Articles | Volume 37, issue 2
https://doi.org/10.5194/ejm-37-133-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-133-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nolanite supergroup of minerals: nomenclature and classification
Nikita V. Chukanov
CORRESPONDING AUTHOR
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia
Vasilisa M. Gridchina
Kurchatov Complex of Crystallography and Photonics of the National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
Ramiza K. Rastsvetaeva
Kurchatov Complex of Crystallography and Photonics of the National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
Natalia V. Zubkova
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia
Igor V. Pekov
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow 119991, Russia
Related authors
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Marko Bermanec, Nikita V. Chukanov, Ivan Boev, Božidar Darko Šturman, Vladimir Zebec, and Vladimir Bermanec
Eur. J. Mineral., 33, 433–445, https://doi.org/10.5194/ejm-33-433-2021, https://doi.org/10.5194/ejm-33-433-2021, 2021
Short summary
Short summary
A new locality of ardennite-(As) is described in Nežilovo, North Macedonia. This mineral grows in specific conditions, which makes it useful to reconstructing the conditions of rock formation. Phengite mica that was found also supports this investigation. This explanation results in a new proposal for mineral formula calculation of ardennite-group minerals and reviews the current ardennite-group end-members. This occurrence has developed through three metamorphic stages which are also described.
Oleg S. Vereshchagin, Sergey N. Britvin, Aleksey I. Brusnitsyn, Anastasiia K. Shagova, Elena N. Perova, Igor V. Pekov, Vladimir V. Shilovskikh, Natalia S. Vlasenko, Evgeniya Y. Avdontseva, Natalia V. Platonova, and Vladimir N. Bocharov
Eur. J. Mineral., 37, 829–840, https://doi.org/10.5194/ejm-37-829-2025, https://doi.org/10.5194/ejm-37-829-2025, 2025
Short summary
Short summary
Kayupovaite is a new mineral named in honor of Maria Mikhailovna Kayupova (1921–1980), the mineralogist who studied the Ushkatyn-III deposit (Kazakhstan), the type of locality of the described mineral. Kayupovaite is monoclinic and of space group C2/c. The mineral belongs to the group of modulated manganese phyllosilicates and is structurally related to stilpnomelane. The absence of iron in the mineral is a result of oxidative Mn–Fe fractionation during the formation of braunite-rich Mn ores.
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Marko Bermanec, Nikita V. Chukanov, Ivan Boev, Božidar Darko Šturman, Vladimir Zebec, and Vladimir Bermanec
Eur. J. Mineral., 33, 433–445, https://doi.org/10.5194/ejm-33-433-2021, https://doi.org/10.5194/ejm-33-433-2021, 2021
Short summary
Short summary
A new locality of ardennite-(As) is described in Nežilovo, North Macedonia. This mineral grows in specific conditions, which makes it useful to reconstructing the conditions of rock formation. Phengite mica that was found also supports this investigation. This explanation results in a new proposal for mineral formula calculation of ardennite-group minerals and reviews the current ardennite-group end-members. This occurrence has developed through three metamorphic stages which are also described.
Cited articles
Abe, H., Sato, A., Tsujii, N., Furubayashi, T., and Shimoda, M.: Structural refinement of T2Mo3O8 (T = Mg, Co, Zn and Mn) and anomalous valence of trinuclear molybdenum clusters in Mn2Mo3O8, J. Solid State Chem., 183, 379–384, 2010.
Ansell, G. B. and Katz, L.: A refinement of the crystal structure of zinc molybdenum (VI) oxide Zn2Mo O8, Acta Crystallogr., 21, 482–485, 1966.
Armbruster, T.: Revised nomenclature of högbomite, nigerite, and taaffeite minerals, Eur. J. Mineral., 14, 389–395, https://doi.org/10.1127/0935-1221/2002/0014-0389, 2002.
Boily, J.-F. and Song, X.: Direct identification of reaction sites on ferrihydrite, Communications Chem., 3, 79, https://doi.org/10.1038/s42004-020-0325-y, 2020.
Bosi, F., Biagioni, C., and Oberti, R.: On the chemical identification and classification of minerals, Minerals, 9, 591, https://doi.org/10.3390/min9100591, 2019a.
Bosi, F., Hatert, F., Hålenius, U., Pasero, M., Miyawaki, R., and Mills, S.: On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions, Mineral. Mag., 83, 627–632. https://doi.org/10.1180/mgm.2019.55, 2019b.
Cámara, F., Cossio, R., Regis, D., Cerantola, V., Ciriotti, M. E., and Compagnoli, R.: Beltrandoite, a new root-name in the högbomite supergroup: the Mg end-member magnesiobeltrandoite-2N3S, Eur. J. Mineral., 30, 545–558, https://doi.org/10.1127/ejm/2017/0029-2692, 2018.
Chappell, H. F., Thom, W., Bowron, D. T., Faria, N., Hasnip, P. J., and Powell, J. J.: Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modelling, Phys. Rev. Mater., 1, 036002, https://doi.org/10.1103/PhysRevMaterials.1.036002, 2017.
Cheetham, K., Hibble, S. J., and Wakerley, H. R.: Comparison between Mo-Mo and W-W bonding in oxide clusters: crystal structure of Zn2MoW2O8 determined by TOF powder neutron diffraction, Inorg. Chem., 28, 1203–1204, 1989.
Chukanov, N. V., Jančev, S., and Pekov, I. V.: The association of oxygen-bearing minerals of chalcophile elements in the orogenetic zone related to the “mixed series” complex near Nežilovo, Republic of Macedonia, Macedonian J. Chem. Chem. Eng., 34, 115–124, https://doi.org/10.20450/mjcce.2015.612, 2015.
Chukanov, N. V., Krzhizhanovskaya, M. G., Jančev, S., Pekov, I. V., Varlamov, D. A., Göttlicher, J., Rusakov, V. S., Polekhovsky, Yu. S., Chervonnyi, A. D., and Ermolaeva, V. N.: Zincovelesite-6N6S, Zn3(Fe3+,Mn3+,Al,Ti)8O15(OH), a new högbomite-supergroup mineral from Jacupica mountains, Republic of Macedonia, Mineral. Petrol., 112, 733–742, https://doi.org/10.1007/s00710-018-0555-1, 2018.
Chukhrov, F. V., Zvyagin, B. B., Gorshkov, A. I., Ermilova, L. P., and Balashova, V. V.: Ferrihydrite, Int. Geol. Rev., 16, 1131–1143, 1973.
Cismasu, A. C., Michel, F. M., Tcaciuc, A. P., Tyliszczak, T., and Brown, G. E.: Composition and structural aspects of naturally occurring ferrihydrite, Comptes Rendus Geosci., 343, 210–218, https://doi.org/10.1016/j.crte.2010.11.001, 2011.
Cook, D. S., Lees, M. R., Fisher, J. M., Thompsett, D., and Walton, R. I.: Ga2.52V2⋅48O7⋅33(OH)0.67, a synthetic member of the nolanite/akdalaite-type family of oxyhydroxides containing trivalent vanadium, J. Solid State Chem., 288, 121396, https://doi.org/10.1016/j.jssc.2020.121396, 2020.
Drits, V. A., Sakharov, B. A., Salyn, A. L., and Manceau, A.: Structural model for ferrihydrite, Clay Miner., 28, 185–207, 1993.
Eggleton, R. A. and Fitzpatrick, R. W.: New data and a revised structural model for ferrihydrite, Clays Clay Miner., 36, 111–124, 1988.
Funnell, N. P., Fulford, M. F., Inoué, S., Kletetschka, K., Michel, F. M., and Goodwin, A.L.: Nanocomposite structure of two-line ferrihydrite powder from total scattering, Communications Chem., 3, 22, https://doi.org/10.1038/s42004-020-0269-2, 2020.
Gatehouse, B. M., Gray, I. E., and Nickel, E. H.: The crystal chemistry of nolanite, (V,Fe,Ti,Al)l0014(OH)2 from Kalgoorlie, Western Australia, Am. Mineral., 68, 833–839, 1983.
Hanson, A. W.: The crystal structure of nolanite, Acta Crystallogr., 11, 703–709, 1958.
Hao, C., Li, X., Huang, H., Ge, L., Fu, Z., Lu, Y., Wang, Y., Zhang, S., and Cheng, Z.: Simultaneous activation of different coordination sites in single-phase FeCoMo3O8 for the oxygen evolution reaction, ACS Energy Lett., 8, 4506–4513, 2023.
Harrison, P. M., Fischbach, F. A., Hoy, T. G., and Haggis, G. H.: Ferric oxyhydroxide core of ferritin, Nature, 216, 1188–1190, 1967.
Hatert, F., Mills, S. J., Pasero, M., and Williams, P. A.: CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names, Eur. J. Mineral., 25, 113–115, https://doi.org/10.1127/0935-1221/2013/0025-2267, 2013.
Hawthorne, F. C. and Gagné, O. C.: New ion radii for oxides and oxysalts, fluorides, chlorides and nitrides, Acta Crystallogr., 80, 326–339, https://doi.org/10.1107/S2052520624005080, 2024.
Hejny, C. and Armbruster, T.: Polysomatism in högbomite: The crystal structures of 10T, 12H, 14T, and 24R polysomes, Am. Mineral., 87, 277–292, 2002.
Holtstam, D., Gatedal, K., Söderberg, K., and Norrestam, R.: Rinmanite, Zn2Sb2Mg2Fe4O14(OH)2, a new mineral species with a nolanite-type structure from the Garpenberg Norra mine, Dalarna, Sweden, Canad. Mineral., 39, 1675–1683, 2001.
Huminicki, D. M. C. and Hawthorne, F. C.: Refinement of the crystal structure of swedenborgite, Canad. Mineral., 39, 153–158, 2001.
Hwang, S. L., Shen, P. Y., Chu, H. T., and Yui, T. F.: A new occurrence and new data on akdalaite, a retrograde mineral from UHP whiteschist, Kokchetav massif, northern Kazakhstan, Int. Geol. Rev., 48, 754–764, 2006.
Johan, Z. and Picot, P.: Kamiokite, Fe2Mo3O8, a tetravalent molybdenum oxide: new data and occurrences, Tschermaks Mineral. Petrogr. Mitt., 35, 67–75, 1986.
Kanazawa, Y. and Sasaki, A.: Structure of kamiokite. Acta Crystallog., C42, 9–11, 1986.
Knorr, R., and Mueller, U.: η-Mo4O11 und Mg2Mo3O8: eine neue Synthese und Verfeinerung ihrer Kristallstrukturen, Z. Anorg. Allgemeine Chemie, 621, 541–545, 1995 (in German).
Liu, P., Gu, X., Zhang, W., Hu, H., Chen, X., Wang, X., Song, W., Yu, M., and Cook, N. J.: Jingwenite-(Y) from the Yushui Cu deposit, South China: The first occurrence of a V-HREE-bearing silicate mineral, Am. Mineral., 108, 192–196, 2023.
Ma, C. and Beckett, J. R.: Majindeite, Mg2Mo3O8, a new mineral from the Allende meteorite and a witness to post-crystallization oxidation of a Ca-Al-rich refractory inclusion, Am. Mineral., 101, 1161–1170, 2016.
Manceau, A. and Drits, V. A.: Local Structure of Ferrihydrite and Feroxyhite by Exafs Spectroscopy, Clay Miner., 28, 165–184, 1993.
Manceau, A., Skanthakumar, S., and Soderholm, L.: PDF analysis of ferrihydrite: Critical assessment of the under-constrained akdalaite model, Am. Mineral., 99, 102–108, 2014.
Michel, M. F., Ehm, L., Antao, S. M., Lee, P. L., Chupas, P. J., Liu, G., Strongin, D. R., Schoonen, M. A. A., Phillips, B. L., and Parise, J. B.: The structure of ferrihydrite, a nanocrystalline material, Science, 316, 1726–1729, https://doi.org/10.1126/science.1142525, 2007.
Michel, F. M., Barrón, V., Torrent, J., Morales, M. P., Serna, C. J., and Boily, J.-F., Qingsong, L., Ambrosinig, A., Cismasu, A. C., and Brown Jr., G. E.: Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism, P. Natl. Acad. Sci. USA, 107, 2787–2792, 2010.
Morey, J. R., Scheie, A., Sheckelton, J. P., Brown, C. M., and McQueen, T. M.: Ni2Mo3O8: Complex antiferromagnetic order on a honeycomb lattice, Phys. Rev. Mater., 3, 014410, https://doi.org/10.1103/PhysRevMaterials.3.014410, 2019.
Nishio-Hamane, D., Tomita, N., Minakawa, T., and Inaba, D.: Iseite, Mn2Mo3O8, a new mineral from Ise, Mie Prefecture, Japan, J. Mineral. Petrol. Sci., 108, 37–41, 2013.
Novgorodova, M. I. and Mamedov, Y. G.: Native aluminum from mud volcano at the Bulla island, Caspian sea, Lithology Mineral Resources, 31, 301–310, 1996.
Parise, J. B., Xia, B., Simonson, J. W., Woerner, W. R., Plonka, A. M., Phillips, B. L., and Ehm, L.: Structural chemistry of akdalaite, Al10O14(OH)2, the isostructural aluminum analogue of ferrihydrite, Crystals, 9, 246, https://doi.org/10.3390/cryst9050246, 2019.
Prodan, L., Filippova, I., Zubtsovskii, A. O., Shova, S., Widmann, S., Tsirlin, A. A., Kézsmárki, I., and Tsurkan, V.: Dilution of a polar magnet: Structure and magnetism of Zn-substituted Co2Mo3O8, Phys. Rev., B106, 174421, https://doi.org/10.1103/PhysRevB.106.174421, 2022.
Playford, H. Y., Hannon, A. C., Barney, E. R., and Walton, R. I.: Structures of uncharacterized polymorphs of gallium oxide from total neutron diffraction, Chem. Eur. J., 19, 2803–2813, 2013.
Robinson, S. C., Evans Jr., H. T.,, Schaller, W. T., and Fahey, J. J.: Nolanite, a new iron-vanadium mineral from Beaverlodge, Saskatchewan, Am. Mineral., 42, 619–628, 1957.
Sasaki, A., Yui, S., and Yamaguchi, M.: Kamiokite, Fe2Mo3O8, a new mineral, Mineral. J. (Japan), 12, 393–399, 1985.
Sassi, M. and Rosso, K. M.: Roles of hydration and magnetism on the structure of ferrihydrite from first principles, ACS Earth and Space Chem., 3, 70–78, 2019.
Shpanov, Ye. P., Sidorenko, G. A., and Stolyarova, T. I.: Akdalaite, a new hydrated variety of alumina, Intern. Geol. Rev., 13, 675–680, 1971.
Taylor, C. M. and Radtke, A. S.: New occurrence and data of nolanite, Am. Mineral., 52, 734–743, 1967.
Tilley, D. B. and Eggleton, R. A.: The natural occurrence of eta-alumina (η-Al2O3) in bauxite, Clays Clay Miner., 44, 658–664, 1996.
Torardi, C. C. and McCarley, R. E.: Synthesis, crystal structures, and properties of LiZn2Mo3O8, Zn3Mo3O8, ScZnMo3O8, reduced derivatives containing the Mo3O13 cluster unit, Inorg. Chem., 24, 476–481, 1985.
Towe, K. M. and Bradley, W. F.: Mineralogical constitution of colloidal “hydrous ferric oxides”, J. Colloid Interface Sci., 24, 384–392, 1967.
Voloshin, A. V., Karpov, S. M., Isaenko, S. I., Chernyavsky, A. V., and Sergeeva, N. E.: Raman spectroscopy of vanadium association minerals in massive sulfide deposits of the pyrrhotite gorge (Kola region, Russia) and Vihanti (Finland), Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc. Russ. Mineral. Soc.), 143, 55–60, 2014 (in Russian).
Yamaguchi, G., Yanagida, H., and Ono, S.: The crystal structure of tohdite, Bull. Chem. Soc. Japan, 37, 1555–1557, 1964.
Yamaguchi, G., Okumiya, M., and Ono, S.: Refinement of the structure of tohdite 5Al2O3⋅H2O, Bull. Chem. Soc. Japan, 42, 2247–2249, 1969.
Zhang, X., Yan, W., and Xie, Y.: Synthetic nolanite Fe2.5V1.5V5.6O16 nanocrystals: a new room-temperature magnetic semiconductor with semiconductor-insulator transition, Chem. Commun., 47, 11252–11254, 2011.
Short summary
The nolanite supergroup has been established and approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association. It contains eight mineral species with the nolanite-type structure. The nolanite supergroup is subdivided into three groups (nolanite, kamiokite, and rinmanite groups). After significant changes, the classification of the nolanite supergroup was approved again.
The nolanite supergroup has been established and approved by the Commission on New Minerals,...