00269-019-01073-7, 2020b.
Britvin, S. N., Murashko, M. N., Vapnik, Ye., Polekhovsky, Yu. S., Krivovichev, S. V., Vereshchagin, O. S., Shilovskikh, V. V., and Krzhizhanovskaya, M. G.: Negevite, the pyrite-type NiP2, a new terrestrial phosphide, Am. Mineral., 105, 422–427, https://doi.org/10.2138/am-2020-7192, 2020c.
Britvin, S. N., Vereshchagin, O. S., Shilovskikh, V. V., Krzhizhanovskaya, M. G., Gorelova, L. A., Vlasenko, N. S., Pakhomova, A. S., Zaitsev, A. N., Zolotarev, A. A., Bykov, M., Lozhkin, M. S., and Nestola, F.: Discovery of terrestrial allabogdanite (Fe, Ni)2P, and the effect of Ni and Mo substitution on the barringerite-allabogdanite high-pressure transition, Am. Mineral., 106, 944–952, https://doi.org/10.2138/am-2021-7621, 2021a.
Britvin, S. N., Krzhizhanovskaya, M. G., Zolotarev, A. A., Gorelova, L. A., Obolonskaya, E. V., Vlasenko, N. S., Shilovskikh, V. V., and Murashko, M. N.: Crystal chemistry of schreibersite, (Fe, Ni)3P, Am. Mineral., 106, 1520–1529, https://doi.org/10.2138/am-2021-7766, 2021b.
Britvin, S. N., Galuskina, I. O., Vlasenko, N. S., Vereshchagin, O. S., Bocharov, V. N., Krzhizhanovskaya, M. G., Shilovskikh, V. V., Galuskin, E. V., Vapnik, Y., and Obolonskaya, E. V.: Keplerite, Ca9(Ca0.5□0.5)Mg(PO4)7, a new meteoritic and terrestrial phosphate isomorphous with merrillite, Ca9NaMg(PO4)7, Am. Mineral, 106, 1917–1927, https://doi.org/10.2138/am-2021-7834, 2021c.
Britvin, S. N., Murashko, M. N., Vapnik, Ye., Vlasenko, N. S., Krzhizhanovskaya, M. G., Vereshchagin, O. S., Bocharov, V. N., and Lozhkin, M. S.: Cyclophosphates, a new class of native phosphorus compounds, and some insights into prebiotic phosphorylation on early Earth, Geology, 49, 382–386, https://doi.org/10.1130/G48203.1, 2021d.
Britvin, S. N., Murashko, M. N., Vapnik, Ye., Zaitsev, A. N., Shilovskikh, V. V., Krzhizhanovskaya, M. G., Gorelova, L. A., Vereshchagin, O. S., Vasilev, E. A., and Vlasenko, N. S.: Orishchinite, a new terrestrial phosphide, the Ni-dominant analogue of allabogdanite, Mineral. Petrol., 116, 369–378, https://doi.org/10.1007/s00710-022-00787-x, 2022a.
Britvin, S. N., Vlasenko, N. S., Aslandukov, A., Aslandukova, A., Dubrovinsky, L., Gorelova, L. A., Krzhizhanovskaya, M. G., Vereshchagin, O. S., Bocharov, V. N., Shelukhina, Yu. S., Lozhkin, M. S., Zaitsev, A. N., and Nestola, F.: Natural cubic perovskite, Ca(Ti,Si,Cr)O3−δ, a versatile potential host for rock-forming and less common elements up to Earth's mantle pressure, Am. Mineral., 107, 1936–1945, https://doi.org/10.2138/am-2022-8186, 2022b.
Britvin, S. N., Murashko, M. N., Krzhizhanovskaya, M. G., Vereshchagin, O. S., Vapnik, Ye., Shilovskikh, V. V., Lozhkin, M. S., and Obolonskaya, E. V.: Nazarovite, Ni12P5, a new terrestrial and meteoritic mineral structurally related to nickelphosphide, Ni3P, Am. Mineral., 107, 1946–1951, https://doi.org/10.2138/am-2022-8219, 2022c.
Britvin, S. N., Murashko, M. N., Vereshchagin, O. S., Vapnik, Ye., Shilovskikh, V. V., Vlasenko, N. S., and Permyakov, V. V.: Expanding the speciation of terrestrial molybdenum: Discovery of polekhovskyite, MoNiP2, and insights into the sources of Mo-phosphides in the Dead Sea Transform area, Am. Mineral., 107, 2201–2211, https://doi.org/10.2138/am-2022-8261, 2022d.
Britvin, S. N., Murashko, M. N., Krzhizhanovskaya, M. G., Vlasenko, N. S., Vereshchagin, O. S., Vapnik, Y., and Bocharov, V. N.: Crocobelonite, CaFe (PO4)2O, a new oxyphosphate mineral, the product of pyrolytic oxidation of natural phosphides, Am. Mineral., 108, 1973–1983, https://doi.org/10.2138/am-2022-8757, 2023a.
Britvin, S. N., Murashko, M. N., Krzhizhanovskaya, M. G., Vapnik, Ye., Vlasenko, N. S., Vereshchagin, O. S., Pankin, D. V., Zaitsev, A. N., and Zolotarev, A. A.: Yakubovichite, CaNi2Fe3+(PO4)3, a new nickel phosphate mineral of non-meteoritic origin, Am. Mineral., 108, 2142–2150, https://doi.org/10.2138/am-2022-8800, 2023b.
Burg, A., Starinsky, A., Bartov, Y., and Kolodny, Y.: Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin, Isr. J. Earth Sci., 40, 107–124, 1992.
Chemseddine, E. and El Hajbi, A.: Application of the alternating spin chain model to the α-Fe2PO5 compound, Ann. Chim. Sci. Matér., 24, 241–244, https://doi.org/10.1016/S0151-9107(99)80050-6, 1999.
Cipriani, C., Mellini, M., Pratesi, G., and Viti, C.: Rodolicoite and grattarolaite, two new phosphate minerals from Santa Barbara Mine, Italy, Eur. J. Mineral., 9, 1101–1106, https://doi.org/10.1127/ejm/9/5/1101, 1997.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A., and Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Cryst., 42, 339–341, https://doi.org/10.1107/S0021889808042726, 2009.
Ech-Chahed, B., Jeannot, F., Malaman, B., and Gleitzer, C.: Préparation etétude d'une variétébasse température de l'oxyphosphate de fer de valence mixte βFe2(PO4)O et de NiCr(PO4)O: Un cas d'échangeélectronique rapide, J. Solid State Chem., 74, 47–59, https://doi.org/10.1016/0022-4596(88)90330-1, 1988.
Elkaïm, E., Berar, J. F., Gleitzer, C., Malaman, B., Ijjaali, M., and Lecomte, C.: Occurrence of a monoclinic distortion in β-Fe2PO5, Acta Crystallogr. B, 52, 428–431, https://doi.org/10.1107/S0108768195014273, 1996.
El Arni, S., Rguig, O., Hadouchi, M., Assani, A., Saadi, M., Lahmar, A., Bouyanfif, H., El Marssi, M., and El Ammari, L.: Synthesis, structural characterization and magnetic properties of CoInOPO4 with the α-Fe2OPO4 structure, J. Solid State Chem., 324, 124111, https://doi.org/10.1016/j.jssc.2023.124111, 2023.
El Khayati, N., Cherkaoui El Moursli, R., Rodríguez-Carvajal, J., André, G., Blanchard, N., Bourée, F., Collin, G., and Roisnel, T.: Crystal and magnetic structures of the oxophosphates MFePO5 (M= Fe, Co, Ni, Cu), Analysis of the magnetic ground state in terms of superexchange interactions, Eur. Phys. J. B, 22, 429–442, https://doi.org/10.1007/s100510170093, 2001.
Finkelstein, I. and Lipschits, O.: The genesis of Moab: a proposal, Levant, 43, 139–152, https://doi.org/10.1179/175638011X13112549593005, 2011.
Fleurance, S., Cuney, M., Malartre, M., and Reyx, J.: Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan, Palaeogeogr. Palaeocl., 369, 201–219, https://doi.org/10.1016/j.palaeo.2012.10.020, 2013.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr. B, 71, 562–578, https://doi.org/10.1107/S2052520615016297, 2015.
Galuskin, E. V., Gfeller, F., Galuskina, I. O., Pakhomova, A., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P., and Murashko, M.: New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex, Part II, Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Mineral. Mag., 79, 1073–1087, https://doi.org/10.1180/minmag.2015.079.5.04, 2015.
Galuskin, E. V., Galuskina, I. O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M., and Dzierżanowski, P.: Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ”old” mineral from the Negev Desert, Israel, and the ternesite–silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant, Eur. J. Mineral., 28, 105–123, https://doi.org/10.1127/ejm/2015/0027-2494, 2016.
Galuskin, E. V., Krüger, B., Galuskina, I. O., Krüger, H., Vapnik, Y., Pauluhn, A., and Olieric, V.: Stracherite, BaCa6(SiO4)2[(PO4)(CO3)]F, the first CO3-bearing intercalated hexagonal antiperovskite from Negev Desert, Israel, Am. Mineral., 103, 1699–1706, https://doi.org/10.2138/am-2018-6493, 2018a.
Galuskin, E. V., Krüger, B., Galuskina, I. O., Krüger, H., Vapnik, Y., Wojdyla, J. A., and Murashko, M.: New mineral with modular structure derived from hatrurite from the pyrometamorphic rocks of the Hatrurim Complex: Ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev Desert, Israel, Minerals, 8, 109, https://doi.org/10.3390/min8030109, 2018b.
Galuskin, E. V., Krüger, B., Galuskina, I. O., Krüger, H., Vapnik, Y., Pauluhn, A., and Olieric, V.: Levantite, KCa3(Al2Si3O11(PO4), a new latiumite-group mineral from the pyrometamorphic rocks of the Hatrurim Basin, Negev Desert, Israel, Mineral. Mag., 83, 713–721, https://doi.org/10.1180/mgm.2019.37, 2019.
Galuskin, E., Galuskina, I., Krüger, B., Krüger, H., Vapnik, Y., Krzątała, A., Środek, D., and Zieliński, G.: Nomenclature and Classification of the Arctite Supergroup, Aravaite, Ba2Ca18(SiO4)6(PO4)3(CO3)F3O, a New Arctite Supergroup Mineral from Negev Desert, Israel, Can. Mineral., 59, 191–209, https://doi.org/10.3749/canmin.2000035, 2021.
Galuskin, E. V., Stachowicz, M., Galuskina, I. O., Wózniak, K., Vapnik, Y., Murashko, M. N., and Zielínski, G.: Deynekoite, Ca9Fe3+(PO4)7 – a new mineral of the merrillite group from phosphide-bearing contact facies of paralava, Hatrurim Complex, Daba-Siwaqa, Jordan, Mineral. Mag., 87, 943–954, https://doi.org/10.1180/mgm.2023.71, 2023a.
Galuskin, E. V., Kusz, J., Galuskina, I. O., Książek, M., Vapnik, Ye., and Zieliński, G.: Discovery of terrestrial andreyivanovite, FeCrP, and the effect of Cr and V substitution on the low-pressure barringerite-allabogdanite transition, Am. Mineral., 108, 1506–1515, https://doi.org/10.2138/am-2022-8647, 2023b.
Galuskin, E. V., Galuskina, I. O., Kusz, J., Książek, M., Vapnik, Y., and Zieliński, G.: Karwowskiite, Ca9(Fe )Mg(PO4)7 – A New Merrillite Group Mineral from Paralava of the Hatrurim Complex, Daba-Siwaqa, Jordan, Minerals, 14, 825, https://doi.org/10.3390/min14080825, 2024.
Gross, S.: The mineralogy of the Hatrurim Formation, Israel, Geol. Surv. Isr. Bull., 70, 1–80, 1977.
Herd, C. D. K., Ma, C., Locock, A. J., Saini, R., and Walton, E. L.: Three new iron-phosphate minerals from the El Ali iron meteorite, Somalia: Elaliite Fe Fe3+(PO4)O8, elkinstantonite Fe4(PO4)2O, and olsenite KFe4(PO4)3, Am. Mineral., 109, 2142–2151, https://doi.org/10.2138/am-2023-9225, 2024.
Ijjaali, M., Malaman, B., Gleitzer, C., Warner, J. K., Hriljac, J. A., and Cheetham, K. A.: Stability, structure refinement, and magnetic properties of β-Fe2(PO4)O, J. Solid State Chem., 86, 195–205, https://doi.org/10.1016/0022-4596(90)90135-K, 1990.
Juroszek, R., Galuskina, I., Krüger, B., Krüger, H., Vapnik, Ye., Kahlenberg, V., and Galuskin, E.: Minerals with a palmierite-type structure. Part I. Mazorite Ba3(PO4)2, a new mineral from the Hatrurim Complex in Israel, Mineral. Mag., 87, 679–689, https://doi.org/10.1180/mgm.2023.57, 2023.
Keller, P., Fontan, F., Velasco-Roldan, F., and Melgarejo i Draper, J. C.: Staněkite, Fe3+(Mn,Fe2+, Mg)(PO4)O: a new phosphate mineral in pegmatites at Karibib (Namibia) and French Pyrenees (France), Eur. J. Mineral., 9, 475–482, https://doi.org/10.1127/ejm/9/3/0475, 1997.
Keller, P., Lissner, F., and Schleid, T.: The crystal structure of staněkite, (Fe3+, Mn2+, Fe2+,Mg)2[PO4]O, from Okatjimukuju, Karibib (Namibia), and its relationship to the polymorphs of synthetic Fe2[PO4]O, Eur. J. Mineral., 18, 113–118, https://doi.org/10.1127/0935-1221/2006/0018-0113, 2006.
Keller, P., Fontan, F., Roldan, F. V., and de Parseval, P.: Joosteite, Mn2+(Mn3+, Fe3+)(PO4)O: a new phosphate mineral from the Helikon II Mine, Karibib, Namibia, N. Jahrb. Mineral. Abh., 183, 197–201, 10.1127/0077-7757/2007/0069, 2007a.
Keller, P., Lissner, F., and Schleid, T.: The crystal structure of joosteite, (Mn2+, Mn3+, Fe3+)2(PO4)O, from the Helikon II Mine, Karibib (Namibia) and its relationship to stanekite, (Fe3+, Mn2+, Fe2+, Mg)2(PO4)O, N. Jahrb. Mineral. Abh., 184, 225–230, https://doi.org/10.1127/0077-7757/2007/0095, 2007b.
Klöck, W., Palme, H., and Tobschall, H. J.: Trace elements in natural metallic iron from Disko Island, Greenland, Contrib. Mineral. Petrol., 93, 273–282, https://doi.org/10.1007/BF00389387, 1986.
Krzątała, A., Skrzyńska, K., Cametti, G., Galuskina, I., Vapnik, Ye., and Galuskin, E.: Fluoralforsite, Ba5(PO4)3F – a new apatite-group mineral from the Hatrurim Basin, Negev Desert, Israel, Mineral. Mag., 87, 866–877, https://doi.org/10.1180/mgm.2023.58, 2023.
Modaressi, A., Courtois, A., Gerardin, R., Malaman, B., and Gleitzer, C.: Fe3PO7, Un cas de coordinence 5 du fer trivalent, etude structurale et magnetique, J. Solid State Chem., 47, 245–255, https://doi.org/10.1016/0022-4596(83)90016-6, 1983.
Murashko, M. N., Britvin, S. N., Vapnik, Ye., Polekhovsky, Y. S., Shilovskikh, V. V., Zaitsev, A. N., and Vereshchagin, O. S.: Nickolayite, FeMoP, a new natural molybdenum phosphide, Mineral. Mag., 86, 749–757, https://doi.org/10.1180/mgm.2022.52, 2022.
Nishanbaev, T. P., Rochev, A. V., and Kotlyarov, V. A.: Iron phosphides from combustion dumps of Chelaybinsk coal basin, Ural. Geol. J., 25, 105–114, 2002 (in Russian).
Novikov, I., Vapnik, Ye., and Safonova, I.: Mud volcano origin of the Mottled Zone, Southern Levant, Geosci. Front., 4, 597–619, https://doi.org/10.1016/j.gsf.2013.02.005, 2013.
Pasek, M. and Block, K.: Lightning-induced reduction of phosphorus oxidation state, Nat. Geosci., 2, 553–556, https://doi.org/10.1038/ngeo580, 2009.
Plyashkevich, A. A., Minyuk, P. S., Subbotnikova, T. V., and Alshevsky, A. V.: Newly formed minerals of the Fe-P-S system in Kolymsky fulgurite, Dokl. Earth Sci., 467, 380–383, https://doi.org/10.1134/S1028334X16040139, 2016.
Savina, E. A., Peretyazhko, I. S., Khromova, E. A., and Glushkova, V. E.: Melted rocks (clinkers and paralavas) of Khamaryn-Khural-Khiid combustion metamorphic complex in Eastern Mongolia: Mineralogy, geochemistry and genesis, Petrology, 28, 431–457, https://doi.org/10.1134/S0869591120050057, 2020.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr. C, 71, 3–8, https://doi.org/10.1107/S2053229614024218, 2015.
Sokol, E. V., Novikov, I. S., Vapnik, Y., and Sharygin, V. V.: Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area), Dokl. Earth Sci., 413, 474–480, https://doi.org/10.1134/S1028334X07030348, 2007.
Sokol, E., Novikov, I., Zateeva, S., Vapnik, Ye., Shagam, R., and Kozmenko, O.: Combustion metamorphism in the Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area, Basin Res., 22, 414–438, https://doi.org/10.1111/j.1365-2117.2010.00462.x, 2010.
Sokol, E. V., Kozmenko, O. A., Kokh, S. N., and Vapnik, Ye.: Gas reservoirs in the Dead Sea area: Evidence from chemistry of combustion metamorphic rocks in Nabi Musa fossil mud volcano, Russ. Geol. Geophys., 53, 745–762, https://doi.org/10.1016/j.rgg.2012.06.003, 2012.
Sokol, E. V., Seryotkin, Y. V., Kokh, S. N., Vapnik, Ye., Nigmatulina, E. N., Goryainov, S. V., Belogub, E. V., and Sharygin, V. V.: Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahigh-temperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel, Mineral. Mag., 79, 583–596, https://doi.org/10.1180/minmag.2015.079.3.05, 2015.
Sokol, E. V., Kokh, S. N., Sharygin, V. V., Danilovsky, V. A., Seryotkin, Yu. V., Liferovich, R., Deviatiiarova, A. S., Nigmatulina, E. N., and Karmanov, N. S.: Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: Implications for storage and partitioning of elements in oil shale clinkering, Minerals, 9, 465, https://doi.org/10.3390/min9080465, 2019.
Ulff-Møller, F.: Formation of native iron in sediment-contaminated magma. I. A case study of the Hanekammen Complex on Disko Island, West Greenland, Geochim. Cosmochim. Ac., 54, 57–70, https://doi.org/10.1016/0016-7037(90)90195-Q, 1990.
Vapnik, Ye., Sharygin, V. V., Sokol, E. V., and Shagam, R.: Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel, Geol. Soc. Am. Rev. Eng. Geol., 18, 133–153, https://doi.org/10.1130/2007.4118(09), 2007.
Vereshchagin, O. S., Khmelnitskaya, M. O., Kamaeva, L. V., Vlasenko, N. S., Pankin, D. V., Bocharov, V. N., and Britvin, S. N.: Telluric iron assemblages as a source of prebiotic phosphorus on the early Earth: Insights from Disko Island, Greenland, Geosci. Front., 15, 101870, https://doi.org/10.1016/j.gsf.2024.101870, 2024a.
Vereshchagin, O. S., Khmelnitskaya, M. O., Murashko, M. N., Vapnik, Ye., Zaitsev, A. N., Vlasenko, N. S., Shilovskikh, V. V., and Britvin, S. N.: Reduced mineral assemblages of superficial origin in west-central Jordan, Mineral. Petrol., 118, 305–319, https://doi.org/10.1007/s00710-024-00851-8, 2024b.
Westrip, S. P.: publCIF: Software for Editing, Validating and Formatting Crystallographic Information Files, J. Appl. Cryst., 43, 920–925, https://doi.org/10.1107/S0021889810022120, 2010.
Wu, Y. Z., Meng, Y. N., Hou, J. G., Cao, S., Gao, Z., Wu, Z., and Sun, L.: Orienting active crystal planes of new class lacunaris Fe2PO5 polyhedrons for robust water oxidation in alkaline and neutral media, Adv. Funct. Mater., 28, 1801397, https://doi.org/10.1002/adfm.201801397, 2018.
Yang, J. S., Bai, W. J., Rong, H., Zhang, Z. M., Xu, Z. Q., Fang, Q. S., Yang, B. G., Li, T. F., Ren, Y. F., Chen, S. Y., Hu, J.-Z., Su, J. F., and Mao, H. K.: Discovery of Fe2P alloy in garnet peridotite from the Chinese continental scientific drilling project (CCSD) main hole, Acta Petrol. Sin., 21, 271–276, 2005.
Short summary
This paper reports a new natural oxyphosphate, the first mineral that crystallizes in the α-Fe2PO5 structure type. It is isotypic to a series of synthetic oxyphosphates with promising magnetic and electrochemical properties.
This paper reports a new natural oxyphosphate, the first mineral that crystallizes in the...