Articles | Volume 37, issue 2
https://doi.org/10.5194/ejm-37-279-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-279-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mineralogy of the human brain: a review
Giulia Pia Servetto
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Torino, Torino, Italy
Carissa Maria Root
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, United States
Reto Gieré
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, United States
Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, United States
Ruggero Vigliaturo
Department of Earth Sciences, University of Torino, Torino, Italy
Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Torino, Torino, Italy
Related authors
Ruggero Vigliaturo, Giulia Pia Servetto, Erica Bittarello, Quentin Wehrung, Jean-François Brilhac, and Gwenaëlle Trouvé
Eur. J. Mineral., 36, 831–843, https://doi.org/10.5194/ejm-36-831-2024, https://doi.org/10.5194/ejm-36-831-2024, 2024
Short summary
Short summary
Technology for producing energy with zero-carbon emissions must be developed in light of the current climate emergency. Using recyclable metal fuels, such as magnesium (Mg), is one practical solution. Metals can therefore be seen as regenerable fuels and new energy vectors since the energy they contain can be transferred and released through metal combustion. To optimize the particle trapping capacity of the investigated system, we successfully characterized magnesium oxide (MgO) crystals.
Ruggero Vigliaturo, Giulia Pia Servetto, Erica Bittarello, Quentin Wehrung, Jean-François Brilhac, and Gwenaëlle Trouvé
Eur. J. Mineral., 36, 831–843, https://doi.org/10.5194/ejm-36-831-2024, https://doi.org/10.5194/ejm-36-831-2024, 2024
Short summary
Short summary
Technology for producing energy with zero-carbon emissions must be developed in light of the current climate emergency. Using recyclable metal fuels, such as magnesium (Mg), is one practical solution. Metals can therefore be seen as regenerable fuels and new energy vectors since the energy they contain can be transferred and released through metal combustion. To optimize the particle trapping capacity of the investigated system, we successfully characterized magnesium oxide (MgO) crystals.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Ruggero Vigliaturo, Sabrina M. Elkassas, Giancarlo Della Ventura, Günther J. Redhammer, Francisco Ruiz-Zepeda, Michael J. O'Shea, Goran Dražić, and Reto Gieré
Eur. J. Mineral., 33, 77–112, https://doi.org/10.5194/ejm-33-77-2021, https://doi.org/10.5194/ejm-33-77-2021, 2021
Related subject area
Environmental and bio-mineralogy
When detection and quantification of mineral fibres in natural raw materials are at their limit – the case of a clay from the Gomsiqe–Puka mining area (Albania)
Thermodynamic and structural variations along the olivenite–libethenite solid solution
Sedimentary pyrite as a trap of organic matter: preliminary results from large-framboid observation
Chapmanite [Fe2Sb(Si2O5)O3(OH)]: thermodynamic properties and formation in low-temperature environments
Alessandro F. Gualtieri, Simona Marchetti Dori, Daniele Malferrari, Tommaso Giovanardi, Riccardo Fantini, Francesco Colombo, Mattia Sisti, Rossella Arletti, Maria Cristina Gamberini, Eleonora Braschi, Andrea Orlando, and Enrico Mugnaioli
Eur. J. Mineral., 36, 749–765, https://doi.org/10.5194/ejm-36-749-2024, https://doi.org/10.5194/ejm-36-749-2024, 2024
Short summary
Short summary
This work deals with a challenging case of a commercial clay from Gomsiqe–Puka (Albania) contaminated by mineral fibres. Detection and quantification of asbestos in this material push the boundaries of current experimental methods. Using TEM, micro-Raman spectroscopy, and EPMA, we identified the presence of asbestos tremolite, along with a rare fibrous variety of diopside. The impact of milling on the detection and quantification of mineral fibres was also evaluated.
Juraj Majzlan, Alexandra Plumhoff, Martin Števko, Gwladys Steciuk, Jakub Plášil, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 35, 157–169, https://doi.org/10.5194/ejm-35-157-2023, https://doi.org/10.5194/ejm-35-157-2023, 2023
Short summary
Short summary
This research was done to understand how toxic elements, such as copper or arsenic, move through the environment. The data presented here can be used to model mobility of such elements and to improve remediation strategies at sites contaminated by mining.
Nicolas Tribovillard, Viviane Bout-Roumazeilles, Marion Delattre, Sandra Ventalon, and Abderrahmane Bensadok
Eur. J. Mineral., 34, 77–83, https://doi.org/10.5194/ejm-34-77-2022, https://doi.org/10.5194/ejm-34-77-2022, 2022
Short summary
Short summary
The studied succession of limestone and marls is enriched in pyrite framboids. The question is, could sulfate-reducing bacteria have been trapped in pyrite sarcophagi induced by their own metabolism? Our analysis reveals the presence of abundant organic matter. The typical morphology of framboids suggests the early fossilization of bacterial colonies by pyrite. If pyrite is a trap for organic molecules, then pyrite could be an underevaluated component of the C cycle.
Juraj Majzlan, Stefan Kiefer, Kristina Lilova, Tamilarasan Subramani, Alexandra Navrotsky, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 33, 357–371, https://doi.org/10.5194/ejm-33-357-2021, https://doi.org/10.5194/ejm-33-357-2021, 2021
Short summary
Short summary
Chapmanite is a seemingly rare mineral, a silicate of the elements iron and antimony. In this work, we evaluated how stable and how soluble this mineral is. The goal was to determine if this mineral can store the toxic element antimony. Our results show that it is possible, but its formation in nature is hindered and slow. Yet, in some special environments, it could store and keep antimony over longer time.
Cited articles
ACEA: Interactive map – Affordability of electric cars: Correlation between market uptake and annual net income, https://www.acea.auto/figure/interactive-map-affordability-of-electric-cars-correlation-between-market-uptake-and-annual-net-income/ (last access: 7 February 2024), 12 April 2023.
Acosta, J. A., Faz, Á., Kalbitz, K., Jansen, B., and Martínez-Martínez, S.: Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment, J. Environ. Monitor., 13, 3087, https://doi.org/10.1039/c1em10364d 2011.
Adachi, K. and Tainosho, Y.: Characterization of heavy metal particles embedded in tire dust, Environ. Int., 30, 1009–1017, https://doi.org/10.1016/j.envint.2004.04.004, 2004.
Aizenberg, J., Hanson, J., Koetzle, T. F., Weiner, S., and Addadi, L.: Control of Macromolecule Distribution within Synthetic and Biogenic Single Calcite Crystals, J. Am. Chem. Soc., 119, 881–886, https://doi.org/10.1021/ja9628821, 1997.
Alfsen, E. M., Størmer, F. C., Njå, A., and Walløe, L.: A proposed tandem mechanism for memory storage in neurons involving magnetite and prions, Medical Hypotheses, 119, 98–101, https://doi.org/10.1016/j.mehy.2018.07.003, 2018.
Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., and Moreno, T.: Spatial and chemical patterns of PM10 in road dust deposited in urban environment, Atmos. Environ., 43, 1650–1659, https://doi.org/10.1016/j.atmosenv.2008.12.009, 2009.
Amor, M., Mathon, F. P., Monteil, C. L., Busigny, V., and Lefevre, C. T.: Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples, Environ. Microbiol., 22, 3611–3632, https://doi.org/10.1111/1462-2920.15098, 2020.
Andruşca, A.: Basal ganglia, KenHub, https://www.kenhub.com/en/library/anatomy/basal-ganglia (last access: 20 June 2024), 2023.
Ansoborlo, E., Guilminette, R. A., Hoover, M. D., Chazel, V., Houpert, P., and Henge-Napoli, M. H.: Application of in vitro dissolution tests to different uranium compounds and comparison with in vivo data, Radiat. Prot. Dosimetry, 79, 33–37, https://doi.org/10.1093/oxfordjournals.rpd.a032421, 1998.
ATSDR (AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY): Toxicological Profile for Chromium, U.S. Department of Health & Human Service, Syracuse, 2000.
ATSDR: Toxicological profile for silica: US US Department of Health and Human services for toxic substances and disease registry, Sep. Chap. 2, HEALTH EFFECTS, https://www.ncbi.nlm.nih.gov/books/NBK592821/ (last access: 6 June 2024), 2019.
Baconnier, S., Lang, S. B., Polomska, M., Hilczer, B., Berkovic, G., and Meshulam, G.: Calcite microcrystals in the pineal gland of the human brain: First physical and chemical studies, Bioelectromagnetics, 23, 488–495, https://doi.org/10.1002/bem.10053, 2002.
Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., and Jones, E.: Alzheimer's disease, Lancet, 377, 1019–1031, https://doi.org/10.1016/s0140-6736(10)61349-9, 2011.
Banaclocha, M. A. M.: Are neuronal activity-associated magnetic fields the physical base for memory?, Medical Hypotheses, 59, 555–559, https://doi.org/10.1016/s0306-9877(02)00237-2, 2002.
Banaclocha, M. A. M., Bókkon, I., and Banaclocha, H. M.: Long-term memory in brain magnetite, Medical Hypotheses, 74, 254–257, https://doi.org/10.1016/j.mehy.2009.09.024, 2010.
Baragaño, D., Gallego, J. L. R., Menéndez-Aguado, J. M., Marina, M. A., and Sierra, C.: As sorption onto Fe-based nanoparticles and recovery from soils by means of wet high intensity magnetic separation, Chem. Eng. J., 408, 127325, https://doi.org/10.1016/j.cej.2020.127325, 2021.
Bazylinski, D. A., Lefèvre, C. T., and Schüler, D.: Magnetotactic bacteria, in: Springer eBooks, 453–494, https://doi.org/10.1007/978-3-642-30141-4_74, 2013.
Beamish, L. A., Osornio-Vargas, A. R., and Wine, E.: Air pollution: An environmental factor contributing to intestinal disease, Journal of Crohn S and Colitis, 5, 279–286, https://doi.org/10.1016/j.crohns.2011.02.017, 2011.
Beard, J. L., Connor, J. R., and Jones, B. C.: Iron in the brain, Nutrition Rev., 51, 157–170, https://doi.org/10.1111/j.1753-4887.1993.tb03096.x, 1993.
Beckwith, P. R., Ellis, J. B., Revitt, D. M., and Oldfield, F.: Heavy metal and magnetic relationships for urban source sediments, Phys. Earth Planet. In., 42, 67–75, https://doi.org/10.1016/s0031-9201(86)80009-7, 1986.
Bellinger, M. R., Wei, J., Hartmann, U., Cadiou, H., Winklhofer, M., and Banks, M. A.: Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing, P. Natl. Acad. Sci. USA, 119, e2108655119, https://doi.org/10.1073/pnas.2108655119, 2022.
Blakemore, R. P.: Magnetotactic bacteria, Annu. Rev. Microbiol., 36, 217–238, https://doi.org/10.1146/annurev.mi.36.100182.001245, 1982.
Boskey, A. L.: Mineralization of bones and teeth, Elements, 3, 385–391, https://doi.org/10.2113/gselements.3.6.385, 2007.
Bouras, C., Giannakopoulos, P., Good, P. F., Hsu, A., Hof, P. R., and Perl, D. P.: A laser microprobe mass analysis of trace elements in brain mineralizations and capillaries in Fahr's disease, Acta Neuropathologica, 92, 351–357, https://doi.org/10.1007/s004010050529, 1996.
Bragg, W. H.: XXX. The structure of the spinel group of crystals, The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 30, 305–315, https://doi.org/10.1080/14786440808635400, 1915.
Brem, F., Tiefenauer, L., Fink, A., Dobson, J., and Hirt, A. M.: A mixture of ferritin and magnetite nanoparticles mimics the magnetic properties of human brain tissue, Phys. Rev. B, 73, 224427, https://doi.org/10.1103/physrevb.73.224427, 2006.
Bruemmer, G. W., Gerth, J., and Tiller, K. G.: Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals, J. Soil Sci., 39, 37–52, https://doi.org/10.1111/j.1365-2389.1988.tb01192.x, 1988.
Burghardt, T. E., Ettinger, K., Köck, B., and Hauzenberger, C.: Glass beads for road markings and other industrial usage: Crystallinity and hazardous elements, Case Studies in Construction Materials, 17, e01213, https://doi.org/10.1016/j.cscm.2022.e01213, 2022.
Bush, A. I.: Copper, zinc, and the metallobiology of Alzheimer disease, Alzheimer Disease and Associated Disorders, 17, 147–150, https://doi.org/10.1097/00002093-200307000-00005, 2003.
Bush, V. J., Moyer, T. P., Batts, K. P., and Parisi, J. E.: Essential and toxic element concentrations in fresh and formalin-fixed human autopsy tissues, Clin Chem., 41, 284–294, 1995.
Butler, R. F. and Banejree, S. K.: Theoritical single-domain size range in 35 magnetite and titanomagnetite, J. Geophys. Res., 80, 4049–4058, 1975.
Byrne, J. M., Klueglein, N., Pearce, C., Rosso, K. M., Appel, E., and Kappler, A.: Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria, Science, 347, 1473–1476, https://doi.org/10.1126/science.aaa4834, 2015.
Caballero-Gómez, H., White, H. K., O'Shea, M. J., Pepino, R., Howarth, M., and Gieré, R.: Spatial Analysis and Lead-Risk Assessment of Philadelphia, USA, Geohealth, 6, e2021GH000519, https://doi.org/10.1029/2021gh000519, 2022.
Cadiou, H. and McNaughton, P. A.: Avian magnetite-based magnetoreception: a physiologist's perspective, J. R. Soc. Interface, 7, S193–S205, https://doi.org/10.1098/rsif.2009.0423.focus, 2010.
Calderón-Garcidueñas, L., Reynoso-Robles, R., Martínez, J. V., Gómez-Maqueo-Chew, A., Pérez-Guillé, B., Mukherjee, P. S., Torres-Jardón, R., Perry, G., and Gónzalez-Maciel, A.: Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease, Environ. Res., 146, 404–417, https://doi.org/10.1016/j.envres.2015.12.031, 2016.
Calderón-Garcidueñas, L., Reynoso-Robles, R., and González-Maciel, A.: Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases, Environ. Res., 176, 108574, https://doi.org/10.1016/j.envres.2019.108574, 2019.
Calderón-Garcidueñas, L., González-Maciel, A., Reynoso-Robles, R., Hammond, J., Kulesza, R., Lachmann, I., Torres-Jardón, R., Mukherjee, P. S., and Maher, B. A.: Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal, Environ. Res., 191, 110139, https://doi.org/10.1016/j.envres.2020.110139, 2020.
Candy, J. M., Klinowski, J., Perry, R. H., Perry, E. K., Fairbairn, A., Oakley, A. E., Carpenter, T. A., Atack, J. R., Blessed, G., and Edwardson, J. A.: ALUMINOSILICATES AND SENILE PLAQUE FORMATION IN ALZHEIMER'S DISEASE, Lancet, 327, 354–356, https://doi.org/10.1016/s0140-6736(86)92319-6, 1986.
Casanova, M. F. and Araque, J. M.: Mineralization of the basal ganglia: implications for neuropsychiatry, pathology and neuroimaging, Psychiatry Research, 121, 59–87, https://doi.org/10.1016/s0165-1781(03)00202-6, 2003.
Castellani, R. J., Moreira, P. I., Liu, G., Dobson, J., Perry, G., Smith, M. A., and Zhu, X.: Iron: the redox-active center of oxidative stress in Alzheimer disease, Neurochem. Res., 32, 1640–1645, https://doi.org/10.1007/s11064-007-9360-7, 2007.
Chang, S. B. R. and Kirschvink, J. L.: Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization, Annu. Rev. Earth Planet. Sc., 17, 169–195, https://doi.org/10.1146/annurev.ea.17.050189.001125, 1989.
Chaparro, M. A. E., Posada, D. B., Chaparro, M. A. E., Molinari, D., Chiavarino, L., Alba, B., Marié, D. C., Natal, M., Böhnel, H. N., and Vaira, M.: Urban and suburban's airborne magnetic particles accumulated on Tillandsia capillaris, Sci. Total Environ., 907, 167890, https://doi.org/10.1016/j.scitotenv.2023.167890, 2024.
Chasteen, N. D. and Harrison, P. M.: Mineralization in Ferritin: an efficient means of iron storage, J. Struct. Biol., 126, 182–194, https://doi.org/10.1006/jsbi.1999.4118, 1999.
Chen, M., Zhang, H., Liu, W., and Zhang, W.: The Global Pattern of Urbanization and Economic Growth: Evidence from the Last Three Decades, PloS One, 9, e103799, https://doi.org/10.1371/journal.pone.0103799, 2014.
Cheng, K. H., Cheng, Y. S., Yeh, H. C., Guilmette, R. A., Simpson, S. Q., Yang, S. Q., and Swift, D. L.: In Vivo Measurements of Nasal Airway Dimensions and Ultrafine Aerosol Depositing in Human Nasal and Oral Airways, J. Aerosol Sci., 27, 785–801, 1993.
Christiansen, M. G., Senko, A. W., and Anikeeva, P.: Magnetic Strategies for Nervous system Control, Annu. Rev. Neurosci., 42, 271–293, https://doi.org/10.1146/annurev-neuro-070918-050241, 2019.
Clark, D. L., Boutros, N. N., and Mendez, M. F.: The brain and behavior, https://doi.org/10.1017/cbo9780511776915, 2010.
Collingwood, J. F., Chong, R. K. K., Kasama, T., Cervera-Gontard, L., Dunin-Borkowski, R. E., Perry, G., Pósfai, M., Siedlak, S. L., Simpson, E. T., Smith, M. A., and Dobson, J.: Three-Dimensional Tomographic Imaging and Characterization of Iron Compounds within Alzheimer's Plaque Core Material, Journal of Alzheimer's Disease, 14, 235–245, https://doi.org/10.3233/jad-2008-14211, 2008.
Connor, J. R., Menzies, S. L., Burdo, J. R., and Boyer, P. J.: Iron and iron management proteins in neurobiology, Pediatric Neurology, 25, 118–129, https://doi.org/10.1016/s0887-8994(01)00303-4, 2001.
Connor-Stroud, F. R., Hopkins, W. D., Preuss, T. M., Johnson, Z., Zhang, X., and Sharma, P.: Extensive Vascular Mineralization in the Brain of a Chimpanzee (Pan troglodytes), Comparative Medicine, American Association for Laboratory Animal Science, PMCID: PMC4067587, 2014.
Correale, J. and Villa, A.: Cellular elements of the Blood-Brain barrier, Neurochem. Res., 34, 2067–2077, https://doi.org/10.1007/s11064-009-0081-y, 2009.
Coste, B., Mathur, J., Schmidt, M., Earley, T. J., Ranade, S., Petrus, M. J., Dubin, A. E., and Patapoutian, A.: PIEzo1 and PIEzo2 are essential components of distinct mechanically activated cation channels, Science, 330, 55–60, https://doi.org/10.1126/science.1193270, 2010.
Cumings, J. N.: THE COPPER AND IRON CONTENT OF BRAIN AND LIVER IN THE NORMAL AND IN HEPATO-LENTICULAR DEGENERATION, Brain, 71, 410–415, https://doi.org/10.1093/brain/71.4.410, 1948.
De Brouwere, K., Buekers, J., Cornelis, C., Schlekat, C. E., and Oller, A. R.: Assessment of indirect human exposure to environmental sources of nickel: Oral exposure and risk characterization for systemic effects, Sci. Total Environ., 419, 25–36, https://doi.org/10.1016/j.scitotenv.2011.12.049, 2012.
Delmas, P., Hao, J., and Rodat-Despoix, L.: Molecular mechanisms of mechanotransduction in mammalian sensory neurons, Nat. Rev., Neuroscience, 12, 139–153, https://doi.org/10.1038/nrn2993, 2011.
Diaz-Ricci, J. C. and Kirschvink, J. L.: Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): a comparison of theory with magnetosome observations, J. Geophys. Res., 97, 17309–17315, 1992.
Dietrich, M., Huling, J., and Krekeler, M. P. S.: Metal pollution investigation of Goldman Park, Middletown Ohio: Evidence for steel and coal pollution in a high child use setting, Sci. Total Environ., 618, 1350–1362, https://doi.org/10.1016/j.scitotenv.2017.09.246, 2018.
Dietrich, M., Krekeler, M. P. S., Kousehlar, M., and Widom, E.: Quantification of Pb pollution sources in complex urban environments through a multi-source isotope mixing model based on Pb isotopes in lichens and road sediment, Environ. Pollut., 288, 117815, https://doi.org/10.1016/j.envpol.2021.117815, 2021.
Dietrich, M., O'Shea, M. J., Gieré, R., and Krekeler, M. P. S.: Road sediment, an underutilized material in environmental science research: A review of perspectives on United States studies with international context, J. Hazard. Mater., 432, 128604, https://doi.org/10.1016/j.jhazmat.2022.128604, 2022.
Dobson, J.: Nanoscale biogenic iron oxides and neurodegenerative disease, FEBS Lett., 496, 1–5, https://doi.org/10.1016/s0014-5793(01)02386-9, 2001.
Dobson, J. and Grassi, P.: Magnetic properties of human hippocampal tissue – Evaluation of artefact and contamination sources, Brain Res. Bull., 39, 255–259, https://doi.org/10.1016/0361-9230(95)02132-9, 1996.
Donaldson, K., Stone, V., Seaton, A., and MacNee, W.: Ambient particle inhalation and the cardiovascular system: potential mechanisms, Environ. Health Persp., 109, 523–527, https://doi.org/10.1289/ehp.01109s4523, 2001.
Dotiwala, A. K., McCausland, C., and Samra, N. S.: Anatomy, head and neck: blood brain barrier, StatPearls – NCBI Bookshelf, https://www.ncbi.nlm.nih.gov/books/NBK519556/ (last access: 16 April 2025), 2023.
Duer, M. J., Friščić, T., Murray, R. C., Reid, D. G., and Wise, E. R.: The Mineral Phase of Calcified Cartilage: Its Molecular Structure and Interface with the Organic Matrix, Biophys. J., 96, 3372–3378, https://doi.org/10.1016/j.bpj.2008.12.3954, 2009.
Duflou, H., Maenhaut, W., and De Reuck, J.: Regional distribution of potassium, calcium, and six trace elements in normal human brain, Neurochem. Res., 14, 1099–1112, https://doi.org/10.1007/bf00965616, 1989.
Edelman, N. B., Fritz, T., Nimpf, S., Pichler, P., Lauwers, M., Hickman, R. W., Papadaki-Anastasopoulou, A., Ushakova, L., Heuser, T., Resch, G. P., Saunders, M., Shaw, J. A., and Keays, D. A.: No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening, P. Natl. Acad. Sci. USA, 112, 262–267, https://doi.org/10.1073/pnas.1407915112, 2014.
EERE: FOTW #1305, 28 August 2023: Growth in the Number of Vehicles in the U.S. Outpaced Growth in Population and Licensed Drivers from 1960 to 2021, https://www.energy.gov/eere/vehicles/articles/fotw-1305-august-28-2023-growth-number-vehicles-us-outpaced-growth (last access: 6 June 2024), 2023.
Eggleton, R. A. and Fitzpatrick, R. W.: New data and a revised structural model for ferrihydrite, Clays Clay Miner., 36, 111–124, https://doi.org/10.1346/ccmn.1988.0360203, 1988.
EPA: IRIS Toxicological Review of Chromium VI (1998 Final), U.S. Environmental Protection Agency, Washington, DC, 1998.
European Commission, EC: Opinion of the scientific committee on food on the risks to human health of polycyclic aromatic hydrocarbons in food, SCF/CS/CNTM/PAH/29 Final, 4 December 2002.
Eurostat: Database – Transport, 2023, https://ec.europa.eu/eurostat/en/web/products-eurostat-news/w/ddn-20230530-1 (last access: 20 February 2025), 2023.
Everett, J., Céspedes, E., Shelford, L. R., Exley, C., Collingwood, J. F., Dobson, J., Van Der Laan, G., Jenkins, C. A., Arenholz, E., and Telling, N. D.: Evidence of Redox-Active iron formation following aggregation of ferrihydrite and the Alzheimer's disease peptide β-Amyloid, Inorganic Chemistry, 53, 2803–2809, https://doi.org/10.1021/ic402406g, 2014a.
Everett, J., Céspedes, E., Shelford, L. R., Exley, C., Collingwood, J. F., Dobson, J., Van Der Laan, G., Jenkins, C. A., Arenholz, E., and Telling, N. D.: Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer's disease peptide β-amyloid (1–42), J. R. Soc. Interface, 11, 20140165, https://doi.org/10.1098/rsif.2014.0165, 2014b.
Everett, J., Collingwood, J. F., Tjendana-Tjhin, V., Brooks, J., Lermyte, F., Plascencia-Villa, G., Hands-Portman, I., Dobson, J., Perry, G., and Telling, N. D.: Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects, Nanoscale, 10, 11782–11796, https://doi.org/10.1039/c7nr06794a, 2018.
Everett, J., Lermyte, F., Brooks, J., Tjendana-Tjhin, V., Plascencia-Villa, G., Hands-Portman, I., Donnelly, J. M., Billimoria, K., Perry, G., Zhu, X., Sadler, P. J., O'Connor, P. B., Collingwood, J. F., and Telling, N. D.: Biogenic metallic elements in the human brain?, Sci. Adv., 7, https://doi.org/10.1126/sciadv.abf6707, 2021.
Exley, C. and House, E. R.: Aluminium in the human brain, Monatshefte Für Chemie, 142, 357–363, https://doi.org/10.1007/s00706-010-0417-y, 2010.
Exley, C. and Mold, M. J.: Imaging of aluminium and amyloid β in neurodegenerative disease, Heliyon, 6, e03839, https://doi.org/10.1016/j.heliyon.2020.e03839, 2020.
Exley, C., Mamutse, G., Korchazhkina, O., Pye, E., Strekopytov, S., Polwart, A., and Hawkins, C.: Elevated urinary excretion of aluminium and iron in multiple sclerosis, Multiple Sclerosis, 12, 533–540, https://doi.org/10.1177/1352458506071323, 2006.
Faivre, D. and Schüler, D.: Magnetotactic bacteria and magnetosomes, Chem. Rev., 108, 4875–4898, https://doi.org/10.1021/cr078258w, 2008.
Fang, W., Yang, Y., and Xu, Z.: PM10 and PM2.5 and health risk assessment for heavy metals in a typical factory for Cathode Ray tube television recycling, Environ. Sci. Technol., 47, 12469–12476, https://doi.org/10.1021/es4026613, 2013.
Farooqui, A. A.: Neurochemical aspects of neurological disorders, Elsevier eBooks, 237–256, https://doi.org/10.1016/B978-0-12-803603-7.00016-1, 2016.
Fatima, R., Akhtar, K., Hossain, M. M., and Ahmad, R.: Chromium oxide nanoparticle–induced biochemical and histopathological alterations in the kidneys and brain of Wistar rats, Toxicology and Industrial Health, 33, 911–921, https://doi.org/10.1177/0748233717735266, 2017.
Feigin, V. L., Nichols, E., Alam, T., et al.: Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet Neurology, 18, 459–480, https://doi.org/10.1016/s1474-4422(18)30499-x, 2019.
Fenger, J.: Urban air quality, Atmos. Environ., 33, 4877–4900, https://doi.org/10.1016/s1352-2310(99)00290-3, 1999.
Finch, G.: Clearance, translocation, and excretion of beryllium following acute inhalation of beryllium oxide by beagle dogs*1, Fund. Appl. Toxicol., 15, 231–241, https://doi.org/10.1016/0272-0590(90)90050-t, 1990.
Firlar, E., Perez-Gonzalez, T., Olszewska, A., Faivre, D., and Prozorov, T.: Following iron speciation in the early stages of magnetite magnetosome biomineralization, Journal of Materials Research/Pratt's Guide to Venture Capital Sources, 31, 547–555, https://doi.org/10.1557/jmr.2016.33, 2016.
Fischl, B. and Dale, A. M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images, P. Natl. Acad. Sci. USA, 97, 11050–11055, https://doi.org/10.1073/pnas.200033797, 2000.
Fleet, M. E.: The structure of magnetite, Acta Crystallogr. B, 37, 917–920, https://doi.org/10.1107/s0567740881004597, 1981.
Francis, E. A., Xiao, H., Teng, L. H., and Heinrich, V.: Mechanisms of frustrated phagocytic spreading of human neutrophils on antibody-coated surfaces, Biophys. J., 121, 4714–4728, https://doi.org/10.1016/j.bpj.2022.10.016, 2022.
Frankel, R. B., Blakemore, R. P., and Wolfe, R. S.: Magnetite in freshwater magnetotactic bacteria, Science, 203, 1355–1356, https://doi.org/10.1126/science.203.4387.1355, 1979.
Freundlich, M.: Infant formula as a cause of aluminium toxicity in neonatal uraemiA, Lancet, 326, 527–529, https://doi.org/10.1016/s0140-6736(85)90463-5, 1985.
Friedman, J. H. and Chou, K. L.: Mood, Emotion, and Thought, Textbook of Clinical Neurology, edited by: Goetz, C. G., 3rd edn., Chap. 3, ISBN 978-1-4160-3618-0, 2007.
Friedman, A., Arosio, P., Finazzi, D., Koziorowski, D., and Galazka-Friedman, J.: Ferritin as an important player in neurodegeneration, Parkinsonism & Related Disorders (Online)/Parkinsonism & Related Disorders, 17, 423–430, https://doi.org/10.1016/j.parkreldis.2011.03.016, 2011.
Fukuda, Y., Okamura, Y., Takeyama, H., and Matsunaga, T.: Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed, FEBS Lett., 580, 801–812, https://doi.org/10.1016/j.febslet.2006.01.003, 2006.
Fussell, J. C., Franklin, M., Green, D. C., Gustafsson, M., Harrison, R. M., Hicks, W., Kelly, F. J., Kishta, F., Miller, M. R., Mudway, I. S., Oroumiyeh, F., Selley, L., Wang, M., and Zhu, Y.: A review of Road Traffic-Derived Non-Exhaust Particles: emissions, physicochemical characteristics, health risks, and mitigation measures, Environ. Sci. Technol., 56, 6813–6835, https://doi.org/10.1021/acs.est.2c01072, 2022.
Gálvez, N., Fernández, B., Sánchez, P., Cuesta, R., Ceolín, M., Clemente-León, M., Trasobares, S., López-Haro, M., Calvino, J. J., Stéphan, O., and Domínguez-Vera, J. M.: Comparative Structural and Chemical Studies of Ferritin Cores with Gradual Removal of their Iron Contents, J. Am. Chem. Soc., 130, 8062–8068, https://doi.org/10.1021/ja800492z, 2008.
Gautam, P., Blaha, U., and Appel, E.: Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal, Atmos. Environ., 39, 2201–2211, https://doi.org/10.1016/j.atmosenv.2005.01.006, 2005.
Gawdi, R., Shumway, K. R., and Emmady, P. D.: Physiology, Blood Brain Barrier, in: StatPearls, Treasure Island (FL), StatPearls, PMID: 32491653, 2023.
Gellerstedt, N.: Our knowledge of cerebral changes in normal involution of old age, Uppsala Läk.-Fören, Förh., 38, 194–408, 1933.
Gieré, R. and Dietze, V.: Tire-Abrasion particles in the environment, Adv. Polymer Sci., 71–101, https://doi.org/10.1007/12_2022_118, 2022.
Gieré, R. and Querol, X.: Solid particulate matter in the atmosphere, Elements, 6, 215–222, https://doi.org/10.2113/gselements.6.4.215, 2010.
Gieré, R., Carleton, L. E., and Lumpkin, G. R.: Micro- and nanochemistry of fly ash from a coal-fired power plant, Am. Mineral., 88, 1853–1865, https://doi.org/10.2138/am-2003-11-1228, 2003.
Gieré, R., Edwards, J., Dietze, V., Stoček, R., and Heinrich, G: Vehicle tyre particles in the environment – Foresight Brief No. 034, August 2024, https://doi.org/10.59117/20.500.11822/46239, 2024.
Gilles, C., Bonville, P., Rakoto, H., Broto, J. M., Wong, K. K. W., and Mann, S.: Magnetic hysteresis and superantiferromagnetism in ferritin nanoparticles, J. Magn. Magn. Mater., 241, 430–440, https://doi.org/10.1016/s0304-8853(01)00461-9, 2002.
Gonet, T. and Maher, B. A.: Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A review, Environ. Sci. Technol., 53, 9970–9991, https://doi.org/10.1021/acs.est.9b01505, 2019.
Goodman, L.: Alzheimer's disease, J. Nerv. Ment. Dis., 118, 97–130, https://doi.org/10.1097/00005053-195308000-00001, 1953.
Gorby, Y. A., Beveridge, T. J., and Blakemore, R. P.: Characterization of the bacterial magnetosome membrane, J. Bacteriol., 170, 834–841, https://doi.org/10.1128/jb.170.2.834-841.1988, 1988.
Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., Brown, G. G., and Richardson, R. J.: Occupational exposures to metals as risk factors for Parkinson's disease, Neurology, 48, 650–658, https://doi.org/10.1212/wnl.48.3.650, 1997.
Gorobets, O., Gorobets, S., and Koralewski, M.: Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans, Int. J. Nanomed., 12, 4371–4395, https://doi.org/10.2147/ijn.s130565, 2017.
Gorobets, O. Yu., Gorobets, S. V., and Gorobets, Yu. I.: Biogenic Magnetic Nanoparticles: Biomineralization in Prokaryotes and Eukaryotes, Dekker Encyclopedia of Nanoscience and Nanotechnology, 300–308, ISBN 9781439891346, 2014.
Gorobets, S. V., Yu, G. O., Demianenko, I. V., and Nikolaenko, R. N.: Self-organization of magnetite nanoparticles in providing Saccharomyces cerevisiae Yeasts with magnetic properties, J. Magn. Magn. Mater., 337–338, 53–57, https://doi.org/10.1016/j.jmmm.2013.01.004, 2013.
Gould, J. L., Kirschvink, J. L., and Deffeyes, K. S.: Bees have magnetic remanence, Science, 201, 1026–1028, https://doi.org/10.1126/science.201.4360.1026, 1978.
Goychuk, I.: Sensing Magnetic Fields with Magnetosensitive Ion Channels, Sensors, 18, 728, https://doi.org/10.3390/s18030728, 2018.
Gray, H. and Lewis, W. H.: Anatomy of the Human Body, Philadelphia and New York, Lea & Febiger, Retrieved from the Library of Congress, https://lccn.loc.gov/18017427 (last access: 22 April 2025), 1918.
Grobéty, B., Giere, R., Dietze, V., and Stille, P.: Airborne particles in the urban environment, Elements, 6, 229–234, https://doi.org/10.2113/gselements.6.4.229, 2010.
Hachtel, J. A., Idrobo, J. C., and Chi, M.: Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope, Adv. Struct. Chem. Imag., 4, 10, https://doi.org/10.1186/s40679-018-0059-4, 2018.
Hadfield, G.: Siderosis of the globus pallidus: Its relation to bilateral necrosis, J. Pathol., 32, 135–148, https://doi.org/10.1002/path.1700320116, 1929.
Hallgren, B. and Sourander, P.: the effect of age on the non-haemin iron in the human brain, J. Neurochem., 3, 41–51, https://doi.org/10.1111/j.1471-4159.1958.tb12607.x, 1958.
Halsall, C. J., Maher, B. A., Karloukovski, V. V., Shah, P., and Watkins, S. J.: A novel approach to investigating indoor/outdoor pollution links: Combined magnetic and PAH measurements, Atmos. Environ., 42, 8902–8909, https://doi.org/10.1016/j.atmosenv.2008.09.001, 2008.
Hammond, J., Maher, B. A., Ahmed, I. a. M., and Allsop, D.: Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer's disease, from the UK, Sci. Rep., 11, 9363, https://doi.org/10.1038/s41598-021-88725-3, 2021.
Hanzlik, M., Heunemann, C., Holtkamp-Rötzler, E., Winklhofer, M., Petersen, N., and Fleissner, G.: Superparamagnetic magnetite in the upper beak tissue of homing pigeons, BioMetals, 13, 325–331, https://doi.org/10.1023/a:1009214526685, 2000.
Harrison, P. M. and Arosio, P.: The ferritins: molecular properties, iron storage function and cellular regulation, Biochimica Et Biophysica Acta, Bioenergetics, 1275, 161–203, https://doi.org/10.1016/0005-2728(96)00022-9, 1996.
Hautot, D., Pankhurst, Q. A., Khan, N., and Dobson, J.: Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer's disease brain tissue, Proceedings – Royal Society. Biological Sciences/Proceedings – Royal Society. Biological Sciences, 270, S62–S64, https://doi.org/10.1098/rsbl.2003.0012, 2003.
Honarpisheh, M., Foresto-Neto, O., Desai, J., Steiger, S., Gómez, L. A., Popper, B., Boor, P., Anders, H.-J., and Mulay, S. R.: Phagocytosis of environmental or metabolic crystalline particles induces cytotoxicity by triggering necroptosis across a broad range of particle size and shape, Sci. Rep., 7, 15523, https://doi.org/10.1038/s41598-017-15804-9, 2017.
Huber, D. L.: Synthesis, properties, and applications of iron nanoparticles, Small, 1, 482–501, https://doi.org/10.1002/smll.200500006, 2005.
Hughes, S., McBain, S., Dobson, J., and Haj, A. J. E.: Selective activation of mechanosensitive ion channels using magnetic particles, J. R. Soc. Interface, 5, 855–863, https://doi.org/10.1098/rsif.2007.1274, 2007.
Hunter, D. D. and Dey, R. D.: Identification and neuropeptide content of trigeminal neurons innervating the rat nasal epithelium, Neuroscience, 83, 591–599, https://doi.org/10.1016/s0306-4522(97)00324-2, 1998.
Hunter, D. D. and Undem, B. J.: Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea, Am. J. Resp. Crit. Care, 159, 1943–1948, https://doi.org/10.1164/ajrccm.159.6.9808078, 1999.
Hussain, S., Hamid, M. K. A., Lazim, A. R. M., and Bakar, A. R. A.: Brake Wear Particle size and shape analysis of Non-Asbestos Organic (NAO) and Semi Metallic brake pad, Jurnal Teknologi/Jurnal Teknologi, 71, https://doi.org/10.11113/jt.v71.3731, 2014.
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., and Beeregowda, K. N.: Toxicity, mechanism and health effects of some heavy metals, Interdisciplinary Toxicology, 7, 60–72, https://doi.org/10.2478/intox-2014-0009, 2014.
Jang, G. G., Jacobs, C. B., Gresback, R. G., Ivanov, I. N., Meyer, H. M., Kidder, M., Joshi, P. C., Jellison, G. E., Phelps, T. J., Graham, D. E., and Moon, J. W.: Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules, J. Mater. Chem. C, 3, 644–650, https://doi.org/10.1039/c4tc02356k, 2015.
Järup, L.: Hazards of heavy metal contamination, Brit. Med. Bull., 68, 167–182, https://doi.org/10.1093/bmb/ldg032, 2003.
Jones, L. K.: Anatomy and Brain Development, American Counseling Association, 1–26, https://doi.org/10.1002/9781119375487.ch1, 2017.
Kampa, M. and Castanas, E.: Human health effects of air pollution, Environ. Pollut., 151, 362–367, https://doi.org/10.1016/j.envpol.2007.06.012, 2007.
Kanapilly, G. M., Wolff, R. K., DeNee, P. B., and McClellan, R. O.: Generation, characterization and inhalation deposition of ultrafine aggregate aerosols, Ann. Occup. Hyg., 26, 77–91, 1982.
Kaonga, C. C., Kosamu, I. B. M., and Utembe, W. R.: A review of metal levels in urban dust, their methods of determination, and risk assessment, Atmosphere, 12, 891, https://doi.org/10.3390/atmos12070891, 2021.
Kelepertzis, E., Argyraki, A., Botsou, F., Aidona, E., Szabó, Á., and Szabó, C.: Tracking the occurrence of anthropogenic magnetic particles and potentially toxic elements (PTEs) in house dust using magnetic and geochemical analyses, Environ. Pollut., 245, 909–920, https://doi.org/10.1016/j.envpol.2018.11.072, 2019.
Kell, D. B.: Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases, BMC Medical Genomics, 2, 2, https://doi.org/10.1186/1755-8794-2-2, 2009.
Kirschvink, J. L.: Comment on “Constraints on biological effects of weak extremely-low-frequency electromagnetic fields”, Physical Review. A, Atomic, Molecular, and Optical Physics/Physical Review, a, Atomic, Molecular, and Optical Physics, 46, 2178–2184, https://doi.org/10.1103/physreva.46.2178, 1992.
Kirschvink, J. L. and Gould, J. L.: Biogenic magnetite as a basis for magnetic field detection in animals, Biosystems, 13, 181–201, https://doi.org/10.1016/0303-2647(81)90060-5, 1981.
Kirschvink, J. L. and Hagadorn, J. W.: A Grand Unified Theory of Biomineralization, in: Biomineralization. Progress in Biology, Molecular Biology and Application, edited by: Bäuerlein, E., 139–150, Wiley-VCH Verlag, Weinheim, Germany, 2000.
Kirschvink, J. L., Jones, D. S., and MacFadden, B. J.: Magnetite biomineralization and magnetoreception in organisms, Springer Nature Link, https://doi.org/10.1007/978-1-4613-0313-8, 1985.
Kirschvink, J. L., Kobayashi-Kirschvink, A., and Woodford, B. J.: Magnetite biomineralization in the human brain, P. Natl. Acad. Sci. USA, 89, 7683–7687, https://doi.org/10.1073/pnas.89.16.7683, 1992.
Könczöl, M., Ebeling, S., Goldenberg, E., Treude, F., Gminski, R., Gieré, R., Grobéty, B., Rothen-Rutishauser, B., Merfort, I., and Mersch-Sundermann, V.: Cytotoxicity and genotoxicity of Size-Fractionated iron oxide (Magnetite) in a549 human lung epithelial cells: role of ROS, JNK, and NF-KB, Chem. Res. Toxicol., 24, 1460–1475, https://doi.org/10.1021/tx200051s, 2011.
Könczöl, M., Goldenberg, E., Ebeling, S., Schäfer, B., Garcia-Käufer, M., Gminski, R., Grobéty, B., Rothen-Rutishauser, B., Merfort, I., Gieré, R., and Mersch-Sundermann, V.: Cellular uptake and toxic effects of fine and ultrafine Metal-Sulfate particles in human A549 lung epithelial cells, Chem. Res. Toxicol., 25, 2687–2703, https://doi.org/10.1021/tx300333z, 2012.
Kozlenko, D. P., Dubrovinsky, L., Kichanov, S. E., Lukin, E. V., Cerantola, V., Chumakov, A. I., and Savenko, B. N.: Magnetic and electronic properties of magnetite across the high pressure anomaly, Sci. Rep., 9, 4464, https://doi.org/10.1038/s41598-019-41184-3, 2019.
Kreuter, J., Shamenkov, D., Petrov, V., Ramge, P., Cychutek, K., Koch-Brandt, C., and Alyautdin, R.: Apolipoprotein-mediated transport of nanoparticle-bound drugs across the Blood-Brain barrier, J. Drug Targeting, 10, 317–325, https://doi.org/10.1080/10611860290031877, 2002.
Kreutzer, J. S., DeLuca, J., and Caplan, B.: Encyclopedia of Clinical Neuropsychology, https://doi.org/10.1007/978-0-387-79948-3, 2011.
Kreyling, W. G., Blanchard, J. D., Godleski, J. J., Haeussermann, S., Heyder, J., Hutzler, P., Schulz, H., Sweeney, T. D., Takenaka, S., and Ziesenis, A.: Anatomic localization of 24- and 96-h particle retention in canine airways, J. Appl. Physiol., 87, 269–284, https://doi.org/10.1152/jappl.1999.87.1.269, 1999.
Krichen, S., Liu, L., and Sharma, P.: Biological cell as a soft magnetoelectric material: Elucidating the physical mechanisms underpinning the detection of magnetic fields by animals, Phys. Rev. E, 96, 042404, https://doi.org/10.1103/physreve.96.042404, 2017.
Kruer, M. C.: The Neuropathology of Neurodegeneration with Brain Iron Accumulation, in: International review of neurobiology, 165–194, https://doi.org/10.1016/b978-0-12-410502-7.00009-0, 2013.
Kwon, H.-S., Ryu, M. H., and Carlsten, C.: Ultrafine particles: unique physicochemical properties relevant to health and disease, Exp. Molec. Med., 52, 318–328, https://doi.org/10.1038/s12276-020-0405-1, 2020.
Labarta, A., Batlle, X., and Iglesias, Ò.: From finite size and surface effects to glassy behaviour in ferrimagnetic nanoparticles, in: Springer eBooks, 105–140, https://doi.org/10.1007/0-387-26018-8_4, 2005.
Lai, C.-Y., Lai, C.-H., Chuang, H.-C., Pan, C.-H., Yen, C.-C., Lin, W.-Y., Chen, J.-K., Lin, L.-Y., and Chuang, K.-J.: Physicochemistry and cardiovascular toxicity of metal fume PM2.5: a study of human coronary artery endothelial cells and welding workers, Sci. Rep., 6, 33515, https://doi.org/10.1038/srep33515, 2016.
Landsberg, J. P., McDonald, B., and Watt, F.: Absence of aluminium in neuritic plaque cores in Alzheimer's disease, Nature, 360, 65–68, https://doi.org/10.1038/360065a0, 1992.
Ledingham, G. J., Fang, Y., and Catalano, J. G.: Irreversible trace metal binding to goethite controlled by the ion size, Environ. Sci. Technol., 58, 2007–2016, https://doi.org/10.1021/acs.est.3c06516, 2024.
Lee, J.-H., Kim, J.-W., Levy, M., Kao, A., Noh, S.-H., Bozovic, D., and Cheon, J.: Magnetic nanoparticles for ultrafast mechanical control of inner ear hair cells, ACS Nano, 8, 6590–6598, https://doi.org/10.1021/nn5020616, 2014.
Leikauf, G. D., Kim, S. H., and Jang, A. S.: Mechanisms of ultrafine particle-induced respiratory health effects, Exp. Molec. Med., 52, 329–337, https://doi.org/10.1038/s12276-020-0394-0, 2020.
Lewinson, J., Mayr, W., and Wagner, H.: Characterization and toxicological behavior of synthetic amorphous hydrophobic silica, Regulatory Toxicology and Pharmacology, 20, 37–57, https://doi.org/10.1006/rtph.1994.1035, 1994.
Li, N., Georas, S., Alexis, N., Fritz, P., Xia, T., Williams, M. A., Horner, E., and Nel, A.: A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects, J. Allergy Clin. Immun., 138, 386–396, https://doi.org/10.1016/j.jaci.2016.02.023, 2016.
Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., and Okuyama, K.: Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep., 7, 9894, https://doi.org/10.1038/s41598-017-09897-5, 2017.
Lin, W., Huang, Z., Zhang, W., and Ren, Y.: Investigating the neurotoxicity of environmental pollutants using zebrafish as a model organism: A review and recommendations for future work, Neurotoxicology, 94, 235–244, https://doi.org/10.1016/j.neuro.2022.12.009, 2023.
Loeb, J. A., Sohrab, S. A., Huq, M., and Fuerst, D. R.: Brain calcifications induce neurodegenerative dysfunction that can be reversed by a bone drug, Journal of the Neurodegenerative Sciences, 243, 77–81, https://doi.org/10.1016/j.jns.2005.11.033, 2006.
Lohße, A., Ullrich, S., Katzmann, E., Borg, S., Wanner, G., Richter, M., Voigt, B., Schweder, T., and Schüler, D.: Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization, PloS One, 6, e25561, https://doi.org/10.1371/journal.pone.0025561, 2011.
Lomer, M. C. E., Thompson, R. P. H., and Powell, J. J.: Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn's disease, P. Nutr. Soc., 61, 123–130, https://doi.org/10.1079/pns2001134, 2002.
Lomer, M. C. E., Hutchinson, C., Volkert, S., Greenfield, S. M., Catterall, A., Thompson, R. P. H., and Powell, J. J.: Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn's disease, Brit. J. Nutr., 92, 947–955, https://doi.org/10.1079/bjn20041276, 2004.
Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., and Markesbery, W. R.: Copper, iron and zinc in Alzheimer's disease senile plaques, J. Neurolog. Sci., 158, 47–52, https://doi.org/10.1016/s0022-510x(98)00092-6, 1998.
Lowenstam, H. A.: Magnetite in Denticle Capping in Recent Chitons (Polyplacophora), GSA Bull., 73, 435–438, https://doi.org/10.1130/0016-7606(1962)73[435:MIDCIR]2.0.CO;2, 1962.
Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., and Kang, D.: Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China, J. Hazard. Mater., 173, 744–749, https://doi.org/10.1016/j.jhazmat.2009.09.001, 2010.
Maetzler, W., Berg, D., Funke, C., Sandmann, F., Stünitz, H., Maetzler, C., and Nitsch, C.: Progressive secondary neurodegeneration and microcalcification Co-OCCuR in Osteopontin-Deficient mice, Am. J. Pathol., 177, 829–839, https://doi.org/10.2353/ajpath.2010.090798, 2010.
Maher, B. A.: Airborne magnetite- and Iron-Rich pollution nanoparticles: potential neurotoxicants and environmental risk factors for neurodegenerative disease, including Alzheimer's disease, Journal of Alzheimer's Disease, 71, 361–375, https://doi.org/10.3233/jad-190204, 2019.
Maher, B. A., Moore, C., and Matzka, J.: Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves, Atmos. Environ., 42, 364–373, https://doi.org/10.1016/j.atmosenv.2007.09.013, 2008.
Maher, B. A., Ahmed, I. A. M., Karloukovski, V., MacLaren, D. A., Foulds, P. G., Allsop, D., Mann, D. M. A., Torres-Jardón, R., and Calderón-Garcidueñas, L.: Magnetite pollution nanoparticles in the human brain, P. Natl. Acad. Sci. USA, 113, 10797–10801, https://doi.org/10.1073/pnas.1605941113, 2016.
Mahler, R.: LnProc, 3rd edn., Intern. Congr. Biochem., p. 252, Brussels, 1955.
Mahy, N., Bendahan, G., Boatell, M. Ll., Bjelke, B., Tinner, B., Olson, L., and Fuxe, K.: Differential brain area vulnerability to long-term subcortical excitotoxic lesions, Neuroscience, 65, 15–25, https://doi.org/10.1016/0306-4522(94)00472-h, 1995.
Mahy, N., Prats, A., Riveros, A., Andrés, N., and Bernal, F.: Basal ganglia calcification induced by excitotoxicity: an experimental model characterised by electron microscopy and X-ray microanalysis, Acta Neuropathol., 98, 217–225, https://doi.org/10.1007/s004010051072, 1999.
Maity, R., Venkateshwarlu, M., Mondal, S., Kapawar, M. R., Gain, D., Chatterjee, S., and Paul, P.: Mineral magnetic and geochemical characterization of the dust and soils around Mejia Thermal Power Plant, West Bengal: Implications to source apportionment, Proceedings of the Indian Academy of Sciences, Earth and Planetary Sciences/Journal of Earth System Science, 131, 138, https://doi.org/10.1007/s12040-022-01882-5, 2022.
Mann, S.: Structure, morphology, and crystal growth of bacterial magnetite, in: Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism, edited by: Kirschvink, J. L., Jones, D. S., and MacFadden, B. J., New York, Plenum, New, 311–332, 1985.
Mann, S., Frankel, R. B., and Blakemore, R. P.: Structure, morphology and crystal growth of bacterial magnetite, Nature, 310, 405–407, https://doi.org/10.1038/310405a0, 1984a.
Mann, S., Moench, T. T., and Williams, R. J. P.: A high-resolution electron microscopic investigation of bacterial magnetite: Implications for crystal growth, Proc. R. Soc. Lond. B., 221, 385–393, 1984b.
Mann, S., Sparks, N. H. C., Walker, M. M., and Kirschvink, J. L.: Ultrastructure, Morphology and Organization of Biogenic Magnetite from Sockeye Salmon, Oncorhynchus Nerka: Implications for Magnetoreception, J. Exp. Biol., 140, 35–49, https://doi.org/10.1242/jeb.140.1.35, 1988.
Marques, M. R. C., Loebenberg, R., and Almukainzi, M.: Simulated Biological Fluids with Possible Application in Dissolution Testing, Dissolution Technologies, 18, 15–28, https://doi.org/10.14227/dt180311p15, 2011.
Martyr, A., Gamble, L. D., Hunt, A., Quinn, C., Morris, R. G., Henderson, C., Allan, L., Opdebeeck, C., Charlwood, C., Jones, R. W., Pentecost, C., Kopelman, M. D., Thom, J. M., Matthews, F. E., and Clare, L.: Differences in trajectories of quality of life according to type of dementia: 6-year longitudinal findings from the IDEAL programme, BMC Medicine, 22, 265, https://doi.org/10.1186/s12916-024-03492-y, 2024.
Massover, W. H.: Ultrastructure of ferritin and apoferritin: A review, Micron, 24, 389–437, https://doi.org/10.1016/0968-4328(93)90005-l, 1993.
May, J., Hickey, M., Triantis, I., Palazidou, E., and Kyriacou, P. A.: Spectrophotometric analysis of lithium carbonate used for bipolar disorder, Biomed. Opt. Express, 6, 1067, https://doi.org/10.1364/boe.6.001067, 2015.
Medviediev, O., Gorobets, O. Y., Gorobets, S. V., and Yadrykhins'ky, V. S.: The prediction of biogenic magnetic nanoparticles biomineralization in human tissues and organs, J. Phys. Conf. Ser., 903, 012002, https://doi.org/10.1088/1742-6596/903/1/012002, 2017.
MESH NCBI – Blood-Air Barrier – MESH: https://www.ncbi.nlm.nih.gov/mesh?Db=mesh&Cmd=DetailsSearch&Term=%22Blood-Air+Barrier%22%5BMeSH+Terms%5D#:~:text=The barrier between capillary blood,MEMBRANE and EPITHELIAL CELL cytoplasm, last access: 16 October 2024.
Michel, F. M., Ehm, L., Antao, S. M., Lee, P. L., Chupas, P. J., Liu, G., Strongin, D. R., Schoonen, M. a. A., Phillips, B. L., and Parise, J. B.: The structure of ferrihydrite, a nanocrystalline material, Science, 316, 1726–1729, https://doi.org/10.1126/science.1142525, 2007.
Mink, J. W.: The basal ganglia: focused selection and inhibition of competing motor programs, Prog. Neurobiol., 50, 381–425, https://doi.org/10.1016/s0301-0082(96)00042-1, 1996.
Möller, W., Häussinger, K., Winkler-Heil, R., Stahlhofen, W., Meyer, T., Hofmann, W., and Heyder, J.: Mucociliary and long-term particle clearance in the airways of healthy nonsmoker subjects, J. Appl. Physiol., 97, 2200–2206, https://doi.org/10.1152/japplphysiol.00970.2003, 2004.
Monfrini, E., Arienti, F., Rinchetti, P., Lotti, F., and Riboldi, G. M.: Brain calcifications: genetic, molecular, and clinical aspects, Int. J. Molec. Sci., 24, 8995, https://doi.org/10.3390/ijms24108995, 2023.
Morabet, R. E.: Effects of outdoor air pollution on human health, in: Elsevier eBooks, https://doi.org/10.1016/b978-0-12-409548-9.11012-7, 2018.
Mouritsen, H.: Long-distance navigation and magnetoreception in migratory animals, Nature, 558, 50–59, https://doi.org/10.1038/s41586-018-0176-1, 2018.
Murat, D., Quinlan, A., Vali, H., and Komeili, A.: Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle, P. Natl. Acad. Sci. USA, 107, 5593–5598, https://doi.org/10.1073/pnas.0914439107, 2010.
Navarro-Ciurana, D., Corbella, M., and Meroño, D.: Effects of road dust particle size on mineralogy, chemical bulk content, pollution and health risk analyses, Int. J. Environ. Res. Publ. He., 20, 6655, https://doi.org/10.3390/ijerph20176655, 2023.
Netto, I. and Phutane, V. H.: Reversible lithium neurotoxicity, Primary Care Companion to CNS Disorders/the Primary Care Companion for CNS Disorders, https://doi.org/10.4088/pcc.11r01197, 2012.
Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., Jones, P. K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C. S., Petersen, R. B., and Smith, M. A.: Oxidative damage is the earliest event in Alzheimer disease, Journal of Neuropathology and Experimental Neurology, 60, 759–767, https://doi.org/10.1093/jnen/60.8.759, 2001.
Nyirő-Kósa, I., Ahmad, F., Hoffer, A., and Pósfai, M.: Nanoscale physical and chemical properties of individual airborne magnetic particles from vehicle emissions, Atmos. Environ. X, 15, 100181, https://doi.org/10.1016/j.aeaoa.2022.100181, 2022.
Oberdörster, G.: Lung dosimetry: pulmonary clearance of inhaled particles, Aerosol Sci. Technol., 18, 279–289, https://doi.org/10.1080/02786829308959605, 1993.
Oberdörster, G.: Pulmonary effects of inhaled ultrafine particles, Int. Arch. Occ. Env. Hea., 74, 1–8, https://doi.org/10.1007/s004200000185, 2000.
Oberdörster, G. and Kuhlbusch, T. A. J.: In vivo effects: Methodologies and biokinetics of inhaled nanomaterials, NanoImpact, 10, 38–60, https://doi.org/10.1016/j.impact.2017.10.007, 2018.
Ophus, C.: Four-Dimensional scanning Transmission Electron Microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond, Microscopy and Microanalysis, 25, 563–582, https://doi.org/10.1017/s1431927619000497, 2019.
O'Shea, M. J., Krekeler, M. P. S., Vann, D. R., and Gieré, R.: Investigation of Pb-contaminated soil and road dust in a polluted area of Philadelphia, Environ. Monitor. A., 193, 440, https://doi.org/10.1007/s10661-021-09213-9, 2021a.
O'Shea, M. J., Toupal, J., Caballero-Gómez, H., McKeon, T. P., Howarth, M. V., Pepino, R., and Gieré, R.: Lead pollution, demographics, and environmental health risks: the case of Philadelphia, USA, Int. J. Environ. Res. Publ. He., 18, 9055, https://doi.org/10.3390/ijerph18179055, 2021b.
O'Shea, M. J., Vigliaturo, R., Choi, J. K., McKeon, T. P., Krekeler, M. P. S., and Gieré, R.: Alteration of yellow traffic paint in simulated environmental and biological fluids, Sci. Total Environ., 750, 141202, https://doi.org/10.1016/j.scitotenv.2020.141202, 2021c.
Ott, M., Stegmayr, B., Renberg, E. S., and Werneke, U.: Lithium intoxication: Incidence, clinical course and renal function – a population-based retrospective cohort study, J. Psychopharmacology, 30, 1008–1019, https://doi.org/10.1177/0269881116652577, 2016.
Outten, F. W. and Theil, E. C.: Iron-Based redox switches in biology, Antioxidants & Redox Signaling, 11, 1029–1046, https://doi.org/10.1089/ars.2008.2296, 2009.
Pankhurst, Q., Hautot, D., Khan, N., and Dobson, J.: Increased levels of magnetic iron compounds in Alzheimer's disease, Journal of Alzheimer's Disease, 13, 49–52, https://doi.org/10.3233/jad-2008-13105, 2008.
Parasrampuria, S., Bijelic, E., Bott, D. M., Driessen, J., Lipp, M. J., and Ling, S. M.: Disaggregating the dementia monolith: An analysis of variation in Medicare costs and use by dementia subtype, Alzheimer S & Dementia, 19, 3295–3305, https://doi.org/10.1002/alz.12953, 2023.
Pecharroman, C., Gonzalez-Carreno, T., and Iglesias, Juan, E.: The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders, Phys. Chem. Miner., 22, 21–29, https://doi.org/10.1007/bf00202677, 1995.
Piperno, D. R.: Phytoliths. A Comprehensive Guide for Archaeologists and Paleoecologists. ix + 238 pp., AltaMira Press, Rowman & Littlefield, Lanham, New York, Toronto, Oxford, ISBN 0 7591 0385 2, 2006.
Perl, D. P. and Moalem, S.: Aluminum and Alzheimer's disease, a personal perspective after 25 years, Journal of Alzheimer's Disease, 9, 291–300, https://doi.org/10.3233/jad-2006-9s332, 2006.
Plascencia-Villa, G., Ponce, A., Collingwood, J. F., Arellano-Jiménez, M. J., Zhu, X., Rogers, J. T., Betancourt, I., José-Yacamán, M., and Perry, G.: High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer's disease, Sci. Rep., 6, 24873, https://doi.org/10.1038/srep24873, 2016.
Pósfai, M. and Dunin-Borkowski, R. E.: Magnetic nanocrystals in organisms, Elements, 5, 235–240, https://doi.org/10.2113/gselements.5.4.235, 2009.
Power, A. L., Tennant, R. K., Stewart, A. G., Gosden, C., Worsley, A. T., Jones, R., and Love, J.: The evolution of atmospheric particulate matter in an urban landscape since the Industrial Revolution, Sci. Rep., 13, 8964, https://doi.org/10.1038/s41598-023-35679-3, 2023.
Querol, X., Alastuey, A., Viana, M. M., Rodriguez, S., Artiñano, B., Salvador, P., Santos, S. G. D., Patier, R. F., Ruiz, C. R., De La Rosa, J., De La Campa, A. S., Menendez, M., and Gil, J. I.: Speciation and origin of PM10 and PM2.5 in Spain, J. Aerosol Sci., 35, 1151–1172, https://doi.org/10.1016/j.jaerosci.2004.04.002, 2004.
Quintana, C. and Gutiérrez, L.: Could a dysfunction of ferritin be a determinant factor in the aetiology of some neurodegenerative diseases?, Biochim. Biophys. Ac. G, 1800, 770–782, https://doi.org/10.1016/j.bbagen.2010.04.012, 2010.
Quintana, C., Cowley, J. M., and Marhic, C.: Electron nanodiffraction and high-resolution electron microscopy studies of the structure and composition of physiological and pathological ferritin, J. Struct. Biol., 147, 166–178, https://doi.org/10.1016/j.jsb.2004.03.001, 2004.
Redgrave, P., Prescott, T. J., and Gurney, K.: The basal ganglia: a vertebrate solution to the selection problem?, Neuroscience, 89, 1009–1023, https://doi.org/10.1016/s0306-4522(98)00319-4, 1999.
Reeder, R. J., Schoonen, M. A. A., and Lanzirotti, A.: Metal speciation and its role in bioaccessibility and bioavailability, Rev. Mineral. Geochem., 64, 59–113, https://doi.org/10.2138/rmg.2006.64.3, 2006.
Reusche, E., Pilz, P., Oberascher, G., Lindner, B., Egensperger, R., Gloeckner, K., Trinka, E., and Iglseder, B.: Subacute fatal aluminum encephalopathy after reconstructive otoneurosurgery: A case report, Human Pathology, 32, 1136–1140, https://doi.org/10.1053/hupa.2001.28251, 2001.
Reuzel, P. G. J., Bruijntjes, J. P., Feron, V. J., and Woutersen, R. A.: Subchronic inhalation toxicity of amorphous silicas and quartz dust in rats, Food Chem. Toxicol., 29, 341–354, https://doi.org/10.1016/0278-6915(91)90205-l, 1991.
Roider, G. and Drasch, G.: Concentration of aluminum in human tissues – investigations on an occupationally non-exposed population in Southern Bavaria (Germany), Trace elements and electrolytes, 16, 77-86 0946-210, 1999.
Robertson, D. J., Taylor, K. G., and Hoon, S. R.: Geochemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK, Appl. Geochem., 18, 269–282, https://doi.org/10.1016/s0883-2927(02)00125-7, 2003.
Ru, Q., Li, Y., Chen, L., Wu, Y., Min, J., and Wang, F.: Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects, Signal Transduction and Targeted Therapy, 9, 271, https://doi.org/10.1038/s41392-024-01969-z, 2024.
Salim, S. Y., Kaplan, G. G., and Madsen, K. L.: Air pollution effects on the gut microbiota, Gut Microbes, 5, 215–219, https://doi.org/10.4161/gmic.27251, 2013.
Sanders, T., Liu, Y., Buchner, V., and Tchounwou, P. B.: Neurotoxic effects and Biomarkers of lead exposure: a review, Rev. Environ. Health, 24, 15–46, https://doi.org/10.1515/reveh.2009.24.1.15, 2009.
Sanderson, P., Delgado-Saborit, J. M., and Harrison, R. M.: A review of chemical and physical characterisation of atmospheric metallic nanoparticles, Atmos. Environ., 94, 353–365, https://doi.org/10.1016/j.atmosenv.2014.05.023, 2014.
Schaefer, M. L., Böttger, B., Silver, W. L., and Finger, T. E.: Trigeminal collaterals in the nasal epithelium and olfactory bulb: A potential route for direct modulation of olfactory information by trigeminal stimuli, J. Comp. Neurol., 444, 221–226, https://doi.org/10.1002/cne.10143, 2002.
Schafer, F. Q., Qian, S. Y., and Buettner, G. R.: Iron and free radical oxidations in cell membranes, Cell. Mol. Biol., 46, 657–662, 2000.
Scheiber, I. F., Mercer, J. F. B., and Dringen, R.: Metabolism and functions of copper in brain, Prog. Neurobiol., 116, 33–57, https://doi.org/10.1016/j.pneurobio.2014.01.002, 2014.
Schoonen, M. A. A., Cohn, C. A., Roemer, E., Laffers, R., Simon, S. R., and O'Riordan, T.: Mineral-Induced formation of reactive oxygen species, Rev. Miner. Geochem., 64, 179–221, https://doi.org/10.2138/rmg.2006.64.7, 2006.
Schultheiss-Grassi, P.: TEM investigations of biogenic magnetite extracted from the human hippocampus, Biochim. Biophys. Ac. G, 1426, 212–216, https://doi.org/10.1016/s0304-4165(98)00160-3, 1999.
Semmler-Behnke, M., Takenaka, S., Fertsch, S., Wenk, A., Seitz, J., Mayer, P., Oberdörster, G., and Kreyling, W. G.: Efficient Elimination of Inhaled Nanoparticles from the Alveolar Region: Evidence for Interstitial Uptake and Subsequent Reentrainment onto Airways Epithelium, Environ. Health Persp., 115, 728–733, https://doi.org/10.1289/ehp.9685, 2007.
Shapiro, M.: Plasticity, hippocampal place cells, and cognitive maps, Archives of Neurology, 58, 874, https://doi.org/10.1001/archneur.58.6.874, 2001.
Shirabe, T., Irie, K., and Uchida, M.: Autopsy case of aluminum encephalopathy, Neuropathology, 22, 206–210, https://doi.org/10.1046/j.1440-1789.2002.00432.x, 2002.
Shokrollahi, H.: A review of the magnetic properties, synthesis methods and applications of maghemite, J. Magn. Magn. Mater., 426, 74–81, https://doi.org/10.1016/j.jmmm.2016.11.033, 2017.
Shubin, N., Tabin, C., and Carroll, S.: Deep homology and the origins of evolutionary novelty, Nature, 457, 818–823, https://doi.org/10.1038/nature07891, 2009.
Simonyan, K.: Recent advances in understanding the role of the basal ganglia, F1000Research, 8, 122, https://doi.org/10.12688/f1000research.16524.1, 2019.
Smith, M. A., Harris, P. L. R., Sayre, L. M., and Perry, G.: Iron accumulation in Alzheimer disease is a source of redox-generated free radicals, P. Natl. Acad. Sci. USA, 94, 9866–9868, https://doi.org/10.1073/pnas.94.18.9866, 1997.
Spatz, H.: Über den eisennachweis im gehirn, besonders in zentren des extrapyramidal-motorischen systems. I. Teil, Zeitschrift Für Die Gesamte Neurologie Und Psychiatrie, 77, 261–390, https://doi.org/10.1007/bf02865844, 1922.
Staicu, L., Van Hullebusch, E., and Ackerson, C.: Editorial: Microbial Biominerals: Toward New Functions and Resource Recovery, Front. Microbiol., 12, https://doi.org/10.3389/fmicb.2021.796374, 2021, 2021.
Stefaniak, A. B., Day, G. A., Hoover, M. D., Breysse, P. N., and Scripsick, R. C.: Differences in dissolution behavior in a phagolysosomal simulant fluid for single-constituent and multi-constituent materials associated with beryllium sensitization and chronic beryllium disease, Toxicology in Vitro, 20, 82–95, https://doi.org/10.1016/j.tiv.2005.06.031, 2006.
Steinmetz, J. D., Seeher, K. M., Schiess, N., et al.: Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021, Lancet Neurology, 23, 344–381, https://doi.org/10.1016/s1474-4422(24)00038-3, 2024.
Stephens, W. E.: Whewellite and its key role in living systems, Geology Today, 28, 180–185, https://doi.org/10.1111/j.1365-2451.2012.00849.x, 2012.
Stern, A. J., Perl, D. P., Munoz-Garcia, D., Good, P. F., Abraham, C., and Selkoe, D. J.: Investigation of silicon and aluminum content in isolated plaque cores by laser microprobe mass analysis (LAMMA), J. Neuropathol. Exp. Neurol., 45, 361, https://doi.org/10.1097/00005072-198605000-00140, 1986.
Strick, P. L., Dum, R. P., and Fiez, J. A.: Cerebellum and nonmotor function, Annu. Rev. Neurosci., 32, 413–434, https://doi.org/10.1146/annurev.neuro.31.060407.125606, 2009.
Su, R., Jin, X., Li, H., Huang, L., and Li, Z.: The mechanisms of PM2.5 and its main components penetrate into HUVEC cells and effects on cell organelles, Chemosphere, 241, 125127, https://doi.org/10.1016/j.chemosphere.2019.125127, 2020.
Sutherland, R. A.: Lead in grain size fractions of road-deposited sediment, Environ. Pollut., 121, 229–237, https://doi.org/10.1016/s0269-7491(02)00219-1, 2003.
Swift, D. L., Montassier, N., Hopke, P. K., Karpen-Hayes, K., Cheng, Y.-S., Su, N. Y. F., Yeh, N. H. C., and Strong, J. C.: Inspiratory deposition of ultrafine particles in human nasal replicate cast, J. Aerosol Sci., 23, 65–72, https://doi.org/10.1016/0021-8502(92)90318-p, 1992.
Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P., and Heyder, J.: Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats., Environ. Health Persp., 109, 547–551, https://doi.org/10.1289/ehp.01109s4547, 2001.
Tay, A. and Di Carlo, D.: Magnetic Nanoparticle-Based mechanical stimulation for restoration of Mechano-Sensitive ion channel equilibrium in neural networks, Nano Lett., 17, 886–892, https://doi.org/10.1021/acs.nanolett.6b04200, 2017.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., and Sutton, D. J.: Heavy metal toxicity and the environment, in: EXS, 133–164, https://doi.org/10.1007/978-3-7643-8340-4_6, 2012.
Telling, N. D., Everett, J., Collingwood, J. F., Dobson, J., Van Der Laan, G., Gallagher, J. J., Wang, J., and Hitchcock, A. P.: Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease, Cell Chem. Biol., 24, 1205–1215.e3, https://doi.org/10.1016/j.chembiol.2017.07.014, 2017.
Tingey, A. H.: The iron, copper and manganese content of the human brain, J. Ment. Sci., 83, 452–460, https://doi.org/10.1192/bjp.83.345.452, 1937.
Tingey, A. H.: The Iron Content of the Human Brain. – II, J. Ment. Sci., 84, 980–984, https://doi.org/10.1192/bjp.84.353.980, 1938.
Tisato, F., Marzano, C., Porchia, M., Pellei, M., and Santini, C.: Copper in diseases and treatments, and copper-based anticancer strategies, Med. Res. Rev., 30, 708–749, https://doi.org/10.1002/med.20174, 2009.
Towe, K. M. and Bradley, W. F.: Mineralogical constitution of colloidal “hydrous ferric oxides”, J. Colloid Interf. Sci., 24, 384–392, https://doi.org/10.1016/0021-9797(67)90266-4, 1967.
Treffry, A., Harrison, P. M., Cleton, M. I., De Bruijn, W. C., and Mann, S.: A note on the composition and properties of ferritin iron cores, Journal of Inorganic Biochemistry, 31, 1–6, https://doi.org/10.1016/0162-0134(87)85001-8, 1987.
Treiber, C. D., Salzer, M. C., Riegler, J., Edelman, N., Sugar, C., Breuss, M., Pichler, P., Cadiou, H., Saunders, M., Lythgoe, M., Shaw, J., and Keays, D. A.: Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons, Nature, 484, 367–370, https://doi.org/10.1038/nature11046, 2012.
Trouvé, G., Michelin, L., Kehrli, D., Josien, L., Rigolet, S., Lebeau, B., and Gieré, R.: The Multi-Analytical Characterization of Calcium Oxalate Phytolith Crystals from Grapevine after Treatment with Calcination, Crystals, 13, 967, https://doi.org/10.3390/cryst13060967, 2023.
Tsolaki, E.: Pathological mineralization, Thesis PhD, Department of Medical Physics and Biomedical Engineering University College London, 2020.
Tsolaki, E. and Bertazzo, S.: Pathological mineralization: The potential of mineralomics, Materials, 12, 3126, https://doi.org/10.3390/ma12193126, 2019.
United Nations, Department of Economic and Social Affairs, Population Division: World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420), United Nations, New York, 2019.
United Nations Department of Economic and Social Affairs, Population Division: World Population Prospects 2022: Summary of Results, UN DESA/POP/2022/TR/NO, 3, 2022.
Utembe, W., Potgieter, K., Stefaniak, A. B., and Gulumian, M.: Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials, Part. Fibre Toxicol., 12, 11, https://doi.org/10.1186/s12989-015-0088-2, 2015.
Vali, H., Kirschvink, J. L., Frankel, R. P., and Blackemore, R. P. (Eds.): Iron biomineralization, Pleum Press, New York, 97, 1991.
Verdoux, H. and Bourgeois, M.: Séquelles neurologiques irréversibles induites par le lithium [Irreversible neurologic sequelae caused by lithium], Encephale, 17, 221–224, PMID: 1864256, 1991 (in French).
Vigliaturo, R., Della Ventura, G., Choi, J., Marengo, A., Lucci, F., O'Shea, M., Pérez-Rodríguez, I., and Gieré, R.: Mineralogical Characterization and Dissolution Experiments in Gamble's Solution of Tremolitic Amphibole from Passo di Caldenno (Sondrio, Italy), Minerals, 8, 557, https://doi.org/10.3390/min8120557, 2018.
Vigliaturo, R., Kehrli, D., Garra, P., Dieterlen, A., Trouve, G., Dietze, V., Wilson, J. P., and Gieré, R.: Opaline phytoliths in Miscanthus sinensis and its cyclone ash from a biomass-combustion facility, Industrial Crops and Products, 139, 111539, https://doi.org/10.1016/j.indcrop.2019.111539, 2019.
Vigliaturo, R., Jamnik, M., Dražić, G., Podobnik, M., Žnidarič, M. T., Della Ventura, G., Redhammer, G. J., Žnidaršič, N., Caserman, S., and Gieré, R.: Nanoscale transformations of amphiboles within human alveolar epithelial cells, Sci. Rep., 12, 1782, https://doi.org/10.1038/s41598-022-05802-x, 2022.
Vigliaturo, R., Jamnik, M., Dražić, G., Podobnik, M., Žnidarič, M. T., Della Ventura, G., Redhammer, G. J., Žnidaršič, N., Caserman, S., and Gieré, R.: Localization and Dimensional Range of Amphibole Particles Retrieved from Human Alveolar Epithelial Cells, Minerals, 14, 101, https://doi.org/10.3390/min14010101, 2024.
Walcott, C., Gould, J. L., and Kirschvink, J. L.: Pigeons have magnets, Science, 205, 1027–1029, https://doi.org/10.1126/science.472725, 1979.
Wang, J., Li, S., Li, H., Qian, X., Li, X., Liu, X., Lu, H., Wang, C., and Sun, Y.: Trace metals and magnetic particles in PM2.5: Magnetic identification and its implications, Sci. Rep., 7, 9865, https://doi.org/10.1038/s41598-017-08628-0, 2017.
Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R., and Zecca, L.: The role of iron in brain ageing and neurodegenerative disorders, Lancet Neurology, 13, 1045–1060, https://doi.org/10.1016/s1474-4422(14)70117-6, 2014.
Wechsler, B. A., Lindsley, D. H., and Prewitt, C. T.: Crystal structure and cation distribution in titanomagnetites (Fe (sub 3-x) Ti x O 4 ), Am. Mineral., 69, 754–770, 1984.
WHO: Library Cataloguing-in-Publication Data: Evaluation of certain food additives and contaminants: seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives, WHO technical report series, no. 966, 2011.
WHO: Global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, World Health Organization, Geneva, 2021.
Wieland, S., Balmes, A., Bender, J., Kitzinger, J., Meyer, F., Ramsperger, A. F., Roeder, F., Tengelmann, C., Wimmer, B. H., Laforsch, C., and Kress, H.: From properties to toxicity: Comparing microplastics to other airborne microparticles, J. Hazard. Mater., 428, 128151, https://doi.org/10.1016/j.jhazmat.2021.128151, 2022.
Wohlleben, W., Ma-Hock, L., Boyko, V., Cox, G., Egenolf, H., Freiberger, H., Hinrichsen, B., Hirth, S., and Landsiedel, R.: Nanospecific Guidance in REACH: A Comparative Physical-Chemical Characterization of 15 Materials with Methodical Correlations, J. Ceram. Sci. Technol., 04, 93–104, https://doi.org/10.4416/JCST2012-00045, 2013.
Yang, T., Liu, Q., Li, H., Zeng, Q., and Chan, L.: Anthropogenic magnetic particles and heavy metals in the road dust: Magnetic identification and its implications, Atmos. Environ., 44, 1175–1185, https://doi.org/10.1016/j.atmosenv.2009.12.028, 2010.
Yang, Y., Vance, M., Tou, F., Tiwari, A., Liu, M., and Hochella, M. F.: Nanoparticles in road dust from impervious urban surfaces: distribution, identification, and environmental implications, Environ. Sci. Nano, 3, 534–544, https://doi.org/10.1039/c6en00056h, 2016.
Yang, Y., Arseni, D., Zhang, W., Huang, M., Lövestam, S., Schweighauser, M., Kotecha, A., Murzin, A. G., Peak-Chew, S. Y., Macdonald, J., Lavenir, I., Garringer, H. J., Gelpi, E., Newell, K. L., Kovacs, G. G., Vidal, R., Ghetti, B., Ryskeldi-Falcon, B., Scheres, S. H. W., and Goedert, M.: Cryo-EM structures of amyloid-β 42 filaments from human brains, Science, 375, 167–172, https://doi.org/10.1126/science.abm7285, 2022.
Zecca, L., Youdim, M. B. H., Riederer, P., Connor, J. R., and Crichton, R. R.: Iron, brain ageing and neurodegenerative disorders, Nat. Rev. Neurosci., 5, 863–873, https://doi.org/10.1038/nrn1537, 2004.
Zhan, C., Xie, M., Lu, H., Liu, B., Wu, Z., Wang, T., Zhuang, B., Li, M., and Li, S.: Impacts of urbanization on air quality and the related health risks in a city with complex terrain, Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, 2023.
Zhang, C., Qiao, Q., Piper, J. D. A., and Huang, B.: Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods, Environ. Pollut., 159, 3057–3070, https://doi.org/10.1016/j.envpol.2011.04.006, 2011.
Zhu, Z., Sun, G., Bi, X., Li, Z., and Yu, G.: Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analyses, Atmos. Environ., 77, 9–15, https://doi.org/10.1016/j.atmosenv.2013.04.053, 2013.
Zuddas, P., Faivre, D., and Duhamel, J. R.: Magnetite minerals in the human brain: What is their role?, in: Springer eBooks, 91–99, https://doi.org/10.1007/978-94-007-4372-4_6, 2013.
Short summary
This review collects the most significant research on metal-based minerals in the brain, their relationship with neurological disorders, and their relationship with urban pollution. This review emphasizes the importance of medical mineralogy in investigating the effects of these minerals. Future research should focus on mineralogical characterization, evolution, and nanoscale to atomic-scale characterization of metal-based particles.
This review collects the most significant research on metal-based minerals in the brain, their...