Articles | Volume 36, issue 5
https://doi.org/10.5194/ejm-36-767-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-767-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-pressure Ca metasomatism of metabasites (Mont Avic, Western Alps): insights into fluid–rock interaction during subduction
Kilian Lecacheur
CORRESPONDING AUTHOR
Chrono-environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25000 Besançon, France
Olivier Fabbri
Chrono-environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25000 Besançon, France
Francesca Piccoli
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, 3012 Bern, Switzerland
Pierre Lanari
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, 3012 Bern, Switzerland
Institute of Earth Sciences, University of Lausanne, Géopolis, 1005 Lausanne, Switzerland
Philippe Goncalves
Chrono-environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25000 Besançon, France
Henri Leclère
Chrono-environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25000 Besançon, France
Related authors
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024, https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Short summary
Predicting the behaviour of magmatic systems is important for understanding Earth's matter and heat transport. Numerical modelling is a technique that can predict complex systems at different scales of space and time by solving equations using various techniques. This study tests four algorithms to find the best way to transport the melt composition. The "weighted essentially non-oscillatory" algorithm emerges as the best choice, minimising errors and preserving system mass well.
Julien Reynes, Jörg Hermann, Pierre Lanari, and Thomas Bovay
Eur. J. Mineral., 35, 679–701, https://doi.org/10.5194/ejm-35-679-2023, https://doi.org/10.5194/ejm-35-679-2023, 2023
Short summary
Short summary
Garnet is a high-pressure mineral that may incorporate very small amounts of water in its structure (tens to hundreds of micrograms per gram H2O). In this study, we show, based on analysis and modelling, that it can transport up to several hundred micrograms per gram of H2O at depths over 80 km in a subduction zone. The analysis of garnet from the various rock types present in a subducted slab allowed us to estimate the contribution of garnet in the deep cycling of water in the earth.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Veronica Peverelli, Tanya Ewing, Daniela Rubatto, Martin Wille, Alfons Berger, Igor Maria Villa, Pierre Lanari, Thomas Pettke, and Marco Herwegh
Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, https://doi.org/10.5194/gchron-3-123-2021, 2021
Short summary
Short summary
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges of epidote dating are addressed, and a protocol is proposed allowing us to obtain epidote U–Pb ages with a precision as good as 5 % in addition to the initial Pb isotopic composition of the epidote-forming fluid. Epidote demonstrates its potential to be used as a U–Pb geochronometer and as a fluid tracer, allowing us to reconstruct the timing of hydrothermal activity and the origin of the fluid(s).
Felix Hentschel, Emilie Janots, Claudia A. Trepmann, Valerie Magnin, and Pierre Lanari
Eur. J. Mineral., 32, 521–544, https://doi.org/10.5194/ejm-32-521-2020, https://doi.org/10.5194/ejm-32-521-2020, 2020
Short summary
Short summary
We analysed apatite–allanite/epidote coronae around monazite and xenotime in deformed Permian pegmatites from the Austroalpine basement. Microscopy, chemical analysis and EBSD showed that these coronae formed by dissolution–precipitation processes during deformation of the host rocks. Dating of monazite and xenotime confirmed the magmatic origin of the corona cores, while LA-ICP-MS dating of allanite established a date of ~ 60 Ma for corona formation and deformation in the Austroalpine basement.
Alice Vho, Pierre Lanari, Daniela Rubatto, and Jörg Hermann
Solid Earth, 11, 307–328, https://doi.org/10.5194/se-11-307-2020, https://doi.org/10.5194/se-11-307-2020, 2020
Short summary
Short summary
This study presents an approach that combines equilibrium thermodynamic modelling with oxygen isotope fractionation modelling for investigating fluid–rock interaction in metamorphic systems. An application to subduction zones shows that chemical and isotopic zoning in minerals can be used to determine feasible fluid sources and the conditions of interaction. Slab-derived fluids can cause oxygen isotope variations in the mantle wedge that may result in anomalous isotopic signatures of arc lavas.
Laura Stutenbecker, Peter M. E. Tollan, Andrea Madella, and Pierre Lanari
Solid Earth, 10, 1581–1595, https://doi.org/10.5194/se-10-1581-2019, https://doi.org/10.5194/se-10-1581-2019, 2019
Short summary
Short summary
The Aar and Mont Blanc regions in the Alps are large granitoid massifs characterized by high topography. We analyse when these granitoids were first exhumed to the surface. We test this by tracking specific garnet grains, which are exclusively found in the granitoid massifs, in the sediments contained in the alpine foreland basin. This research ties in with ongoing debates on the timing and mechanisms of mountain building.
Francesco Giuntoli, Pierre Lanari, and Martin Engi
Solid Earth, 9, 167–189, https://doi.org/10.5194/se-9-167-2018, https://doi.org/10.5194/se-9-167-2018, 2018
Short summary
Short summary
Continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses under high-pressure conditions.
Francesco Giuntoli, Pierre Lanari, Marco Burn, Barbara Eva Kunz, and Martin Engi
Solid Earth, 9, 191–222, https://doi.org/10.5194/se-9-191-2018, https://doi.org/10.5194/se-9-191-2018, 2018
Short summary
Short summary
Subducted continental terranes commonly comprise an assembly of subunits that reflect the different tectono-metamorphic histories they experienced in the subduction zone. Our challenge is to unravel how, when, and in which part of the subduction zone these subunits were juxtaposed. Our study documents when and in what conditions re-equilibration took place. Results constrain the main stages of mineral growth and deformation, associated with fluid influx that occurred in the subduction channel.
A. Vallet, C. Bertrand, O. Fabbri, and J. Mudry
Hydrol. Earth Syst. Sci., 19, 427–449, https://doi.org/10.5194/hess-19-427-2015, https://doi.org/10.5194/hess-19-427-2015, 2015
Related subject area
Fluid-rock interaction
Multiple growth of zirconolite in marble (Mogok metamorphic belt, Myanmar): evidence for episodes of fluid metasomatism and Zr–Ti–U mineralization in metacarbonate systems
Contact metamorphic reactions and fluid–rock interactions related to magmatic sill intrusion in the Guaymas Basin
Pervasive carbonation of peridotite to listvenite (Semail Ophiolite, Sultanate of Oman): clues from iron partitioning and chemical zoning
Qian Guo, Shun Guo, Yueheng Yang, Qian Mao, Jiangyan Yuan, Shitou Wu, Xiaochi Liu, and Kyaing Sein
Eur. J. Mineral., 36, 11–29, https://doi.org/10.5194/ejm-36-11-2024, https://doi.org/10.5194/ejm-36-11-2024, 2024
Short summary
Short summary
We investigate the occurrence, texture, composition, and chronology of three types of zirconolite in dolomite marbles from the Mogok metamorphic belt, Myanmar. These zirconolites, which were formed by multiple episodes of fluid–marble interaction, record the time-resolved fluid infiltration history in metacarbonates and reactive fluid compositions from ~35 to ~19 Ma. Zirconolite is expected to play a more important role in orogenic CO2 release and the transfer and deposition of rare metals.
Alban Cheviet, Martine Buatier, Flavien Choulet, Christophe Galerne, Armelle Riboulleau, Ivano Aiello, Kathleen M. Marsaglia, and Tobias W. Höfig
Eur. J. Mineral., 35, 987–1007, https://doi.org/10.5194/ejm-35-987-2023, https://doi.org/10.5194/ejm-35-987-2023, 2023
Short summary
Short summary
The present study is based on sample chemical and mineralogical analyses of oceanic sediment and rock that were collected in the Guaymas Basin during IODP Expedition 385. The contact aureoles are not only affected by maturation of organic matter and dehydration reaction, but mineralogical reactions concern all sediment components (silicates, sulfides, carbonates, organic matter) and can be the result of the combination of different stages of alteration during and after the sill emplacement.
Thierry Decrausaz, Marguerite Godard, Manuel D. Menzel, Fleurice Parat, Emilien Oliot, Romain Lafay, and Fabrice Barou
Eur. J. Mineral., 35, 171–187, https://doi.org/10.5194/ejm-35-171-2023, https://doi.org/10.5194/ejm-35-171-2023, 2023
Short summary
Short summary
The carbonation of peridotites occurs during the fluxing of reactive CO2-bearing fluids, ultimately producing listvenites (magnesite and quartz assemblage). We studied the most extended outcrops of listvenites worldwide, found at the base of the Semail Ophiolite (Oman). Our study highlights the partitioning of iron during early pervasive carbonation revealed by chemical zoning in matrix magnesites, and we discuss the conditions favoring the formation of Fe-rich magnesite.
Cited articles
Ague, J. J.: Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut. II: Channelized fluid flow and the growth of staurolite and kyanite, Am. J. Sci., 294, 1061–1134, https://doi.org/10.2475/ajs.294.9.1061, 1994.
Ague, J. J.: Extreme channelization of fluid and the problem of element mobility during Barrovian metamorphism, Am. Mineral., 96, 333–352, https://doi.org/10.2138/am.2011.3582, 2011.
Ague, J. J.: Fluid Flow in the Deep Crust, in: Treatise on Geochemistry: Second Edition, vol. 4, Elsevier, 203–247, https://doi.org/10.1016/B978-0-08-095975-7.00306-5, 2013.
Ague, J. J. and Carlson, W. D.: Metamorphism as garnet sees it: The kinetics of nucleation and growth, equilibration, and diffusional relaxation, Elements, 9, 439–445, https://doi.org/10.2113/gselements.9.6.439, 2013.
Ague, J. J. and Nicolescu, S.: Carbon dioxide released from subduction zones by fluid-mediated reactions, Nat. Geosci., 7, 355–360, https://doi.org/10.1038/ngeo2143, 2014.
Ague, J. J. and Van Haren, J. L. M.: Assessing metasomatic mass and volume changes using the bootstrap, with application to deep crustal hydrothermal alteration of marble, Econ. Geol., 91, 1169–1182, https://doi.org/10.2113/gsecongeo.91.7.1169, 1996.
Amato, J. M., Johnson, C. M., Baumgartner, L. P., and Beard, B. L.: Rapid exhumation of the Zermatt–Saas ophiolite deduced from high-precision Sm–Nd and Rb–Sr geochronology, Earth Planet. Sc. Lett., 171, 425–438, https://doi.org/10.1016/S0012-821X(99)00161-2, 1999.
Angiboust, S. and Agard, P.: Initial water budget: The key to detaching large volumes of eclogitized oceanic crust along the subduction channel?, Lithos, 120, 453–474, https://doi.org/10.1016/j.lithos.2010.09.007, 2010.
Angiboust, S., Agard, P., Jolivet, L., and Beyssac, O.: The Zermatt-Saas ophiolite: the largest (60-km wide) and deepest (c. 70–80 km) continuous slice of oceanic lithosphere detached from a subduction zone?, Terra Nova, 21, 171–180, https://doi.org/10.1111/j.1365-3121.2009.00870.x, 2009.
Angiboust, S., Agard, P., Raimbourg, H., Yamato, P., and Huet, B.: Subduction interface processes recorded by eclogite-facies shear zones (Monviso, W. Alps), Lithos, 127, 222–238, https://doi.org/10.1016/j.lithos.2011.09.004, 2011.
Angiboust, S., Agard, P., Yamato, P., and Raimbourg, H.: Eclogite breccias in a subducted ophiolite: A record of intermediate-depth earthquakes?, Geology, 40, 707–710, https://doi.org/10.1130/G32925.1, 2012a.
Angiboust, S., Langdon, R., Agard, P., Waters, D., and Chopin, C.: Eclogitization of the Monviso ophiolite (W. Alps) and implications on subduction dynamics, J. Metamorph. Geol., 30, 37–61, https://doi.org/10.1111/j.1525-1314.2011.00951.x, 2012b.
Angiboust, S., Pettke, T., De Hoog, J. C. M., Caron, B., and Oncken, O.: Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone, J. Petrol., 55, 883–916, https://doi.org/10.1093/petrology/egu010, 2014a.
Angiboust, S., Glodny, J., Oncken, O., and Chopin, C.: In search of transient subduction interfaces in the Dent Blanche–Sesia Tectonic System (W. Alps), Lithos, 205, 298–321, https://doi.org/10.1016/j.lithos.2014.07.001, 2014b.
Angiboust, S., Yamato, P., Hertgen, S., Hyppolito, T., Bebout, G. E., and Morales, L.: Fluid pathways and high-P metasomatism in a subducted continental slice (Mt. Emilius klippe, W. Alps), J. Metamorph. Geol., 35, 471–492, https://doi.org/10.1111/jmg.12241, 2017.
Atherton, M. P.: The Variation in Garnet, Biotite and Chlorite Composition in Medium Grade Pelitic Rocks from the Dalradian, Scotland, with Particular Reference to the Zonation in Garnet, Contrib. Mineral. Petr., 18, 347–371, https://doi.org/10.1007/BF00399696, 1968.
Ayers, J. C. and Watson, E. B.: Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry, Philos. T. Roy. Soc. A, 335, 365–375, https://doi.org/10.1098/rsta.1991.0052, 1991.
Bach, W. and Klein, F.: The petrology of seafloor rodingites: insights from geochemical reaction path modeling, Lithos, 112, 103–117, https://doi.org/10.1016/j.lithos.2008.10.022, 2009.
Ballèvre, M., Kienast, J.-R., and Vuichard, J.-P.: La “nappe de la Dent-Blanche” (Alpes occidentales): deux unités austroalpines indépendantes, Eclogae Geol. Helv., 79, 57–74, 1986.
Barnicoat, A. C. and Fry, N.: High-pressure metamorphism of the Zermatt-Saas ophiolite zone, Switzerland, J. Geol. Soc. London, 143, 607–618, https://doi.org/10.1144/gsjgs.143.4.0607, 1986.
Bearth, P.: Die Ophiolithe der Zone von Zermatt-Saas Fee, Beiträge zur Geol. Karte der Schweiz, 132, 130, 1967.
Bebout, G. E.: Metasomatism in Subduction Zones of Subducted Oceanic Slabs, Mantle Wedges, and the Slab-Mantle Interface, in: Lecture Notes in Earth System Sciences, vol. 0, Springer International Publishing, 289–349, https://doi.org/10.1007/978-3-642-28394-9_9, 2013.
Bebout, G. E. and Barton, M. D.: Metasomatism during subduction: products and possible paths in the Catalina Schist, California, Chem. Geol., 108, 61–92, https://doi.org/10.1016/0009-2541(93)90318-D, 1993.
Bebout, G. E. and Barton, M. D.: Tectonic and metasomatic mixing in a high-T, subduction-zone mélange–insights into the geochemical evolution of the slab–mantle interface, Chem. Geol., 187, 79–106, https://doi.org/10.1016/S0009-2541(02)00019-0, 2002.
Bedford, J., Fusseis, F., Leclère, H., Wheeler, J., and Faulkner, D.: A 4D view on the evolution of metamorphic dehydration reactions, Sci. Rep., 7, 1–7, https://doi.org/10.1038/s41598-017-07160-5, 2017.
Beinlich, A., Klemd, R., John, T., and Gao, J.: aTrace-element mobilization during Ca-metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid–rock interaction, Geochim. Cosmochim. Ac., 74, 1892–1922, https://doi.org/10.1016/j.gca.2009.12.011, 2010.
Beltrando, M., Manatschal, G., Mohn, G., Dal Piaz, G. V., Vitale-Brovarone, A., and Masini, E.: Recognizing remnants ofmagma-poor rifted margins in high-pressure orogenic belts: The Alpine case study, Earth-Sci. Rev., 131, 88–115, https://doi.org/10.1016/j.earscirev.2014.01.001, 2014.
Bovay, T., Rubatto, D., and Lanari, P.: Pervasive fluid-rock interaction in subducted oceanic crust revealed by oxygen isotope zoning in garnet, Contrib. Mineral. Petr., 176, 55, https://doi.org/10.1007/s00410-021-01806-4, 2021.
Bovay, T., Lanari, P., Rubatto, D., Smit, M., and Piccoli, F.: Pressure–temperature–time evolution of subducted crust revealed by complex garnet zoning (Theodul Glacier Unit, Switzerland), J. Metamorph. Geol., 40, 175–206, https://doi.org/10.1111/jmg.12623, 2022.
Bowtell, S. A., Cliff, R. A., and Barnicoat, A. C.: Sm-Nd isotopic evidence on the age of eclogitization in the Zermatt-Saas ophiolite, J. Metamorph. Geol., 12, 187–196, https://doi.org/10.1111/j.1525-1314.1994.tb00013.x, 1994.
Brandt, S. and Schenk, V.: Metamorphic Response to Alpine Thrusting of a Crustal-scale Basement Nappe in Southern Calabria (Italy), J. Petrol., 61, 1–39, https://doi.org/10.1093/petrology/egaa063, 2020.
Breeding, C. M., Ague, J. J., and Bröcker, M.: Fluid–metasedimentary rock interactions in subduction-zone mélange: Implications for the chemical composition of arc magmas, Geology, 32, 1041–1044, https://doi.org/10.1130/G20877.1, 2004.
Bretscher, A., Hermann, J., and Pettke, T.: The influence of oceanic oxidation on serpentinite dehydration during subduction, Earth Planet. Sc. Lett., 499, 173–184, https://doi.org/10.1016/j.epsl.2018.07.017, 2018.
Broadwell, K. S., Locatelli, M., Verlaguet, A., Agard, P., and Caddick, M. J.: Transient and periodic brittle deformation of eclogites during intermediate-depth subduction, Earth Planet. Sc. Lett., 521, 91–102, https://doi.org/10.1016/j.epsl.2019.06.008, 2019.
Bucher, K., Fazis, Y., de Capitani, C., and Grapes, R.: Blueschists, eclogites, and decompression assemblages of the Zermatt-Saas ophiolite: High-pressure metamorphism of subducted Tethys lithosphere, Am. Mineral., 90, 821–835, https://doi.org/10.2138/am.2005.1718, 2005.
Caddick, M. J., Konopásek, J., and Thompson, A. B.: Preservation of garnet growth zoning and the duration of prograde metamorphism, J. Petrol., 51, 2327–2347, https://doi.org/10.1093/petrology/egq059, 2010.
Cannat, M., Fontaine, F., and Escartín, J.: Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges, in: Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, AGU, 241–264, https://doi.org/10.1029/2008GM000760, 2010.
Carlson, W. D. and Gordon, C. L.: Effects of matrix grain size on the kinetics of intergranular diffusion, J. Metamorph. Geol., 22, 733–742, https://doi.org/10.1111/j.1525-1314.2004.00545.x, 2004.
Carmichael, I. S.: Igneous petrology, Igneous Petrol., https://doi.org/10.1016/0377-0273(85)90080-0, 1974.
Cartwright, I. and Barnicoat, A. C.: Petrology, geochronology, and tectonics of shear zones in the Zermatt–Saas and Combin zones of the Western Alps, J. Metamorph. Geol., 20, 263–281, https://doi.org/10.1046/J.0263-4929.2001.00366.X, 2002.
Coleman, R. G.: Low-temperature reaction zones and alpine ultramafic rocks of California, Oregon, and Washington, Geol. Surv. Bull., 1247, 46, 1967.
Connolly, J. A. D.: Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sc. Lett., 236, 524–541, https://doi.org/10.1016/j.epsl.2005.04.033, 2005.
Connolly, J. A. D.: The mechanics of metamorphic fluid expulsion, Elements, 6, 165–172, https://doi.org/10.2113/gselements.6.3.165, 2010.
Connolly, J. A. D. and Galvez, M. E.: Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer, Earth Planet. Sc. Lett., 501, 90–102, https://doi.org/10.1016/j.epsl.2018.08.024, 2018.
Connolly, J. A. D. and Podladchikov, Y. Y.: Decompaction weakening and channeling instability in ductile porous media: Implications for asthenospheric melt segregation, J. Geophys. Res.-Sol. Ea., 112, 10205, https://doi.org/10.1029/2005JB004213, 2007.
Cygan, R. T. and Lasaga, A. C.: Crystal growth and the formation of chemical zoning in garnets, Contrib. Mineral. Petr., 79, 187–200, https://doi.org/10.1007/BF01132887, 1982.
Dai, J. G., Wang, C. S., Liu, S. A., Qian, X. Y., Zhu, D. C., and Ke, S.: Deep carbon cycle recorded by calcium-silicate rocks (rodingites) in a subduction-related ophiolite, Geophys. Res. Lett., 43, 11635–11643, https://doi.org/10.1002/2016GL070474, 2016.
Dal Piaz, G., Cortiana, G., Del Moro, A., Martin, S., Pennacchioni, G., and Tartarotti, P.: Tertiary age and paleostructural inferences of the eclogitic imprint in the Austroalpine outliers and Zermatt-Saas ophiolite, Western Alps, Int. J. Earth Sci., 90, 668–684, https://doi.org/10.1007/s005310000177, 2001.
Dal Piaz, G. V. and Nervo, R.: Il lembo di ricoprimento del Glacier-Rafray (Dent Blanche s.l.), Boll. Soc. Geol. Ital., 90, 401–414, 1971.
Deschamps, F., Godard, M., Guillot, S., and Hattori, K.: Geochemistry of subduction zone serpentinites: A review, Lithos, 178, 96–127, https://doi.org/10.1016/j.lithos.2013.05.019, 2013.
Dragovic, B., Angiboust, S., and Tappa, M. J.: Petrochronological close-up on the thermal structure of a paleo-subduction zone (W. Alps), Earth Planet. Sc. Lett., 547, 116446, https://doi.org/10.1016/j.epsl.2020.116446, 2020.
Dziggel, A., Wulff, K., Kolb, J., Meyer, F. M., and Lahaye, Y.: Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet: Evidence from the Navachab gold deposit, Namibia, Chem. Geol., 262, 262–276, https://doi.org/10.1016/j.chemgeo.2009.01.027, 2009.
Ellero, A. and Loprieno, A.: Nappe stack of Piemonte–Ligurian units south of Aosta Valley: New evidence from Urtier Valley (Western Alps), Geol. J., 53, 1665–1684, https://doi.org/10.1002/gj.2984, 2018.
Engi, M., Giuntoli, F., Lanari, P., Burn, M., Kunz, B., and Bouvier, A. S.: Pervasive Eclogitization Due to Brittle Deformation and Rehydration of Subducted Basement: Effects on Continental Recycling?, Geochem. Geophy. Geosy., 19, 865–881, https://doi.org/10.1002/2017GC007215, 2018.
Ernst, W. G. and Dal Piaz, G. V.: Mineral parageneses of eclogitic rocks and related mafic schists of the Piemonte ophiolite nappe, Breuil-St. Jacques area, Italian Western Alps, Am. Mineral., 63, 621–640, 1978.
Evans, T. P.: A method for calculating effective bulk composition modification due to crystal fractionation in garnet-bearing schist: implications for isopleth thermobarometry, J. Metamorph. Geol., 22, 547–557, https://doi.org/10.1111/j.1525-1314.2004.00532.x, 2004.
Faccenda, M., Gerya, T. V., Mancktelow, N. S., and Moresi, L.: Fluid flow during slab unbending and dehydration: Implications for intermediate-depth seismicity, slab weakening and deep water recycling, Geochem. Geophy. Geosy., 13, 8170, https://doi.org/10.1029/2011GC003860, 2012.
Fassmer, K., Obermüller, G., Nagel, T. J., Kirst, F., Froitzheim, N., Sandmann, S., Miladinova, I., Fonseca, R. O. C., and Münker, C.: High-pressure metamorphic age and significance of eclogite-facies continental fragments associated with oceanic lithosphere in the Western Alps (Etirol-Levaz Slice, Valtournenche, Italy), Lithos, 252–253, 145–159, https://doi.org/10.1016/j.lithos.2016.02.019, 2016.
Fazio, E., Cirrincione, R., and Pezzino, A.: Garnet crystal growth in sheared metapelites (southern Calabria-Italy): Relationships between isolated porphyroblasts and coalescing euhedral crystals, Period. Mineral., 78, 3–18, https://doi.org/10.2451/2009PM0001, 2009.
Feenstra, A., Petrakakis, K., and Rhede, D.: Variscan relicts in Alpine high-P pelitic rocks from Samos (Greece): evidence from multi-stage garnet and its included minerals, J. Metamorph. Geol., 25, 1011–1033, https://doi.org/10.1111/j.1525-1314.2007.00741.x, 2007.
Ferry, J. M. and Gerdes, M. L.: Chemically reactive fluid flow during metamorphism, Annu. Rev. Earth Planet. Sc., 26, 255–287, https://doi.org/10.1146/annurev.earth.26.1.255, 1998.
Fontana, E., Panseri, M., and Tartarotti, P.: Oceanic relict textures in the Mount Avic serpentinites, Western Alps, Ofioliti, 33, 105–118, 2008.
Fontana, E., Tartarotti, P., Panseri, M., and Buscemi, S.: Geological map of the Mount Avic massif (Western Alps Ophiolites), J. Maps, 11, 126–135, https://doi.org/10.1080/17445647.2014.959567, 2015.
Frost, R. B.: Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington, J. Petrol., 16, 272–313, https://doi.org/10.1093/petrology/16.2.272, 1975.
Frost, R. B. and Beard, J. S.: On Silica Activity and Serpentinization, J. Petrol., 48, 1351–1368, https://doi.org/10.1093/petrology/egm021, 2007.
Gaidies, F., Morneau, Y. E., Petts, D. C., Jackson, S. E., Zagorevski, A., and Ryan, J. J.: Major and trace element mapping of garnet: Unravelling the conditions, timing and rates of metamorphism of the Snowcap assemblage, west-central Yukon, J. Metamorph. Geol., 39, 133–164, https://doi.org/10.1111/jmg.12562, 2021.
García-Casco, A., Torres-Roldán, R. L., Millán, G., Monié, P., and Schneider, J.: Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba: A record of tectonic instability during subduction?, J. Metamorph. Geol., 20, 581–598, https://doi.org/10.1046/j.1525-1314.2002.00390.x, 2002.
Gasco, I., Gattiglio, M., and Borghi, A.: Lithostratigraphic setting and P-T metamorphic evolution for the Dora Maira Massif along the Piedmont Zone boundary (middle Susa Valley, NW Alps), Int. J. Earth Sci., 100, 1065–1085, https://doi.org/10.1007/s00531-011-0640-8, 2011.
Gerrits, A. R., Inglis, E., Dragovic, B., Starr, P. G., Baxter, E. F., and Burton, K. W.: Tracing the source of oxidizing fluids in subduction zones using iron isotopes in garnet, Nat. Geosci., 12, 1029–1033, https://doi.org/10.1038/s41561-019-0471-y, 2019.
Gilio, M., Scambelluri, M., Agostini, S., Godard, M., Pettke, T., Agard, P., Locatelli, M., and Angiboust, S.: Fingerprinting and relocating tectonic slices along the plate interface: Evidence from the Lago Superiore unit at Monviso (Western Alps), Lithos, 352–353, 105308, https://doi.org/10.1016/j.lithos.2019.105308, 2020.
Giuntoli, F., Lanari, P., and Engi, M.: Deeply subducted continental fragments – Part 1: Fracturing, dissolution–precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps), Solid Earth, 9, 167–189, https://doi.org/10.5194/se-9-167-2018, 2018a.
Giuntoli, F., Lanari, P., Burn, M., Kunz, B. E., and Engi, M.: Deeply subducted continental fragments – Part 2: Insight from petrochronology in the central Sesia Zone (western Italian Alps), Solid Earth, 9, 191–222, https://doi.org/10.5194/se-9-191-2018, 2018b.
Giuntoli, F., Vitale-Brovarone, A., and Menegon, L.: feedback between high-pressure genesis of abiotic methane and strain localization in subducted carbonate rocks, Sci. Rep., 101, 1–15, https://doi.org/10.1038/s41598-020-66640-3, 2020.
Green, E. C. R., White, R. W., Diener, J. F. A., Powell, R., Holland, T. J. B., and Palin, R. M.: Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks, J. Metamorph. Geol., 34, 845–869, https://doi.org/10.1111/jmg.12211, 2016.
Groppo, C., Beltrando, M., and Compagnoni, R.: The P–T path of the ultra-high pressure Lago Di Cignana and adjoining high-pressure meta-ophiolitic units: insights into the evolution of the subducting Tethyan slab, J. Metamorph. Geol., 27, 207–231, https://doi.org/10.1111/j.1525-1314.2009.00814.x, 2009.
Gyomlai, T., Agard, P., Marschall, H. R., Jolivet, L., and Gerdes, A.: Metasomatism and deformation of block-in-matrix structures in Syros: The role of inheritance and fluid-rock interactions along the subduction interface, Lithos, 386–387, 105996, https://doi.org/10.1016/j.lithos.2021.105996, 2021.
Hacker, B. R., Peacock, S. M., Abers, G. A., and Holloway, S. D.: Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, J. Geophys. Res.-Sol. Ea., 108, 2030, https://doi.org/10.1029/2001jb001129, 2003.
Halama, R., John, T., Herms, P., Hauff, F., and Schenk, V.: A stable (Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab, Chem. Geol., 281, 151–166, https://doi.org/10.1016/j.chemgeo.2010.12.001, 2011.
Haws, A. A., Starr, P. G., Dragovic, B., Scambelluri, M., Belmonte, D., Caddick, M. J., Broadwell, K. S., Ague, J. J., and Baxter, E. F.: Meta-rodingite dikes as recorders of subduction zone metamorphism and serpentinite dehydration: Voltri Ophiolite, Italy, Chem. Geol., 565, 120077, https://doi.org/10.1016/j.chemgeo.2021.120077, 2021.
Hermann, J. and Rubatto, D.: Accessory phase control on the trace element signature of sediment melts in subduction zones, Chem. Geol., 265, 512–526, https://doi.org/10.1016/j.chemgeo.2009.05.018, 2009.
Herms, P., John, T., Bakker, R. J., and Schenk, V.: Evidence for channelized external fluid flow and element transfer in subducting slabs (Raspas Complex, Ecuador), Chem. Geol., 310–311, 79–96, https://doi.org/10.1016/j.chemgeo.2012.03.023, 2012.
Hertgen, S., Yamato, P., Morales, L. F. G., and Angiboust, S.: Evidence for brittle deformation events at eclogite-facies P-T conditions (example of the Mt. Emilius klippe, Western Alps), Tectonophysics, 706–707, 1–13, https://doi.org/10.1016/j.tecto.2017.03.028, 2017.
Herviou, C. and Bonnet, G.: Paleocene-Eocene High-Pressure Carbonation of Western Alps Serpentinites: Positive Feedback Between Deformation and CO2-CH4 Fluid Ingression Responsible for Slab Slicing?, Geochem. Geophy. Geosy., 24, e2022GC010557, https://doi.org/10.1029/2022GC010557, 2023.
Herwartz, D., Nagel, T. J., Münker, C., Scherer, E. E., and Froitzheim, N.: Tracing two orogenic cycles in one eclogite sample by Lu–Hf garnet chronometry, Nat. Geosci., 4, 178–183, https://doi.org/10.1038/ngeo1060, 2011.
Holland, T. and Powell, R.: Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation, Contrib. Mineral. Petr., 145, 492–501, https://doi.org/10.1007/s00410-003-0464-z, 2003.
Holland, T. J. B. and Powell, R.: An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x, 1998.
Holland, T. J. B. and Powell, R.: An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol., 29, 333–383, https://doi.org/10.1111/j.1525-1314.2010.00923.x, 2011.
Hollister, L. S.: Garnet zoning: an interpretation based on the Rayleigh fractionation model, Science, 154, 1647–1651, https://doi.org/10.1126/science.154.3757.1647, 1966.
Hoover, W. F., Penniston-Dorland, S., Baumgartner, L., Bouvier, A. S., Dragovic, B., Locatelli, M., Angiboust, S., and Agard, P.: Episodic fluid flow in an eclogite-facies shear zone: Insights from Li isotope zoning in garnet, Geology, 50, 746–750, https://doi.org/10.1130/G49737.1, 2022.
Hyndman, R. D. and Peacock, S. M.: Serpentinization of the forearc mantle, Earth Planet. Sc. Lett., 212, 417–432, https://doi.org/10.1016/S0012-821X(03)00263-2, 2003.
Hyppolito, T., Cambeses, A., Angiboust, S., Raimondo, T., García-Casco, A., and Juliani, C.: Rehydration of eclogites and garnet-replacement processes during exhumation in the amphibolite facies, in: Geological Society Special Publication, 478, 217–239, https://doi.org/10.1144/SP478.3, 2019.
Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Andreae, M. O., and Enzweiler, J.: Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials, Geostand. Geoanal. Res., 40, 333–350, https://doi.org/10.1111/j.1751-908X.2015.00392.x, 2016.
John, T. and Schenk, V.: Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia): prograde metamorphism triggered by fluid infiltration, Contrib. Mineral. Petr., 146, 174–191, https://doi.org/10.1007/s00410-003-0492-8, 2003.
Kempf, E. D., Hermann, J., Reusser, E., Baumgartner, L. P., and Lanari, P.: The role of the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland), Swiss J. Geosci., 113, 1–36, https://doi.org/10.1186/S00015-020-00368-0, 2020.
Kerrick, D. M. and Connelly, J. A. D.: Metamorphic devolatilization of subductedmarine sediments and the transport of volatiles into the Earth's mantle, Nature, 411, 293–296, https://doi.org/10.1038/35077056, 2001.
Konrad-Schmolke, M., Handy, M. R., Babist, J., and O'Brien, P. J.: Thermodynamic modelling of diffusion-controlled garnet growth, Contrib. Miner. Petrol., 149, 181–195, https://doi.org/10.1007/s00410-004-0643-6, 2005.
Konrad-Schmolke, M., Babist, J., Handy, M. R., and O'Brien, P. J.: The Physico-Chemical Properties of a Subducted Slab from Garnet Zonation Patterns (Sesia Zone, Western Alps), J. Petrol., 47, 2123–2148, https://doi.org/10.1093/petrology/egl039, 2006.
Konrad-Schmolke, M., O'Brien, P. J., and Heidelbach, F.: Compositional re-equilibration of garnet: the importance of sub-grain boundaries, Eur. J. Mineral., 19, 431–438, https://doi.org/10.1127/0935-1221/2007/0019-1749, 2007.
Konrad-Schmolke, M., O'Brien, P. J., de Capitani, C., and Carswell, D. A.: Garnet growth at high- and ultra-high pressure conditions and the effect of element fractionation on mineral modes and composition, Lithos, 103, 309–332, https://doi.org/10.1016/j.lithos.2007.10.007, 2008.
Kulhánek, J. and Faryad, S. W.: Compositional changes in garnet: trace element transfer during eclogite-facies metamorphism, Contrib. Mineral. Petr., 178, 1–31, https://doi.org/10.1007/s00410-023-02050-8, 2023.
Laborda-López, C., López-Sánchez-Vizcaíno, V., Marchesi, C., Gómez-Pugnaire, M. T., Garrido, C. J., Jabaloy-Sánchez, A., Padrón-Navarta, J. A., and Hidas, K.: High-P metamorphism of rodingites during serpentinite dehydration (Cerro del Almirez, Southern Spain): Implications for the redox state in subduction zones, J. Metamorph. Geol., 36, 1141–1173, https://doi.org/10.1111/jmg.12440, 2018.
Lanari, P. and Duesterhoeft, E.: Modeling metamorphic rocks using equilibrium thermodynamics and internally consistent databases: Past achievements, problems and perspectives, J. Petrol., 60, 19–56, https://doi.org/10.1093/petrology/egy105, 2019.
Lanari, P. and Engi, M.: Local Bulk Composition Effects on Metamorphic Mineral Assemblages, Rev. Mineral. Geochem., 83, 55–102, https://doi.org/10.2138/rmg.2017.83.3, 2017.
Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E. G., and Schwartz, S.: XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry, Comput. Geosci., 62, 227–240, https://doi.org/10.1016/j.cageo.2013.08.010, 2014.
Lanari, P., Vho, A., Bovay, T., Airaghi, L., and Centrella, S.: Quantitative compositional mapping of mineral phases by electron probe micro-analyser, in: Geological Society Special Publication, 478, Geological Society of London, 39–63, https://doi.org/10.1144/SP478.4, 2019.
Lecacheur, K., Fabbri, O., Piccoli, F., Lanari, P., Goncalves, P., and Leclère, H.: Data set: High-Pressure Ca metasomatism of metabasites (Monte Avic, Western Alps), dat@UBFC [data set], https://doi.org/10.25666/DATAUBFC-2024-07-18, 2024.
Lefeuvre, B., Agard, P., Verlaguet, A., Dubacq, B., and Plunder, A.: Massive formation of lawsonite in subducted sediments from the Schistes Lustrés (W. Alps): Implications for mass transfer and decarbonation in cold subduction zones, Lithos, 370–371, 105629, https://doi.org/10.1016/j.lithos.2020.105629, 2020.
Lemoine, M., Bas, T., Arnaud-Vanneau, A., Arnaud, H., Dumont, T., Gidon, M., Bourbon, M., de Graciansky, P. C., Rudkiewicz, J. L., Megard-Galli, J., and Tricart, P.: The continental margin of the Mesozoic Tethys in the Western Alps, Mar. Petrol. Geol., 3, 179–199, https://doi.org/10.1016/0264-8172(86)90044-9, 1986.
Li, J. L., John, T., Gao, J., Klemd, R., and Wang, X. S.: Subduction channel fluid–rock interaction andmass transfer: Constraints from a retrograde vein in blueschist (SW Tianshan, China), Chem. Geol., 456, 28–42, https://doi.org/10.1016/J.CHEMGEO.2017.03.003, 2017.
Li, X.-P., Rahn, M., and Bucher, K.: Metamorphic processes in rodingites of the Zermatt-Saas ophiolites, Int. Geol. Rev., 46, 28–51, https://doi.org/10.2747/0020-6814.46.1.28, 2004.
Li, X. P., Rahn, M., and Bucher, K.: Eclogite facies metarodingites – phase relations in the system SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-CO2-H2O: an example from the Zermatt-Saas ophiolite, J. Metamorph. Geol., 26, 347–364, https://doi.org/10.1111/j.1525-1314.2008.00761.x, 2008.
Locatelli, M., Verlaguet, A., Agard, P., Federico, L., and Angiboust, S.: Intermediate-depth brecciation along the subduction plate interface (Monviso eclogite, W. Alps), Lithos, 320–321, 378–402, https://doi.org/10.1016/j.lithos.2018.09.028, 2018.
Locatelli, M., Verlaguet, A., Agard, P., Pettke, T., and Federico, L.: Fluid pulses during stepwise brecciation at intermediate subduction depths (Monviso eclogites, W. Alps): first internally then externally sourced, Geochem. Geophy. Geosy., 20, 5285–5318, https://doi.org/10.1029/2019GC008549, 2019.
Lü, Z., Zhang, L., Du, J., and Bucher, K.: Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication, J. Metamorph. Geol., 27, 773–787, https://doi.org/10.1111/j.1525-1314.2009.00845.x, 2009.
Luoni, P., Zanoni, D., Rebay, G., and Spalla, M. I.: Deformation history of Ultra High-Pressure ophiolitic serpentinites in the Zermatt-Saas Zone, Créton, Upper Valtournanche (Aosta Valley, Western Alps), Ofioliti, 44, 111–123, https://doi.org/10.4454/ofioliti.v44i2.528, 2019.
Maggi, M., Rossetti, F., Ranalli, G., and Theye, T.: Feedback between fluid infiltration and rheology along a regional ductile-to-brittle shear zone: The East Tenda Shear Zone (Alpine Corsica), Tectonics, 33, 253–280, https://doi.org/10.1002/2013TC003370, 2014.
Malvoisin, B., Podladchikov, Y. Y., and Vrijmoed, J. C.: Coupling changes in densities and porosity to fluid pressure variations in reactive porous fluid flow: Local thermodynamic equilibrium, Geochem. Geophy. Geosy., 16, 4362–4387, https://doi.org/10.1002/2015GC006019, 2015.
Manning, C. E.: The chemistry of subduction-zone fluids, Earth Planet. Sc. Lett., 223, 1–16, https://doi.org/10.1016/J.EPSL.2004.04.030, 2004.
Manzotti, P. and Ballèvre, M.: Multistage garnet in high-pressure metasediments: Alpine overgrowths on Variscan detrital grains, Geology, 41, 1151–1154, https://doi.org/10.1130/G34741.1, 2013.
Manzotti, P., Rubatto, D., Darling, J., Zucali, M., Cenki-Tok, B., and Engi, M.: From Permo-Triassic lithospheric thinning to Jurassic rifting at the Adriatic margin: Petrological and geochronological record in Valtournenche (Western Italian Alps), Lithos, 146–147, 276–292, https://doi.org/10.1016/j.lithos.2012.05.007, 2012.
Manzotti, P., Regis, D., Petts, D. C., Graziani, R., and Polivchuk, M.: Formation of multistage garnet grains by fragmentation and overgrowth constrained by microchemical and microstructural mapping, J. Metamorph. Geol., 42, 471–496, https://doi.org/10.1111/jmg.12761, 2024.
Martin, L. A. J., Rubatto, D., Vitale Brovarone, A., and Hermann, J.: Late Eocene lawsonite-eclogite facies metasomatism of a granulite sliver associated to ophiolites in Alpine Corsica, Lithos, 125, 620–640, https://doi.org/10.1016/j.lithos.2011.03.015, 2011.
Martin, L. A. J., Hermann, J., Gauthiez-Putallaz, L., Whitney, D. L., Vitale Brovarone, A., Fornash, K. F., and Evans, N. J.: Lawsonite geochemistry and stability–implication for trace element and water cycles in subduction zones, J. Metamorph. Geol., 32, 455–478, https://doi.org/10.1111/jmg.12093, 2014.
Martin, S., Rebay, G., Kienast, J. R., and Mével, C.: An eclogitic oceanic palaeo-hydrothermal field from the St. Marcel Valley, Ofioliti, 31, 49–63, 2008.
Menzel, M. D., Garrido, C. J., and López Sánchez-Vizcaíno, V.: Fluid-mediated carbon release from serpentinite-hosted carbonates during dehydration of antigorite-serpentinite in subduction zones, Earth Planet. Sc. Lett., 531, 115964, https://doi.org/10.1016/j.epsl.2019.115964, 2020.
Moore, S. J., Carlson, W. D., and Hesse, M. A.: Origins of yttrium and rare earth element distributions in metamorphic garnet, J. Metamorph. Geol., 31, 663–689, https://doi.org/10.1111/jmg.12039, 2013.
Muñoz-Montecinos, J., Angiboust, S., Garcia-Casco, A., Glodny, J., and Bebout, G.: Episodic hydrofracturing and large-scale flushing along deep subduction interfaces: Implications for fluid transfer and carbon recycling (Zagros Orogen, southeastern Iran), Chem. Geol., 571, 120173, https://doi.org/10.1016/j.chemgeo.2021.120173, 2021.
Nosenzo, F., Manzotti, P., and Robyr, M.: H2O budget and metamorphic re-equilibration in polycyclic rocks as recorded by garnet textures and chemistry, Lithos, 452–453, https://doi.org/10.1016/j.lithos.2023.107230, 2023.
O'Hanley, D. S., Schandl, E. S., and Wicks, F. J.: The origin of rodingites from Cassiar, British Columbia, and their use to estimate T and P (H2O) during serpentinization, Geochim. Cosmochim. Ac., 56, 97–108, https://doi.org/10.1016/0016-7037(92)90119-4, 1992.
Oliver, N. H. S.: Review and classification of structural controls on fluid flow during regional metamorphism, J. Metamorph. Geol., 14, 477–492, https://doi.org/10.1046/j.1525-1314.1996.00347.x, 1996.
Padrón-Navarta, J. A., Hermann, J., Garrido, C. J., López Sánchez-Vizcaíno, V., and Gómez-Pugnaire, M. T.: An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite, Contrib. Mineral. Petr., 159, 25–42, https://doi.org/10.1007/s00410-009-0414-5, 2010.
Panseri, M., Fontana, E., and Tartarotti, P.: Evolution of rodingitic dykes: Metasomatism and metamorphism in the Mount Avic serpentinites (Alpine Ophiolites, southern Aosta Valley), Ofioliti, 33, 165–185, 2008.
Philippot, P.: “Crack seal” vein geometry in eclogitic rocks, Geodin. Acta, 1, 171–181, https://doi.org/10.1080/09853111.1987.11105136, 1987.
Philpotts, A. and Ague, J.: Principles of Igneous and Metamorphic Petrology, Cambridge University Press, https://doi.org/10.1017/cbo9780511813429, 2009.
Piccoli, F., Vitale Brovarone, A., Beyssac, O., Martinez, I., Ague, J. J., and Chaduteau, C.: Carbonation by fluid–rock interactions at high-pressure conditions: implications for carbon cycling in subduction zones, Earth Planet. Sc. Lett., 445, 146–159, https://doi.org/10.1016/j.epsl.2016.03.045, 2016.
Piccoli, F., Vitale Brovarone, A., and Ague, J. J.: Field and petrological study of metasomatism and high-pressure carbonation from lawsonite eclogite-facies terrains, Alpine Corsica, Lithos, 304–307, 16–37, https://doi.org/10.1016/j.lithos.2018.01.026, 2018.
Piccoli, F., Ague, J. J., Chu, X., Tian, M., and Vitale Brovarone, A.: Field-based evidence for intra-slab high-permeability channel formation at eclogite-facies conditions during subduction, Geochem. Geophy. Geosy., 22, 1–17, https://doi.org/10.1029/2020GC009520, 2021.
Plank, T. and Langmuir, C. H.: The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325–394, https://doi.org/10.1016/S0009-2541(97)00150-2, 1998.
Plümper, O., John, T., Podladchikov, Y. Y., Vrijmoed, J. C., and Scambelluri, M.: Fluid escape from subduction zones controlled by channel-forming reactive porosity, Nat. Geosci., 10, 150–156, https://doi.org/10.1038/ngeo2865, 2017.
Pyle, J. M. and Spear, F. S.: Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions, Geol. Mater. Res., 1, 1–49, 1999.
Raimondo, T., Payne, J., Wade, B., Lanari, P., Clark, C., and Hand, M.: Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet, Contrib. Mineral. Petr., 172, 1–22, https://doi.org/10.1007/s00410-017-1339-z, 2017.
Rebay, G., Spalla, M. I., and Zanoni, D.: Interaction of deformation and metamorphism during subduction and exhumation of hydrated oceanic mantle: Insights from the Western Alps, J. Metamorph. Geol., 30, 687–702, https://doi.org/10.1111/j.1525-1314.2012.00990.x, 2012.
Reinecke, T.: Very-high-pressure metamorphism and uplift of coesite-bearing metasediments from the Zermatt-Saas zone, Western Alps, Eur. J. Mineral., 3, 7–18, https://doi.org/10.1127/ejm/3/1/0007, 1991.
Reinecke, T.: Prograde high- to ultrahigh-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana, Zermatt-Saas Zone, western Alps, Lithos, 42, 147–189, https://doi.org/10.1016/S0024-4937(97)00041-8, 1998.
Rogowitz, A., Thielmann, M., Kraus, K., Grasemann, B., and Renner, J.: The effect of the garnet content on deformation mechanisms and weakening of eclogite: Insights from deformation experiments and numerical simulations, Geochem. Geophy. Geosy., 24, e2022GC010743, https://doi.org/10.1029/2022GC010743, 2023.
Rotondo, F. C., Tartarotti, P., Guerini, S., Porta, G. D., and Campomenosi, N.: Metasomatic horizon sealing serpentinite-metasediments pair in the Zermatt-Saas metaophiolite (Northwestern Alps): Record of a channel for focussed fluid flow during subduction, Ofioliti, 46, 1–25, https://doi.org/10.4454/ofioliti.v46i1.535, 2021.
Rubatto, D. and Angiboust, S.: Oxygen isotope record of oceanic and high-pressure metasomatism: a P–T–time–fluid path for the Monviso eclogites (Italy), Contrib. Mineral. Petr., 170, 1–16, https://doi.org/10.1007/s00410-015-1198-4, 2015.
Rubatto, D., Gebauer, D., and Fanning, M.: Jurassic formation and Eocene subduction of the Zermatt–Saas-Fee ophiolites: implications for the geodynamic evolution of the Central and Western Alps, Contrib. Mineral. Petr., 132, 269–287, https://doi.org/10.1007/s004100050421, 1998.
Rubatto, D., Burger, M., Lanari, P., Hattendorf, B., Schwarz, G., Neff, C., Keresztes Schmidt, P., Hermann, J., Vho, A., and Günther, D.: Identification of growth mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICP-TOFMS, Contrib. Mineral. Petr., 175, 1–19, https://doi.org/10.1007/s00410-020-01700-5, 2020.
Ruiz Cruz, M. D.: Origin of atoll garnet in schists from the Alpujárride complex (central zone of the Betic Cordillera, Spain): Implications on the P-T evolution, Mineral. Petrol., 101, 245–261, https://doi.org/10.1007/s00710-011-0147-9, 2011.
Rüpke, L. H., Morgan, J. P., Hort, M., and Connolly, J. A. D.: Serpentine and the subduction zone water cycle, Earth Planet. Sc. Lett., 223, 17–34, https://doi.org/10.1016/j.epsl.2004.04.018, 2004.
Sandmann, S., Nagel, T. J., Herwartz, D., Fonseca, R. O. C., Kurzawski, R. M., Münker, C., and Froitzheim, N.: Lu–Hf garnet systematics of a polymetamorphic basement unit: new evidence for coherent exhumation of the Adula Nappe (Central Alps) from eclogite-facies conditions, Contrib. Mineral. Petr., 168, 1–21, https://doi.org/10.1007/s00410-014-1075-6, 2014.
Scambelluri, M., Strating, E. H. H., Piccardo, G. B., Vissers, R. L. M., and Ramponr, E.: Alpine olivine- and titanian clinohumite-bearing assemblages in the Erro-Tobbio peridotite (Voltri Massif, NW Italy), J. Metamorph. Geol., 9, 79–91, https://doi.org/10.1111/j.1525-1314.1991.tb00505.x, 1991.
Scambelluri, M., Muntener, O., Hermann, J., Piccardo, G. B., and Trommsdorff, V.: Subduction of water into the mantle: history of an Alpine peridotite, Geology, 23, 459–462, https://doi.org/10.1130/0091-7613(1995)023<0459:SOWITM>2.3.CO;2, 1995.
Scambelluri, M., Cannaò, E., Guerini, S., Bebout, G. E., Epstein, G. S., Rotondo, F., Campomenosi, N., and Tartarotti, P.: Carbon mobility and exchange in a plate-interface subduction mélange: A case study of meta-ophiolitic rocks in Champorcher Valley, Italian Alps, Lithos, 428–429, https://doi.org/10.1016/j.lithos.2022.106813, 2022.
Schandl, E. S., O'Hanley, D. S., Wicks, F. J., and Kyser, T. K.: Fluid inclusions in rodingite: A geothermometer for serpentinization, Econ. Geol., 85, 1273–1276, https://doi.org/10.2113/gsecongeo.85.6.1273, 1990.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic map and overall architecture of the Alpine orogen, Eclogae Geol. Helv., 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schmidt, M. W. and Poli, S.: Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sc. Lett., 163, 361–379, https://doi.org/10.1016/S0012-821X(98)00142-3, 1998.
Schmidt, M. W. and Poli, S.: Devolatilization During Subduction, in: Treatise on Geochemistry: Second Edition, vol. 4, Elsevier, 669–701, https://doi.org/10.1016/B978-0-08-095975-7.00321-1, 2013.
Schumacher, R., Rötzler, K., and Maresch, W. V: Subtle oscillatory zoning in garnet from regional metamorphic Phyllites and Mica Schists, Western Erzgebirge, Germany, Can. Mineral., 37, 381–402, 1999.
Spandler, C., Pettke, T., and Rubatto, D.: Internal and external fluid sources for eclogite-facies veins in the Monviso Meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones, J. Petrol., 52, 1207–1236, https://doi.org/10.1093/petrology/egr025, 2011.
Spear, F. S.: On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling, J. Metamorph. Geol., 9, 379–388, https://doi.org/10.1111/j.1525-1314.1991.tb00533.x, 1991.
Tartarotti, P., Benciolini, L., and Monopoli, B.: Brecce serpentinitiche nel massiccio ultrabasico del Monte Avic (Falda Ofiolitica Piemontese): Possibili evidenze di erosione sottomarina, Atti Tic. Sc. Terra, 73–86 pp., 1998.
Tartarotti, P., Martin, S., Monopoli, B., Benciolini, L., Schiavo, A., Campana, R., Vigni, I., Desio, T. A., Dipartimento, M., Land, P., Services, S., Chimica, D., Servizio, U., Provincia, G., and Blanche, D.: Geological map of the St. Marcel Valley metaophiolites, 1000, 707–717, https://doi.org/10.1080/17445647.2017.1355853, 2017a.
Tartarotti, P., Martin, S., Monopoli, B., Benciolini, L., Schiavo, A., Campana, R., and Vigni, I.: Geology of the Saint-Marcel valley metaophiolites (Northwestern Alps, Italy), J. Maps, 13, 707–717, https://doi.org/10.1080/17445647.2017.1355853, 2017b.
Tartarotti, P., Festa, A., Benciolini, L., and Balestro, G.: Record of Jurassic mass transport processes through the orogenic cycle: Understanding chaotic rock units in the high-pressure Zermatt-Saas ophiolite (Western Alps), Lithosphere, 9, 399–407, https://doi.org/10.1130/L605.1, 2017c.
Tartarotti, P., Martin, S., Meyzen, C. M., Benciolini, L., and Toffolo, L.: Structural evolution and metasomatism of subducted metaophiolites in the Northwestern Alps, Tectonics, 38, 4185–4206, https://doi.org/10.1029/2019TC005626, 2019.
Thöni, M. and Miller, C.: The “Permian event” in the Eastern European Alps: Sm–Nd and P–T data recorded by multi-stage garnet from the Plankogel unit, Chem. Geol., 260, 20–36, https://doi.org/10.1016/j.chemgeo.2008.11.017, 2009.
Tsikouras, B., Karipi, S., Rigopoulos, I., Perraki, M., Pomonis, P., and Hatzipanagiotou, K.: Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece), Lithos, 113, 540–554, https://doi.org/10.1016/j.lithos.2009.06.013, 2009.
Tsujimori, T., Sisson, V. B., Liou, J. G., Harlow, G. E., and Sorensen, S. S.: Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites, Lithos, 92, 609–624, https://doi.org/10.1016/j.lithos.2006.03.054, 2006.
Ulmer, P. and Trommsdorff, V.: Phase relations of hydrous mantle subducting to 300 km, Mantle Petrol. F. Obs. High-Pressure Exp. Spec. Publ. Geochem. Soc. No. 6, 259–281, 1999.
Van Der Klauw, S. N. G. C., Reinecke, T., and Stöckhert, B.: Exhumation of ultrahigh-pressure metamorphic oceanic crust from Lago di Cignana, Piemontese zone, western Alps: the structural record in metabasites, Lithos, 41, 79–102, https://doi.org/10.1016/s0024-4937(97)82006-3, 1997.
Van Keken, P. E., Hacker, B. R., Syracuse, E. M., and Abers, G. A.: Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res.-Sol. Ea., 116, 1401, https://doi.org/10.1029/2010JB007922, 2011.
Vho, A., Rubatto, D., Lanari, P., Giuntoli, F., Regis, D., and Jörg, H.: Crustal reworking and hydration: insights from element zoning and oxygen isotopes of garnet in high-pressure rocks (Sesia Zone, Western Alps), Contrib. Mineral. Petr., 175, 109, https://doi.org/10.1007/s00410-020-01745-6, 2020.
Viete, D. R., Hacker, B. R., Allen, M. B., Seward, G. G. E., Tobin, M. J., Kelley, C. S., Cinque, G., and Duckworth, A. R.: Metamorphic records of multiple seismic cycles during subduction, Sci. Adv., 4, 1–13, https://doi.org/10.1126/sciadv.aaq0234, 2018.
Vitale Brovarone, A. and Beyssac, O.: Lawsonite metasomatism: A new route for water to the deep Earth, Earth Planet. Sc. Lett., 393, 275–284, https://doi.org/10.1016/j.epsl.2014.03.001, 2014.
Vitale-Brovarone, A., Alard, O., Beyssac, O., Martin, L., and Picatto, M.: Lawsonite metasomatism and trace element recycling in subduction zones, J. Metamorph. Geol., 32, 489–514, https://doi.org/10.1111/jmg.12074, 2014.
Vitale-Brovarone, A., Martinez, I., Elmaleh, A., Compagnoni, R., Chaduteau, C., Ferraris, C., and Esteve, I.: Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps, Nat. Commun., 81, 1–13, https://doi.org/10.1038/ncomms14134, 2017.
Weber, S. and Bucher, K.: An eclogite-bearing continental tectonic slice in the Zermatt-Saas high-pressure ophiolites at Trockener Steg (Zermatt, Swiss Western Alps), Lithos, 232, 336–359, https://doi.org/10.1016/j.lithos.2015.07.010, 2015.
Weber, S., Hauke, M., Martinez, R. E., Redler, C., Münker, C., and Froitzheim, N.: Fluid-driven transformation of blueschist to vein eclogite during the Early Eocene in a subducted sliver of continental crust (Monte Emilius, Italian Western Alps), J. Metamorph. Geol., 40, 553–584, https://doi.org/10.1111/jmg.12638, 2022.
White, R. W., Powell, R., Holland, T. J. B., and Worley, B.: The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3, J. Metamorph. Geol., 18, 497–511, https://doi.org/10.1046/j.1525-1314.2000.00269.x, 2000.
White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., and Green, E. C. R.: New mineral activity-composition relations for thermodynamic calculations in metapelitic systems, J. Metamorph. Geol., 32, 261–286, https://doi.org/10.1111/jmg.12071, 2014.
Wilson, C. R., Spiegelman, M., van Keken, P. E., and Hacker, B. R.: Fluid flow in subduction zones: The role of solid rheology and compaction pressure, Earth Planet. Sc. Lett., 401, 261–274, https://doi.org/10.1016/j.epsl.2014.05.052, 2014.
Woodcock, N. H. and Mort, K.: Classification of fault breccias and related fault rocks: Geological Magazine, 175, 435–440, https://doi.org/10.1017/S0016756808004883, 2008.
Yamato, P., Duretz, T., and Angiboust, S.: Brittle/Ductile Deformation of Eclogites: Insights From Numerical Models, Geochem. Geophy. Geosy., 20, 3116–3133, https://doi.org/10.1029/2019GC008249, 2019.
Yang, P. and Pattison, D.: Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota, Lithos, 88, 233–253, https://doi.org/10.1016/j.lithos.2005.08.012, 2006.
Zack, T. and John, T.: An evaluation of reactive fluid flow and trace element mobility in subducting slabs, Chem. Geol., 239, 199–216, https://doi.org/10.1016/j.chemgeo.2006.10.020, 2007.
Zanoni, D., Rebay, G., and Spalla, M. I.: Ocean floor and subduction record in the Zermatt-Saas rodingites, Valtournanche, Western Alps, J. Metamorph. Geol., 34, 941–961, https://doi.org/10.1111/jmg.12215, 2016.
Short summary
In this study, we analyze a peculiar eclogite from the Western Alps, which not only recorded a classical subduction-to-exhumation path but revealed evidence of Ca-rich fluid–rock interaction. Chemical composition and modeling show that the rock experienced peak metamorphic conditions followed by Ca-rich pulsed fluid influx occurring consistently under high-pressure conditions. This research enhances our understanding of fluid–rock interactions in subduction settings.
In this study, we analyze a peculiar eclogite from the Western Alps, which not only recorded a...