Articles | Volume 35, issue 6
https://doi.org/10.5194/ejm-35-969-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-969-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Symplectite and kelyphite formation during decompression of mafic granulite from Gjelsvikfjella, central Dronning Maud Land, Antarctica
Synnøve Elvevold
CORRESPONDING AUTHOR
Norwegian Polar Institute, P.O. Box 6606 Stakkevollan, 9296 Tromsø, Norway
Joachim Jacobs
Department of Earth Science, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
Leif-Erik Rydland Pedersen
Department of Earth Science, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
Øyvind Sunde
Norwegian Polar Institute, P.O. Box 6606 Stakkevollan, 9296 Tromsø, Norway
Ane K. Engvik
Geological Survey of Norway, P.O. Box 6315 Torgarden, 7491 Trondheim, Norway
Per Inge Myhre
Norwegian Polar Institute, P.O. Box 6606 Stakkevollan, 9296 Tromsø, Norway
Related authors
No articles found.
Ane K. Engvik and Johannes Jakob
Eur. J. Mineral., 36, 345–360, https://doi.org/10.5194/ejm-36-345-2024, https://doi.org/10.5194/ejm-36-345-2024, 2024
Short summary
Short summary
The paper documents sillimanite gneiss in the Western Gneiss Region (WGR) and its presence, composition, formation and metamorphic evolution. Peak metamorphism is modelled to T = 750 °C and P around 0.6 GPa. Subsequent retrogression consumes garnet and shows mineral replacement and melt crystallization involving sillimanite, white mica, K-feldspar and quartz. The petrological evolution is in accordance with the investigated eclogites and HP granulites in the northwestern part of WGR.
Cited articles
Anderson, E. D. and Moecher, D. P.: Omphacite breakdown reactions and relation to eclogite exhumation rates, Contrib. Mineral. Petr., 154, 253–277, https://doi.org/10.1007/s00410-007-0192-x, 2007.
Austrheim, H., Putnis, C. V., Engvik, A. K., and Putnis, A.: Zircon coronas around Fe–Ti oxides: a physical reference frame for metamorphic and metasomatic reactions, Contrib. Mineral. Petr., 156, 517–527, https://doi.org/10.1007/s00410-008-0299-8, 2008.
Baba, S., Hokada, T., Kaiden, H., Dunkley, D. J., Owada, M., and Shiraishi, K.: SHRIMP zircon U-Pb dating of sapphirine-bearing granulite and biotite hornblende gneiss in the Schirmacher Hills, east Antarctica: implications for Neoproterozoic ultrahigh-temperature metamorphism predating the assembly of Gondwana, J. Geol., 118, 621–39, 2010.
Baba, S., Horie, K., Hokada, T., Owada, M., Adachi, T., and Shiraishi, K.: Multiple collisions in the East African-Antarctic Orogen: Constraints from timing of metamorphism in the Filchnerfjella and Hochlinfjellet terranes in central Dronning Maud Land, J. Geol., 123, 55–78, 2015.
Baldwin, S. L.: Highlights and breakthroughs. Zircon dissolution and growth during metamorphism, Am. Mineral., 100, 1019–1020, https://doi.org/10.2138/am-2015-5279, 2015.
Bea, F., Montero, P., and Ortega, M.: A LA–ICP–MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon‐forming processes, Can. Mineral., 44, 693–714, https://doi.org/10.2113/gscanmin.44.3.693, 2006.
Bingen, B., Austrheim, H., and Whitehouse, M.: Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of western Norway and implications for zircon geochronology, J. Petrol., 42, 355–375, 2001.
Bisnath, A. and Frimmel, H. E.: Metamorphic evolution of the Maud Belt: path for high-grade gneisses in Gjelsvikfjella Dronning Maud Land, East Antarctica, J. Afr. Earth Sci., 43, 505–524, 2005.
Bisnath, A., Frimmel, H. E., Armstrong, R. A., and Board, W. S.: Tectono-thermal evolution of the Maud Belt: new SHRIMP U-Pb zircon data from Gjelsvikfjella, Dronning Maud Land, East Antarctica, Precambrian Res., 150, 95–121, 2006.
Board, W. S., Frimmel, H. E., and Armstrong, R. A.: Pan-African tectonism in the Western Maud Belt: path for high-grade gneisses in the H.U. Sverdrupfjella, East Antarctica, J. Petrol., 46, 671–699, 2005.
Boland, J. and Van Roermund, H.: Mechanisms of exsolution in omphacites from high temperature, type b, eclogites, Phys. Chem. Miner, 9, 30–37, 1983.
Brown, M.: Metamorphism, plate tectonics, and the supercontinent cycle, Earth Sci. Front., 14, 1–18, 2007.
Brown, M.: Metamorphic patterns in orogenic systems and the geological record, in: Accretionary Orogens in Space and Time, edited by: Cawood, P. A. and Kröner, A., Geol. Soc. Lond. Spec. Publ., 318, 37–74, 2009.
Carswell, D. A. (Ed.): Eclogite facies rocks, Blackie, USA, ISBN 0-216-92687-4, 1990.
Carswell, D. A., Wilson R. N., and Zhai, M.: Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China, Mineral. Mag., 60, 461–471, 1996.
Cox, R. and Indares, A.: Transformation of Fe–Ti gabbro to coronite, eclogite and amphibolite in the Baie du Nord segment, Manicouagan Imbricate Zone, eastern Grenville Province, J. Metamorph. Geol., 17, 537–555, https://doi.org/10.1046/j.1525-1314.1999.00216.x, 1999.
Elvevold, S. and Gilotti, J. A.: Pressure-temperature evolution of retrogressed kyanite eclogites, Weinschenk Island, North-East Greenland Caledonides, Lithos, 53, 127–147, 2000.
Elvevold, S. and Engvik A. K.: Pan-African decompressional P-T path recorded by granulites from central Dronning Maud Land, Antarctica, Miner. Petrol., 107, 651–664, 2013.
Elvevold, S., Engvik, A. K., Abu-Alam, T. S., Myhre, P. I., and Corfu, F.: Prolonged high-grade metamorphism of supracrustal gneisses from Mühlig-Hofmannfjella, central Dronning Maud Land (East Antarctica), Precambrian Res., 339, 105618, https://doi.org/10.1016/j.precamres.2020.105618, 2020.
Elvevold, S., Engvik, A. K., Hansen, C., Jacobs, J., Meiklejohn, I., Myhre, P. I., and Rudolph, E.: Geological map of Jutulsessen 1:50 000, Norsk Polarinstitutt Temakart Nr. 54, 385-401, 2021.
Elvevold, S., Ravna, E. J. K., Nasipuri, P., and Labrousse, L.: Calculated phase equilibria for phengite-bearing eclogites from NW Spitsbergen, Svalbard Caledonides, in: New Perspectives on the Caledonides of Scandinavia and Related Areas, edited by: Corfu, F., Gasser, D., and Chew, D. M., Geol. Soc. Lond. Spec. Publ., 390, 385–401, https://doi.org/10.1144/SP390.4, 2014.
Engvik, A. K. and Elvevold, S.: Pan-African extension and near-isothermal exhumation of a granulite facies terrain, Dronning Maud Land, Antarctica, Geol. Mag., 141, 1–12, 2004.
Engvik, A. K., Elvevold, S., Jacobs, J., Tveten, E., de Azevedo, S., and Njange, F.: Pan-African granulites of central Dronning Maud Land and Mozambique – a comparison within the East-African-Antarctic Orogen, in: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by: Cooper, A. K., Raymond, C. R., and the 10th ISAES Editorial Team, USGS Open-File Report 2007-1047, Short Research Paper 065, https://https://doi.org/10.3133/of2007-1047.srp065, 2007.
Faryad, S. W., Perraki, M., and Vrana, S.: P–T evolution and reaction textures in retrogressed eclogites from Svetlik, the Moldanubian Zone (Czech Republic), Miner. Petrol., 88, 297–319, 2006.
Franz, G. and Spear, F. S.: Aluminous titanite form the Eclogite Zone, south central Tauern Window, Austria, Chem. Geol., 50, 33–46, 1985.
Fraser, G., Ellis, D., and Eggins, S.: Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks, Geology, 25, 607–610, 1997.
Frost, R. B. and Frost, C. D.: A geochemical classification for feldspathic igneous rocks, J. Petrol., 49, 1955–1969, https://doi.org/10.1093/petrology/egn054, 2008.
Godard, G. and Palmeri, R.: High-pressure metamorphism in Antarctica from the Proterozoic to the Cenozoic: A review and geodynamic implications, Gondwana Res., 23, 844–864, 2013.
Grantham, G. H., Jackson, C., Moyes, A. B., Groenewald, P. B., Harris, P. D., Ferrar, G., and Krynauw, J. R.: The tectonothermal evolution of the Kirwanveggen-Sverdrupfjella terrains, Dronning Maud Land, Antarctica, Precambrian Res., 75, 209–230, 1995.
Grew, E.S., Asami, M., and Makimoto, H.: Preliminary petrological studies of the metamorphic rocks of the eastern Sør Rondane Mountains, East Antarctica, Proceedings of the NIPR symposium on Antarctic geosciences, National Institute of Polar Research, Tokyo, Japan, 100–127, 1989.
Groenewald, P. B., Moyes, A. B., Grantham, G. H., and Krynauw, J. R.: East Antarctic crustal evolution: geological constraints and modelling in western Dronning Maud Land, Precambrian Res., 75, 231–250, 1995.
Hanson, R. E., Crowley, J. L., Bowring, S. A., Ramezani, J., Gose, W. A., Dalziel, I. W. D., Pancake, J. A., Seidel, E. K., Blenkinsop, T. G., and Mukwakwami, J.: Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodinia assembly, Science, 304, 1126–1129, 2004.
Harlov, D., Tropper, P., Seifert, W., Nijland, T., and Hans-Jürgen Förster, H. J.: Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2, Lithos, 88, 72–84, https://doi.org/10.1016/j.lithos.2005.08.005, 2006.
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., and Welch, M. D.: Nomenclature of the amphibole supergroup, Am. Mineral., 97, 2031–2048, https://doi.org/10.2138/am.2012.4276, 2012.
Hendriks, B. W. H., Engvik, A. K., and Elvevold, S.: 40Ar 39Ar record of late Pan-African exhumation of a granulite facies terrain, central Dronning Maud Land, East Antarctica, Miner. Petrol., 107, 665–677, https://doi.org/10.1007/s00710-012-0205-y, 2013.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: 238U 235U systematics in terrestrial uranium-bearing minerals, Science, 335, 1610–1614, 2012.
Hirajima, T., Zhang, R., and Cong, B.: Petrology of the nyböite-bearing eclogite in the Donghai area, Jiangsu Province, eastern China, Mineral. Mag., 56, 37–46, 1992.
Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E .A.: The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology, Chem. Geol., 211, 47–69, 2004.
Jacobs, J., Fanning, C. M., Henjes-Kunst, F., Olesch, M., and Paech, H.-J.: Continuation of the Mozambique Belt into East Antarctica: Grenville-Age Metamorphism and Polyphase Pan-African High-Grade Events in Central Dronning Maud Land, J. Geol., 106, 385–406, 1998.
Jacobs, J., Bauer, W., and Fanning, C. M.: New age constraints for Grenville-age metamorphism in western central Dronning Maud Land (East Antarctica), and implications for the paleogeography of Kalahari in Rodinia, Int. J. Earth Sci., 92, 301–315, 2003a.
Jacobs, J., Bauer, W., and Fanning, C. M.: Late Neoproterozoic/Early Paleozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica, Precambrian Res., 126, 27–53, 2003b.
Jacobs, J., Bingen, B., Thomas, R. J., Bauer, W., Wingate, M. T. D., and Feitio, P.: Early Paleoproterozoic orogenic collapse and voluminous late tectonic magmatism in Dronning Maud Land and Mozambique: insight into the partially delaminated orogenic root of the East African-Antarctic Orogen?, in: Geodynamic evolution of East Antarctica: a key to the East-West Gondwana connection, edited by: Satish-Kumar, M., Motoyoshi, Y., Osanai, Y., Hiroi, Y., and Shiraishi, K., Geol. Soc. Lond. Spec. Publ., 308, 69–90, 2008.
Jacobs, J., Elburg, M. A., Läufer, A., Kleinhanns, I. C., Henjes-Kunst, F., Estrada, S., Ruppel, A. S., Damaske, D., Montero, P., and Bea, F.: Two distinct Late Mesoproterozoic/Early Neoproterozoic basement provinces in central/eastern Dronning Maud Land, East Antarctica: The missing link, 15–21∘ E, Precambrian Res., 265, 249–272, https://doi.org/10.1016/j.precamres.2015.05.003, 2015.
Jacobs, J., Mikhalsky, E., Henjes-Kunst, F., Läufer, A., Thomas, R. J., Elburg, M. A., Wang, C. C., Estrada, and Skublov, S. G.: Neoproterozoic geodynamic evolution of easternmost Kalahari: Constraints from U-Pb-Hf-O zircon, Sm-Nd isotope and geochemical data from the Schirmacher Oasis, East Antarctica, Precambrian Res., 342, 105553, https://doi.org/10.1016/j.precamres.2019.105553, 2020.
Joanny, V., Van Roermund, H., and Lardeaux, J. M.: The clinopyroxene plagioclase symplectite in retrograde eclogites – A Potential geothermobarometer, Geol. Rundsch., 80, 303–320, 1991.
Kennedy, W. Q.: The structural differentiation of African in the Pan-African (± 500 m.y.) tectonic episode, 8th Annual Report of the Research Institute of African Geology, University of Leeds, UK, 48–49, 1964.
Kohn, M. J., Corrie S. L., and Markley, C.: The fall and rise of metamorphic zircon, Am. Mineral., 100, 897–908, 2015.
Koon, P. O. and Thompson, A. B.: Non-mafic rocks in the greenschist, blueschist and eclogite facies, Chem. Geol., 50, 3–30, https://doi.org/10.1016/0009-2541(85)90109-3, 1985.
Krogh, E. J., Andresen, A., Bryhni, I., Broks, T. M, and Kristensen, S. E.: Eclogites and polyphase P-T cycling in the Caledonian Uppermost Allochthon in Troms, northern Norway, J. Metamorph. Geol., 8, 289–309, 1990.
Marsh, J. K. and Kelly, E. D.: Petrogenetic relations among titanium-rich minerals in an anatectic high-P mafic granulite, J. Metamorph. Geol., 35, 717–738, 2017.
McDonough, W. F. and Sun, S.-S.: The composition of the Earth, Chem. Geol., 120, 223–253, 1995.
Mikhalsky, E. V., Beliatsky, B. V., Savva, E. V., Wetzel, H.-U., Fedorov, L. V., Weiser, T., and Hahne, K.: Reconnaissance geochronological data on polymetamorphic and igneous rocks of the Humboldt Mountains, central Queen Maud Land, East Antarctica, in: The Antarctic Region: Geological Evolution and Processes, edited by: Ricci, C. A., Terra Antarctica Publication, Siena, 45–53, ISBN 88-900221-0-8, 1997.
O'Brien, P. J. and Rötzler, J.: HP granulites: formation, recovery of peak conditions and implications for tectonics, J. Metamorph. Geol., 21, 3–20, 2003.
Oh, C. W. and Liou, J. G.: A petrogenetic grid for eclogite and related facies under high-pressure metamorphism, Isl. Arc, 7, 36–51, 1998.
Palmeri, R., Godard, G., Di Vincenzo, G., Sandroni, S., and Talarico, F. M.: High-pressure granulite-facies metamorphism in central Dronning Maud Land (East Antarctica): Implications for Gondwana assembly, Lithos, 300/301, 361–377, https://doi.org/10.1016/j.lithos.2017.12.014, 2018.
Passchier, C. W. and Trouw, R. A. J.: Microtectonics, Springer, 2nd Edn. 205, ISBN 978-3-540-64003-5, ISBN 3-540-58713-6, 1998.
Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., and Maas, R.: Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction, Geochem. Geophy. Geosy., 11, Q0AA06, https://doi.org/10.1029/2009GC002618, 2010.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite: Freeware for the visualisation and processing of mass spectrometric data, J. Anal. Atom. Spectrom., 26, 2508–2518, 2011.
Paulsson, O. and Austrheim, H.: A geochronological and geochemical study of rocks from the Gjelsvikfjella, Dronning Maud Land, Antarctica – implications for Mesoproterozoic correlations and assembly of Gondwana, Precambrian Res., 125, 113–138, 2003.
Pauly, J., Marschall, H. R., Meyer, H. P., Chatterjee, N., and Monteleone, B.: Prolonged Ediacaran-Cambrian metamorphic history and short-lived HP granulite-facies metamorphism in the H.U. Sverdrupfjella, Dronning Maud Land (East Antarctica): Evidence for continental collision during Gondwana assembly, J. Petrol., 57, 185–228, 2016.
Pouchou, J. L. and Pichoir, F.: Cameca PAP program, La Recherche Aerospatiale, 3, 167–192, 1984.
Proyer, A.: The preservation of high-pressure rocks during exhumation: metagranites and metapelites, Lithos, 70, 183–194, 2003.
Rickwood, P. C.: Boundary lines within petrologic diagrams which use oxides of major and minor elements, Lithos 22, 247–263, 1989.
Riedel, S., Jacobs, J., and Jokat, W.: Interpretation of new regional aeromagnetic data over Dronning Maud Land (East Antarctica), Tectonophysics, 585, 161–171, https://doi.org/10.1016/j.tecto.2012.10.011, 2013.
Rubatto, D.: Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83, 261–295, https://doi.org/10.2138/rmg.2017.83.9, 2017.
Sartini-Rideout, C., Gilotti, J. A., and Foster, C. T.: Forward modeling corona growth in a partially eclogitized leucogabbro, Bourbon Island, North-East Greenland, Lithos, 95, 279–297, 2007.
Schmädicke, E. and Will, T. M.: First evidence of eclogite facies metamorphism in the Shackleton Range, Antarctica; trace of a suture between east and west Gondwana?, https://doi.org/10.1130/G22170.1, 2006.
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J.: Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis, Chem. Geol., 249, 1–35, 2008.
Smith, D. C.: Highly aluminous sphene (titanite) in natural HP hydrous-eclogite facies rocks from Norway to Italy, and in experimental runs at high pressure, Abstract, 26th International Geological Congress, Paris, 1980.
Sun, S.-S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Lond. Spec. Publ., 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Thompson, A. B. and Connolly, J. A. D.: Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings, J. Geophys. Res., 100, 15565–15579, 1995.
Troitzsch, U. and Ellis, D. J.: The synthesis and crystal structure of CaAlFSiO4, the Al-F analog of titanite, Am. Mineral., 84, 1162–1169, 1999.
Troitzsch, U. and Ellis, D. J.: Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4-CaAlFSiO4, Contrib. Mineral. Petr., 142, 543–563, 2002.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, 2018.
Wang, C.-C., Jacobs, J., Elburg, M. A., Läufer, A., and Elvevold, S.: Late Neoproterozoic-Cambrian magmatism in Dronning Maud Land (East Antarctica): U-Pb zircon geochronology, isotope geochemistry and implications for Gondwana assembly, Precambrian Res., 350, 105880, https://doi.org/10.1016/j.precamres.2020.105880, 2020a.
Wang, C.-C., Jacobs, J., Elburg, M. A., Läufer, A., Thomas, R. J., and Elvevold, S.: Grenville-age continental arc magmatism and crustal evolution in central Dronning Maud Land (East Antarctica): Zircon geochronological and Hf-O isotopic evidence, Gondwana Res., 82, 108–127, https://doi.org/10.1016/j.gr.2019.12.004, 2020b.
Whitney, D. L., and Evans, B. W.: Abbreviations of names of rock-forming minerals, Am. Mineral, 95, 185–187, 2010.
Wiedenbeck, M. A. P. C., Alle, P., Corfu, F. Y., Griffin, W. L., Meier, M., Oberli, F. V., Von Quadt, A., Roddick, J. C., and Spiegel, W.: Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostandard Newslett., 19, 1–23, 1995.
Yakymchuk, C., Clark, C., and White, R. W.: Phase relations, reaction sequences and petrochronology, in: Petrochronology: Methods and Applications, edited by: Kohn, M. J., Engi, M., and Lanari, P., Rev. Mineral. Geochem., 13–53, https://doi.org/10.2138/rmg.2017.83.2, 2017.
Short summary
The present study of mafic rocks from Jutulsessen, Gjelsvikfjella, extends the presence of high-pressure rocks in the Maud Belt in Dronning Maud Land, Antarctica. The physical conditions necessary for the development of these rocks were attained during continent–continent collision along the East African–Antarctic Orogen. The new data in this study largely confirm the geodynamic implication outlined by others for the region.
The present study of mafic rocks from Jutulsessen, Gjelsvikfjella, extends the presence of...