Articles | Volume 36, issue 4
https://doi.org/10.5194/ejm-36-687-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-687-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crystal chemistry of Belgian ardennites
Martin Depret
CORRESPONDING AUTHOR
Laboratory of Mineralogy B18, University of Liège, 4000 Liège, Belgium
Frédéric Hatert
Laboratory of Mineralogy B18, University of Liège, 4000 Liège, Belgium
Michel Blondieau
independent researcher: Val des Cloches 131, 6927 Tellin, Belgium
Stéphane Puccio
independent researcher: Rue des Fontaines 156, 4041 Vottem, Belgium
Muriel M. L. Erambert
Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, 0316 Oslo, Norway
Fabrice Dal Bo
Laboratory of Mineralogy B18, University of Liège, 4000 Liège, Belgium
Florent Bomal
Laboratory of Mineralogy B18, University of Liège, 4000 Liège, Belgium
Related authors
No articles found.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, https://doi.org/10.5194/ejm-36-1005-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Dan Holtstam, Jörgen Langhof, Henrik Friis, Andreas Karlsson, and Muriel Erambert
Eur. J. Mineral., 36, 311–322, https://doi.org/10.5194/ejm-36-311-2024, https://doi.org/10.5194/ejm-36-311-2024, 2024
Short summary
Short summary
We described two new minerals, igelströmite and manganoschafarzikite, from the Långban manganese–iron deposit in Värmland, Sweden. The chemical formulae are Fe3+(Sb3+Pb2+)O4 and Mn2+Sb3+2O4, respectively. They belong to a new mineral group, where all members have the same crystal structure. It is called the minium group, after the lead-oxide mineral that is the oldest known substance of this kind.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Fabrice Dal Bo, Henrik Friis, Marlina A. Elburg, Frédéric Hatert, and Tom Andersen
Eur. J. Mineral., 36, 73–85, https://doi.org/10.5194/ejm-36-73-2024, https://doi.org/10.5194/ejm-36-73-2024, 2024
Short summary
Short summary
We report the description and the characterization of a new mineral species, found in a rock sample from the geological formation called the Pilanesberg Complex, South Africa. This is a silicate mineral that contains a significant amount of sodium, calcium, iron, titanium and fluorine. Its atomic structure shows that it is related to other wöhlerite-group minerals. This work provides new insights into the crystallization conditions that ruled the formation of the Pilanesberg complex.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Lyudmila M. Lyalina, Ekaterina A. Selivanova, and Frédéric Hatert
Eur. J. Mineral., 35, 427–437, https://doi.org/10.5194/ejm-35-427-2023, https://doi.org/10.5194/ejm-35-427-2023, 2023
Short summary
Short summary
There are unresolved problems related to the nomenclature and identification of mineral species belonging to the triphylite group of minerals. They can be solved by discarding the traditional views on succession of mineral species during oxidation. In other words, it is necessary to separate the concepts of the origin of the mineral and the boundaries of the species.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 591–601, https://doi.org/10.5194/ejm-34-591-2022, https://doi.org/10.5194/ejm-34-591-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 463–468, https://doi.org/10.5194/ejm-34-463-2022, https://doi.org/10.5194/ejm-34-463-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 385–391, https://doi.org/10.5194/ejm-34-385-2022, https://doi.org/10.5194/ejm-34-385-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 359–364, https://doi.org/10.5194/ejm-34-359-2022, https://doi.org/10.5194/ejm-34-359-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 253–257, https://doi.org/10.5194/ejm-34-253-2022, https://doi.org/10.5194/ejm-34-253-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 143–148, https://doi.org/10.5194/ejm-34-143-2022, https://doi.org/10.5194/ejm-34-143-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 1–6, https://doi.org/10.5194/ejm-34-1-2022, https://doi.org/10.5194/ejm-34-1-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 639–646, https://doi.org/10.5194/ejm-33-639-2021, https://doi.org/10.5194/ejm-33-639-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 479–484, https://doi.org/10.5194/ejm-33-479-2021, https://doi.org/10.5194/ejm-33-479-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 299–304, https://doi.org/10.5194/ejm-33-299-2021, https://doi.org/10.5194/ejm-33-299-2021, 2021
Yannick Bruni, Frédéric Hatert, Philippe George, Hélène Cambier, and David Strivay
Eur. J. Mineral., 33, 221–232, https://doi.org/10.5194/ejm-33-221-2021, https://doi.org/10.5194/ejm-33-221-2021, 2021
Short summary
Short summary
The reliquary crown, hosted in the diocesan museum of Namur (Belgium), was produced during the beginning of the 13th century. This beautiful piece of goldsmithery is decorated with approximately 400 pearls and coloured stones which were investigated by Raman and pXRF techniques. Emeralds, pink spinels, sapphires, almandine garnets, turquoises, and pearls were identified. The gemstones, contemporary with the crown, probably arrived in Europe by the silk trade road.
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 203–208, https://doi.org/10.5194/ejm-33-203-2021, https://doi.org/10.5194/ejm-33-203-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 139–143, https://doi.org/10.5194/ejm-33-139-2021, https://doi.org/10.5194/ejm-33-139-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 645–651, https://doi.org/10.5194/ejm-32-645-2020, https://doi.org/10.5194/ejm-32-645-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 495–499, https://doi.org/10.5194/ejm-32-495-2020, https://doi.org/10.5194/ejm-32-495-2020, 2020
Simon Philippo, Frédéric Hatert, Yannick Bruni, Pietro Vignola, and Jiří Sejkora
Eur. J. Mineral., 32, 449–455, https://doi.org/10.5194/ejm-32-449-2020, https://doi.org/10.5194/ejm-32-449-2020, 2020
Short summary
Short summary
Luxembourgite, ideally AgCuPbBi4Se8, is a new selenide discovered at Bivels, Grand Duchy of Luxembourg. The mineral forms tiny fibres deposited on dolomite crystals. Its crystal structure is similar to those of litochlebite and watkinsonite, and can be described as an alternation of two types of anionic layers: a pseudotetragonal layer four atoms thick and a pseudohexagonal layer one atom thick. The species named for the city of Luxembourg, close to its locality of discovery.
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 443–448, https://doi.org/10.5194/ejm-32-443-2020, https://doi.org/10.5194/ejm-32-443-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 367–371, https://doi.org/10.5194/ejm-32-367-2020, https://doi.org/10.5194/ejm-32-367-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 275–283, https://doi.org/10.5194/ejm-32-275-2020, https://doi.org/10.5194/ejm-32-275-2020, 2020
Jan Parafiniuk and Frédéric Hatert
Eur. J. Mineral., 32, 215–217, https://doi.org/10.5194/ejm-32-215-2020, https://doi.org/10.5194/ejm-32-215-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 209–213, https://doi.org/10.5194/ejm-32-209-2020, https://doi.org/10.5194/ejm-32-209-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 1–11, https://doi.org/10.5194/ejm-32-1-2020, https://doi.org/10.5194/ejm-32-1-2020, 2020
Related subject area
Crystal chemistry
Evidence of the existence of the As4S6 molecule produced by light exposure of alacranite, As8S9
Incorporation and substitution of ions and H2O in the structure of beryl
Crystal chemistry and molar volume of potassic-chloro-hastingsite
Pilanesbergite: a new rock-forming mineral occurring in nepheline syenite from the Pilanesberg Alkaline Complex, South Africa
Thermodynamics of vivianite-group arsenates M3(AsO4)2 ⋅ 8H2O (M is Ni, Co, Mg, Zn, Cu) and chemical variability in the natural arsenates of this group
Trace and ultratrace elements in spinel subgroup minerals of ultramafic rocks from the Voltri Massif (NW Italy): the influence of microstructure and texture
Genetic model for the color anomalies at the termination of pegmatitic gem tourmaline crystals from the island of Elba, Italy
Fe-bearing vanadium dioxide–paramontroseite: structural details and high-temperature transformation
Cation and anion ordering in synthetic lepidolites and lithian muscovites: influence of the OH ∕ F and Li ∕ Al ratios on the mica formation studied by NMR (nuclear magnetic resonance) spectroscopy and X-ray diffraction
Tin weathering experiment set by nature for 300 years: natural crystals of the anthropogenic mineral hydroromarchite from Creussen, Bavaria, Germany
New secondary phosphate mineral occurrences and their crystal chemistry, at the Hagendorf Süd pegmatite, Bavaria
Na-feldspar: temperature, pressure and the state of order
Luca Bindi, Paola Bonazzi, Laura Chelazzi, Matteo M. N. Franceschini, Giovanni O. Lepore, Marta Morana, Giovanni Pratesi, Alice Taddei, Matteo Zoppi, and Silvio Menchetti
Eur. J. Mineral., 36, 615–622, https://doi.org/10.5194/ejm-36-615-2024, https://doi.org/10.5194/ejm-36-615-2024, 2024
Short summary
Short summary
The As4S6 molecule was missing in the reported structures of crystalline As chalcogenides. Here we report the first occurrence of the As4S6 molecule together with the other known As4Sn (n = 3, 4, 5) molecules randomly replacing each other in the crystalline structure of a new monoclinic product obtained by the light-induced alteration of the mineral alacranite, As8S9.
Carina Silke Hanser, Tobias Häger, and Roman Botcharnikov
Eur. J. Mineral., 36, 449–472, https://doi.org/10.5194/ejm-36-449-2024, https://doi.org/10.5194/ejm-36-449-2024, 2024
Short summary
Short summary
The structure of beryl has been a topic of research for decades but is still not entirely understood. This especially applies to substitutions by Fe ions and the occupation of the channels of beryl by H2O and alkalis. The growing amount of studies makes it difficult to gain an overview on these topics. Therefore, this article reviews the current consensus and debates found in the literature.
Jared P. Matteucci, David M. Jenkins, and M. Darby Dyar
Eur. J. Mineral., 36, 247–266, https://doi.org/10.5194/ejm-36-247-2024, https://doi.org/10.5194/ejm-36-247-2024, 2024
Short summary
Short summary
To explore the compositional constraints on Cl incorporation into amphiboles, which can be used to characterize transient brines, amphiboles were synthesized with a broad range of Cl concentrations. Amphibole Cl was found to be dependent on the Fe2+,3+ content, but not the tetrahedral Al content or K / Na ratio. Cl incorporation was found to contract the unit cell along a and expand it along b and c. Molar volumes were derived for endmember Cl-amphiboles using multivariate regressions.
Fabrice Dal Bo, Henrik Friis, Marlina A. Elburg, Frédéric Hatert, and Tom Andersen
Eur. J. Mineral., 36, 73–85, https://doi.org/10.5194/ejm-36-73-2024, https://doi.org/10.5194/ejm-36-73-2024, 2024
Short summary
Short summary
We report the description and the characterization of a new mineral species, found in a rock sample from the geological formation called the Pilanesberg Complex, South Africa. This is a silicate mineral that contains a significant amount of sodium, calcium, iron, titanium and fluorine. Its atomic structure shows that it is related to other wöhlerite-group minerals. This work provides new insights into the crystallization conditions that ruled the formation of the Pilanesberg complex.
Juraj Majzlan, Anna Reichstein, Patrick Haase, Martin Števko, Jiří Sejkora, and Edgar Dachs
Eur. J. Mineral., 36, 31–54, https://doi.org/10.5194/ejm-36-31-2024, https://doi.org/10.5194/ejm-36-31-2024, 2024
Short summary
Short summary
Minerals formed by weathering of toxic materials, of either natural or human origin, act as storage containers for toxic elements. In this work, we investigated properties of common minerals which store and release arsenic in the environment. The data presented here will allow for improved modeling of the polluted sites and for better remediation strategies that could be applied to minimize the impact of the pollution on the environment.
Silvia Fornasaro, Paola Comodi, Laura Crispini, Sandro Zappatore, Azzurra Zucchini, and Pietro Marescotti
Eur. J. Mineral., 35, 1091–1109, https://doi.org/10.5194/ejm-35-1091-2023, https://doi.org/10.5194/ejm-35-1091-2023, 2023
Short summary
Short summary
Using an innovative multi-analytical approach, we investigated the trace elements composition of spinel-group minerals in different ultramafic rocks from the Voltri Massif (Central Liguria, NW Italy). The knowledge of the trace elements within these minerals has an interesting implication both in petrological, mineralogical, and geochemical studies as well as environmental fields, since these elements can be potentially toxic and released into the environment during weathering processes.
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Nadia Curetti and Alessandro Pavese
Eur. J. Mineral., 35, 373–382, https://doi.org/10.5194/ejm-35-373-2023, https://doi.org/10.5194/ejm-35-373-2023, 2023
Short summary
Short summary
Paramontroseite is a V dioxide (a = 4.8960(14) Å, b = 9.395(3) Å, c = 2.9163(5) Å, V = 134.14(6) Å3; space group Pbnm). The sample under investigation (Prachovice mine, Czech Republic) bears 20 wt % of Fe2O3, and the Fe atoms occupy tetrahedral sites arranged in the
emptychannel along z. Thermal expansion is anisotropic. At T > 350 °C, paramontroseite decomposes and two new phases form: V2O5 (V-pentoxide) and V4Fe2O13 (Fe-tetrapolyvanadate).
Lara Sulcek, Bernd Marler, and Michael Fechtelkord
Eur. J. Mineral., 35, 199–217, https://doi.org/10.5194/ejm-35-199-2023, https://doi.org/10.5194/ejm-35-199-2023, 2023
Short summary
Short summary
Synthetic lepidolites and Li-muscovites were characterised by nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. Both Li and F / OH content influence the occurrence of the impurity phases. A solid solution series exists for lepidolites with polylithionite and trilithionite as endmembers but does not between trilithionite and muscovite. NMR investigations indicate there is a preference for incorporating fluorine and OH groups near Li-rich and Al-rich environments, respectively.
Natalia Dubrovinskaia, Maria Messingschlager, and Leonid Dubrovinsky
Eur. J. Mineral., 34, 563–572, https://doi.org/10.5194/ejm-34-563-2022, https://doi.org/10.5194/ejm-34-563-2022, 2022
Short summary
Short summary
In this work we report a new locality for the rare mineral hydroromarchite, Sn3O2(OH)2. It was found not in a submarine environment but in soil at the Saint James Church archaeological site in Creussen, Germany. A tin artefact (a tin button) was exposed to weathering in soil for about 300 years. We solved and refined its structure based on single-crystal X-ray diffraction analysis.
Erich Keck, Ian E. Grey, Colin M. MacRae, Stephanie Boer, Rupert Hochleitner, Christian Rewitzer, William G. Mumme, A. Matt Glenn, and Cameron Davidson
Eur. J. Mineral., 34, 439–450, https://doi.org/10.5194/ejm-34-439-2022, https://doi.org/10.5194/ejm-34-439-2022, 2022
Short summary
Short summary
First occurrences of the secondary phosphate minerals kenngottite, Mn32+Fe43+(PO4)4(OH)6(H2O)2; allanpringite, Fe33+(PO4)2(OH)3·5H2O; iangreyite, Ca2Al7(PO4)2(PO3OH)2(OH,F)15·8H2O; and nizamoffite, MnZn2(PO4)2(H2O)4, from the Hagendorf Süd pegmatite are reported, with characterisation of their crystal chemistry and phase associations.
Herbert Kroll, Hans Ulrich Bambauer, and Horst Pentinghaus
Eur. J. Mineral., 32, 427–441, https://doi.org/10.5194/ejm-32-427-2020, https://doi.org/10.5194/ejm-32-427-2020, 2020
Short summary
Short summary
Feldspars constitute about 60 % of the earth's crust. Na-feldspar, Na[AlSi3O8], is central to this mineral group. Its structural response to changing conditions of temperature and pressure is complicated. In particular, this applies to the distribution of Al and Si on the atomic sites of its crystal structure. We clarify how this distribution varies in thermodynamic equilibrium with external conditions and provide procedures that allow easy determination of the atomic distribution.
Cited articles
Altherr, R., Soder, C., Meyer, H.-P., Ludwig, T., and Böhm, M.: Ardennite in high – P/T meta – conglomerate near Vitolište in the westernmost Vardar zone, Republic of Macedonia, Eur. J. Mineral., 29, 473–489, 2017.
Anceau, A., Prestiani, C., Hatert, F., and Denayer, J.: Les sciences géologiques à l'Université de Liège : deux siècles d'évolution. Partie 1 : de la fondation à la Première Guerre Mondiale, Bulletin de la Société Royale des Sciences de Liège, 86, 27–101, 2017.
Baijot, M., Hatert, F., and Fransolet, A.-M.: Mineralogical and geochemical study of pseudocoticule from the Stavelot Massif, Ardennes (Belgium), and redefinition of coticule, Can. Mineral., 23, 633–644, 2011.
Barresi, A. A., Orlandi, P., and Pasero, M.: History of ardennite and the new mineral ardennite-(V), Eur. J. Mineral., 19, 581–587, 2007.
Bermanec, M., Chukanov, N. V., Boev, I., Šturman, B. D., Zebec, V., and Bermanec, V.: Ardennite-bearing mineral association related to sulfide-free ores with chalcophile metals at Nežilovo, Pelagonian Massif, North Macedonia, Eur. J. Mineral., 33, 433–445, https://doi.org/10.5194/ejm-33-433-2021, 2021.
Bernhardt, H.-J., Armbruster, T., Fransolet, A.-M., and Schreyer, W.: Stavelotite-(La), a new lanthanum-manganese-sorosilicate from the Stavelot Massif, Belgium, Eur. J. Mineral., 17, 703–714, 2005.
Bettendorf, A.: Ueber den Ardennit und über eine Methode zur Schneidung der Vanadinsaüre von Thonerde und Eisenoxyd, Ann. Chim. Phys., 160, 126–131, 1877.
Blondieau, M., Puccio, S., Compère, P., and Hatert, F.: Données nouvelles sur quelques espèces minérales de Vielsalm et de Salmchâteau (Province de Luxembourg, Belgique), Bulletin de la Société Royale des Sciences de Liège, 86, 1–48, 2017.
Brown, I. D. and Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallogr., B41, 244–247, 1985.
Brunet, F., Chopin, C., and Seifert, F.: Phase relations in the MgO–P2O5–H2O system and the stability of phosphoellenbergerite: petrological implications, Contrib. Mineral. Petr., 131, 54–70, 1998.
Bultynck, P. and Dejonghe, L.: Devonian lithostratigraphic units (Belgium), Geol. Belg., 4, 39–69, 2001.
Cesàro, G. and Abraham, A.: La dewalquite, Annales de la Société Géologique de Belgique, 36, 197–212, 1909.
Corin, F.: Contribution à l'étude de la dewalquite, Annales de la Société Géologique de Belgique, 51, 140–144, 1927.
Dal Piaz, G. V., Di Battistini, G., Kienast, J.-R., and Venturelli, G.: Manganesiferous quartzitic schists of the Piemonte ophiolite nappe, Mem. Sc. Geol. Padova, 32, 1–24, 1979.
Depret, M., Bruni, Y., Dassargues, A., Defourny, A., Marion, J.-M., Vanderschueren, W., and Hatert, F.: Mineralogical and hydrogeological study of “pouhons” in the lower Paleozoic formations of the Stavelot-Venn Massif, Geol. Belg., 24, 109–124, 2021.
Dolomanov, O. V., Blake, A. J., Champness, N. R., and Schröder, M.: OLEX: new software for visualization and analysis of extended crystal structures, J. Appl. Crystallogr., 36, 1283–1284, 2003.
Donnay, G. and Allmann, R.: Si3O10 groups in the crystal structure of ardennite, Acta Crystallogr., B24, 845–855, 1968.
Ferket, H., Muchez, P., Schroyen, K., and Sintubin, M.: Metamorphism in the Stavelot-Venn Massif: a study of quartz veins in the Devonian conglomerates (Lochkovian), Aardkundinge Mededelingen, 9, 7–16, 1998.
Fielitz, W. and Mansy, J.-L.: Pre- and synorogenic burial metamorphism in the Ardenne and neighbouring areas (Rhenohercynian zone, central European Variscides), Tectonophysics, 309, 227–256, 1999.
Fransolet, A.-M.: Minéralogie de Belgique, Ardennite, Bulletin de la Société Belge de Géologie, 91, 50, 1982.
Frost, R. L., López, A., Xi, Y., Scholz, R., and Gandini, A. L.: A vibrational spectroscopy study of the silicate mineral ardennite – (As), Spectrochim. Acta, A118, 987–991, 2014.
Geukens, F.: Commentaire à la carte géologique du Massif de Stavelot, Aarkundinge Mededelingen, 3, 15–30, 1986.
Geukens, F.: Notes accompagnant une révision de la carte structurale du Massif de Stavelot, Aardkundinge Mededelingen, 9, 183–190, 1999.
Gabelica, D.: Etude minéralogique, pétrographique et géochimique de la Formation d'Ottré, Massif de Stavelot, Master Thesis, University of Liège, 2022.
Goemaere, E.: Ardoise et coticule en Terre de Salm: des pierres et des hommes, Service Géologique de Belgique, 408 p., 2007.
Gossner, B. and Strunz, H.: Ueber strukturelle Beziehungen zwischen Phosphaten (Triphylin) und Silikaten (Olivin) und über die chemische Zusammensetzung von Ardennit, Z. Kristallogr., 83, 415–421, 1932.
Hatert, F.: Etude minéralogique préliminaire de quelques sulfures du Massif de Stavelot, Master Thesis, University of Liège, 1996.
Hatert, F.: Occurrence of sulphides on the bornite-idaite join from Vielsalm, Stavelot Massif, Belgium, Eur. J. Mineral., 15, 1063–1068, 2003.
Hatert, F.: Transformation sequences of copper sulphides at Vielsalm, Stavelot Massif, Belgium, Can. Mineral., 43, 623–635, 2005.
Hatert, F. and Burke, E. A. J.: The IMA-CNMNC dominant-constituent rule revisited and extended, Can. Mineral., 46, 717–728, 2008.
Hatert, F., Deliens, M., Fransolet, A.-M., and Van Der Meersche, E.: Les Minéraux de Belgique, Deuxième édition, Bietlot, Gilly, 304 pp., 2002.
Hatert, F., Fransolet, A.-M., Wouters, J., and Bernhardt, H.-J.: The crystal structure of sursassite from the Lienne valley, Stavelot Massif, Belgium, Eur. J. Mineral., 20, 993–998, 2008.
Hatert, F., Mills, S. J., Pasero, M., and Williams, P. A.: CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names, Eur. J. Mineral., 25, 113–115, 2013.
Hatert, F., Blondieau, M., Puccio, S., Baijot, M., and Gustine, C.: Le gisement de manganèse de la Vallée de la Lienne, Belgique, Le Règne Minéral, 117, 5–24, 2014.
Herbosch, A., Liégeois, J.-P., and Pin, C.: Coticules of the Belgian type area (Stavelot-Venn Massif): Limy turbidites within the nascent Rheic oceanic basin, Earth-Sci. Rev., 159, 186–214, 2016.
Kampf, A. R., Carbone, C., Belmonte, D., Nash, B. P., Chiappino, L., and Castellaro, F.: Alpeite, Ca4Mn3+2 Al2(Mn3+Mg)(SiO4)2(Si3O10)(V5+O4)(OH)6, a new ardennite-group mineral from Italy, Eur. J. Mineral., 29, 907–914, 2017.
Kramm, U.: The coticule rocks (spessartine-quartzites) of the Venn-Stavelot Massif, Ardennes, a volcanoclastic metasediment?, Contrib. Miner. Petrol., 56, 135–155, 1976.
Kramm, U.: Die Metamorphose des Venn-Stavelot-Massivs, nordwestliches Rheinisches Schiefergebirge: Grad, Alter und Ursache, Decheniana, 135, 121–178, 1982.
Kramm, U., Spaeth, G., and Wolf, M.: Variscan metamorphism in the NE Stavelot-Venn Massif, Ardennes: A new approach to the question of regional dynamothermal or contact metamorphism, Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 171, 311–327, 1985.
Krosse, S. and Schreyer, W.: Comparative geochemistry of coticules (spessartine-quartzite) and their redschist country rocks in the Ordovician of the Ardennes Mountains, Belgium, Chemie der Erde, 53, 1–20, 1993.
Lessuise, A.: Le coticule: situation géographique et géologique des gisements. Exploitation et préparation des pierres abrasives. Valorisation des déchets d'exploitation. INIEX-NIEB, Département mines et carrières, Liège, 37 pp., 1980.
Libowitzky, E.: Correlation of O-H Stretching Frequencies and O-H O Hydrogen Bond Lengths in Minerals, Monatshefte für Chemie, 130, 1047–1059, 1999.
Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272–1276, 2011.
Nagashima, M. and Armbruster, T.: Ardennite, tiragalloite and mediate: structural control of (As5+,V5+,Si4+)O4 tetrahedra in silicates, Mineral. Mag., 74, 55–71, 2010.
Nayak, V. K.: Ardennites from Kajilidongri, India: a new locality, Neues Jb. Miner. Monat., 1967, 295–304, 1967.
Nishio-Hamane, D., Nagashima, M., Ogawa, N., and Minakawa, T.: Kannanite, a new mineral from Kannan Mountain, Japan, J. Miner. Petrol. Sci., 113, 245–250, 2018.
Orlandi, P., Biagioni, C., Pasero, M., and Mellini, M.: Lavoisierite, Mn[Al10(Mn3+Mg)][Si11P]O44(OH)12, a new mineral from Piedmont, Italy: the link between “ardennite” and sursassite, Phys. Chem. Miner., 40, 239–249, 2013.
Oxford Diffraction: Crys Alis PRO, Oxford Diffraction Ltd, Abingdon, Oxfordshire, England, 2007.
Pasero, M. and Reinecke, T.: Crystal chemistry, HRTEM analysis and polytypic behaviour of ardennite, Eur. J. Mineral., 3, 819–830, 1991.
Pasero, M., Reinecke, T., and Fransolet, A.-M.: Crystal structure refinements and compositional control of Mn-Mg-Ca ardennites from the Belgian Ardennes, Greece, and the Western Alps, Neues Jb. Miner. Abh., 166, 137–167, 1994.
Pisani, F.: Sur un nouveau silico-aluminate de manganese vanadifère, trouvé à Salm Château, en Belgique, Comptes-Rendus de l'Académie des Sciences de Paris, 75, 1542–1544, 1872.
Pisani, F.: Analyse de la dewalquite de Salm-Château en Belgique, Comptes-Rendus de l'Académie des Sciences de Paris, 77, 329–333, 1873.
Prandtl, W.: Ueber den Ardennit, Zeitschrift für Kristallographie und Mineralogie, 40, 392–395, 1905.
Reinecke, T. and Hatzipanagiotou, K.: Crystal chemistry and lattice parameters of ardennites from Andros Island, Greece, and Haute-Maurienne, Western Alps, Neues Jb. Miner. Abh., 158, 89–104, 1987.
Schreyer, W.: New petrologic evidence for Hercynian metamorphism in the Venn-Stavelot Massif, Belgium, Geol. Rundsch., 64, 819–830, 1975.
Semet, M. and Moreau, J.: L'ardennite: révision et données nouvelles, Annales de la Société Géologique de Belgique, 88, 545–577, 1965.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., A32, 751–767, 1976.
Sheldrick, G. M.: A short history of SHELX, Acta Crystallogr., A64, 112–122, 2008.
Theye, T., Schreyer, W., and Fransolet, A.-M.: Low-temperature, low-pressure metamorphism of Mn-rich rocks in the Lienne syncline, Venn-Stavelot Massif (Belgian Ardennes), and the role of carpholite, J. Petrol., 37, 767–783, 1996.
Verniers, J., Herbosch, A., Vanguestaine, M., Geukens, F., Delcambre, B., Pingot, J.-L., Belanger, I., Hennebert, M., Debacker, T., Sintubin, M., and De Vos, W.: Cambrian-Ordovician-Silurian lithostratigraphic units (Belgium), Geol. Belg., 4, 5–38, 2001.
von Lasaulx, A.: Ardennit, ein neues Mineral, Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 930–934, 1872a.
von Lasaulx, A.: Über ein neues Mineral aus der Gegend von Ottrez. Sitzungsberichte der niederrheinischen Gesellschaft für Natur- und Heilkunde in Bonn, Verhandlungen des Naturhistorischen Vereines der Preussischen Rheinlande und Westphalens, 29, 189–192, 1872b.
von Lasaulx, A.: Nachträge zur Kenntniss des Ardennites, Neues Jahrbuch für Mineralogie, 1876, 363–368, 1876.
von Lasaulx, A. and Bettendorf, A.: Ardennit, ein neues Mineral, Ann. Chim. Phys., 149, 241–251, 1873.
Warr, L. N.: IMA-CNMNC approved mineral symbols, Mineral. Mag., 85, 291–320, 2021.
Wilson, A. J. C.: International Tables for X-ray Crystallography, Vol. C. Kluwer Academic Press, London, 883 pp., 1992.
Short summary
Ardennite is a rare Mn-rich aluminosilicate that was originally described in Salmchâteau, Belgium. In the last few years, new samples of ardennites have been found at several localities close to Salmchâteau. These samples were analysed by electron microprobe, single-crystal X-ray diffraction, and infrared spectroscopy. The results given in this paper allow us to identify the main substitution mechanisms that occur in Belgian ardennites and to discuss the nomenclature of the ardennite group.
Ardennite is a rare Mn-rich aluminosilicate that was originally described in Salmchâteau,...