Articles | Volume 35, issue 4
https://doi.org/10.5194/ejm-35-613-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-613-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
H2O degassing triggered by alkali depletion in bimodal magma injection processes – a new experimental approach
Patricia Louisa Marks
CORRESPONDING AUTHOR
Department of Geosciences, Eberhard Karls University Tübingen,
72074 Tübingen, Germany
Anja Allabar
independent researcher
Marcus Nowak
Department of Geosciences, Eberhard Karls University Tübingen,
72074 Tübingen, Germany
Related subject area
Structure and properties of melts
The effect of oxygen fugacity on the evaporation of boron from aluminoborosilicate melt
Stamatis Flemetakis, Christian J. Renggli, Paul Pangritz, Jasper Berndt, and Stephan Klemme
Eur. J. Mineral., 36, 173–181, https://doi.org/10.5194/ejm-36-173-2024, https://doi.org/10.5194/ejm-36-173-2024, 2024
Short summary
Short summary
Boron is a common additive in industrial glasses used for a wide variety of applications and in experimental degassing studies regarding exoplanet atmospheres. It is therefore important to constrain the behavior of this component in the melt phase. For this reason we investigated experimentally the evaporation of B2O3 from Ca- and Mg-bearing aluminoborosilicate melts at different temperatures, as a function of time and oxygen fugacity.
Cited articles
Allabar, A. and Nowak, M.: Message in a bottle: Spontaneous phase separation of
hydrous Vesuvius melt even at low decompression rates, Earth Planet. Sc. Lett.,
501, 192–201, https://doi.org/10.1016/j.epsl.2018.08.047, 2018.
Allabar, A., Dobson, K. J., Bauer, C. C., and Nowak, M.: Vesicle shrinkage in hydrous
phonolitic melt during cooling, Contrib. Mineral. Petr. 175, 21,
https://doi.org/10.1007/s00410-020-1658-3, 2020.
Allabar, A., Petri, P. L., Eul, D., and Nowak, M.: An empirical H2O solubility model for
peralkaline rhyolitic melts, Contrib. Mineral. Petr., 177, 52,
https://doi.org/10.1007/s00410-022-01915-8, 2022.
Arienzo, I., Moretti, R., Civetta, L., Orsi, G., and Papale, P.: The feeding system of
Agnano–Monte Spina eruption (Campi Flegrei, Italy): Dragging the past into
present activity and future scenarios, Chem. Geol., 270, 135–147,
https://doi.org/10.1016/j.chemgeo.2009.11.012, 2010.
Bachmann, O. and Bergantz, G.: The Magma Reservoirs That Feed Supereruptions,
Elements, 4, 17–21, https://doi.org/10.2113/GSELEMENTS.4.1.17, 2008.
Baker, D. R.: Estimation of diffusion coefficients during interdiffusion of
geologic melts: Application of transition state theory, Chem. Geol., 98,
11–21, https://doi.org/10.1016/0009-2541(92)90089-N, 1992.
Baker, D. R. and Bossanyi, H.: The combined effect of F and H2O on interdiffusion
between peralkaline dacitic and rhyolitic melts, Contrib. Mineral. Petr., 117,
203–214, https://doi.org/10.2138/rmg.2010.72.8, 1994.
Behrens, H., Romano, C., Nowak, M., Holtz, F., and Dingwell, D. B.: Near-infrared
spectroscopic determination of water species in glasses of the system
MAlSi3O8 (M = Li, Na, K): an interlaboratory study, Chem. Geol., 128,
41–63, https://doi.org/10.1016/0009-2541(95)00162-X, 1996.
Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W.,
and Koepke, J.: A combined rapid-quench and H2-membrane setup for internally
heated pressure vessels: Description and application for water solubility in
basaltic melts, Am. Mineral., 87, 1717–1726,
https://doi.org/10.2138/am-2002-11-1222, 2002.
Bunse, R. W.: Ueber die Processe der vulkanischen Gesteinsbildung Islands, Annu.
Rev. Phys. Chem., 83, 197–272, https://doi.org/10.1002/andp.18511590602,
1851.
Carmichael, I. S. E. and Nicholls, J.: Iron-Titanium Oxides and Oxygen Fugacities in
Volcanic Rocks, J. Geophys. Res., 72, 4665–4687,
https://doi.org/10.1029/JZ072i018p04665, 1967.
Chen, C. H., DePaolo, D. J., Nakada, S., and Shieh, Y. N.: Relationship between eruption
volume and neodymium isotopic composition at Unzen volcano, Nature, 362,
831–834, https://doi.org/10.1016/j.jvolgeores.2008.03.042, 1993.
De Rosa, R., Donato, P., and Ventura, G.: Fractal analysis of mingled/mixed magmas: an
example from the Upper Pollara eruption (Salina Island, southern Tyrrhenian
Sea, Italy), Lithos, 65, 299–311,
https://doi.org/10.1016/S0024-4937(02)00197-4, 2002.
Devine, J. D., Gardener, J. E., Brack, H. P., Layne, G. D., and Rutherford, M. J.: Comparison of
microanalytical methods for estimating H2O contents of silicic volcanic
glasses, Am. Mineral., 80, 319–328, https://doi.org/10.2138/am-1995-3-413, 1995.
Di Muro, A., Pallister, J., Villemant, B., Newhall, C., Semet, M., Martinez, M., and Mariet,
C.: Pre-1991 sulfur transfer between mafic injections and dacite magma in the
Mt. Pinatubo reservoir, J. Volcanol. Geoth. Res., 175, 517–540,
https://doi.org/10.1016/j.jvolgeores.2008.02.025, 2008.
Dingwell, D. B., Holtz, F., and Behrens, H.: The solubility of H2O in peralkaline and peraluminous
granitic melts, Am. Mineral., 82, 434–437, https://doi.org/10.2138/AM-1997-3-421, 1997.
Druitt, T. H., Costa, F., Deloule, E., Dungan, M., and Scaillet, B.: Decadal to monthly
timescales of magma transfer and reservoir growth at a caldera volcano,
Nature, 482, 77–97, https://doi.org/10.1038/nature10706, 2012.
Edmonds, M., Brett, A., Herd, R. A., Humphreys, M. C. S., and Woods, A.: Magnetite-bubble
aggregated at mixing interfaces in andesite magma bodies, in: The Role of
Volatiles in the Genesis, Evolution and Eruption of Arc Magmas, Geol. Soc. Sp.,
410, 95, https://doi.org/10.1144/SP410.7, 2015.
Gardner, J. E., Hilton, M., and Carroll, M. R.: Experimental constraints on degassing of
magma: isothermal bubble growth during continuous decompression from high
pressure, Earth Planet. Sc. Lett., 168, 201–218,
https://doi.org/10.1016/S0012-821X(99)00051-5, 1999.
Gardner, J. E. and Denis, M.-H.: Heterogeneous bubble nucleation on Fe-Ti oxide
crystals in high-silicia rhyolitic melt, Geochim. Cosmochim. Ac., 68,
3587–3597, https://doi.org/10.1016/j.gca.2004.02.021, 2004.
Gardner, J. E.: Heterogeneous bubble nucleation in highly viscous silicate melts
during instantaneous decompression from high pressure, Chem. Geol., 236,
1–12, https://doi.org/10.1016/j.chemgeo.2006.08.006, 2007.
Gardner, J. E. and Ketcham, R. A.: Bubble nucleation in rhyolite and dacite melts:
temperature dependence of surface tension, Contrib. Mineral. Petr., 162,
929–943, https://doi.org/10.1007/s00410-011-0632-5, 2011.
Gardner, J. E., Wadsworth, F. B., Carley, T. L., Llewellin, E. W., Kusumaatmaja, H., and Sahagian,
D.: Bubble Formation in Magma, Annu. Rev. Earth Pl. Sc., 51, 131–154,
https://doi.org/10.1146/annurev-earth-031621-080308, 2022.
Gertisser, R., Preece, K., and Keller, J.: The Plinian Lower Pumice 2 eruption,
Santorini, Greece: Magma evolution and volatile behavior, J. Volcanol. Geoth.
Res., 186, 387–406, https://doi.org/10.1016/j.jvolgeores.2009.07.015,
2009.
Gonnermann, H. M. and Manga, M.: The Fluid Mechanics Inside a Volcano, Annu. Rev.
Fluid Mech., 39, 321–356,
https://doi.org/10.1146/annurev.fluid.39.050905.110207, 2007.
Gualda, G. A. R. and Ghiorso, M. S.: Magnetite scavenging and the buoyancy of bubbles
in magmas, Part 2: Energetics of crystal-bubbles attachment in magmas,
Contrib. Mineral. Petr., 154, 479–490,
https://doi.org/10.1007/s00410-007-0206-8, 2007.
Hajimirza, S., Gonnermann, H. M., Gardner, J. E., and Giachetti, T.: Predicting homogeneous
bubble nucleation in rhyolite, J. Geophys. Res.-Sol. Ea., 124,
2395–2416, https://doi.org/10.1029/2018JB015891, 2019.
Higgins, M. D.: Measurement of crystal size distributions, Am. Mineral., 85,
1105–1116, https://doi.org/10.2138/am-2000-8-901, 2000.
Holtz, F., Behrens, H., Dingwell, D. B., and Taylor, R. P.: Water solubility in
aluminosilicate melts of haplogranite composition at 2 kbar, Chem. Geol., 96,
289–302, https://doi.org/10.1016/0009-2541(92)90060-I, 1992.
Holtz, F., Behrens, H., Dingwell, D. B., and Johannes, W.: H2O Solubility in Haplogranitic
Melts – Compositional, Pressure, and Temperature-Dependence, Am. Mineral., 80,
94–108, https://doi.org/10.2138/am-1995-1-210, 1995.
Huppert, H. E., Sparks, R. S. J., and Turner, J. S.: Effects of volatiles on mixing in
calc-alkaline magma systems, Nature, 297, 554–557,
https://doi.org/10.1038/297554a0, 1982.
Hurwitz, S. and Navon, O.: Bubble Nucleation in Rhyolitic Melts – Experiments
at High-Pressure, Temperature, and Water-Content, Earth Planet. Sc. Lett., 122,
151–164, https://doi.org/10.1016/0012-821X(94)90001-9, 1994.
Iacono-Marziano, G., Schmidt, B. C., and Dolfi, D.: Equilibrium and disequilibrium
degassing of a phonolitic melt (Vesuvius AD 79 “white pumice”) simulated by
decompression experiments, J. Volcanol. Geoth. Res., 161, 151–164,
https://doi.org/10.1016/j.jvolgeores.2006.12.001, 2007.
Jahn, B. M., Litvinovsky, B. A., Zanvilevich, A. N., and Reichow, M.: Peralkaline granitoid
magmatism in the Mongolian–Transbaikalian Belt: Evolution, petrogenesis and
tectonic significance, Lithos, 113, 521–539,
https://doi.org/10.1016/j.lithos.2009.06.015, 2009.
Jarvis, P. A., Pistone, M., Secretan, A., Blundy, J. D., Cashman, K. V., Mader, H. M.,
and Baumgartner, L. P.: Crystal and Volatile Controls on the Mixing and Mingling of
Magmas, Geoph. Monog. Ser., 264, 125–150,
https://doi.org/10.1002/9781119564485.ch6, 2021.
Johnston, A. D. and Wyllie, P. J.: Interaction of granitic and basic magmas:
experimental observations on contamination processes at 10 kbar with H2O,
Contrib. Mineral. Petr., 98, 352–362, https://doi.org/10.1007/BF00375185,
1988.
Kouchi, A. and Sunagawa, I.: A Model for mixing basaltic and dacitic magmas as
deduced from experimental data, Contrib. Mineral. Petr., 89, 17–23,
https://doi.org/10.1007/BF01177586, 1985.
Lacasse, C., Sigurdsson, H., Carey, S. N., Johannesson, H., Thomas, L. E., and Rogers, N. W.:
Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the
geochemistry and petrogenesis of rhyolitic magmas, Bull. Volcanol., 69,
373–399, https://doi.org/10.1007/s00445-006-0082-5, 2007.
Laumonier, M., Scaillet, B., Pichavant, M., Champallier, R., Andujar, J., and Arbaret, L.:
On the conditions of magma mixing and its bearing on andesite production in
the crust, Nat. Commun., 5, 5607, https://doi.org/10.1038/ncomms6607, 2014.
Laumonier, M., Scaillet, B., Arbaret, L., Andujar, J., and Champallier, R.: Experimental
mixing of hydrous magmas, Chem. Geol., 418, 158–170,
https://doi.org/10.1016/j.chemgeo.2015.10.031, 2015.
Lavallée, Y., Dingwell, D. B., Johnson, J. B., Cimarelli, C., Hornby, A.J., Kendrick, J. E., von
Aulock, F. W., Kennedy, B. M., Andrews, B. J., Wadsworth, F. B., Rhodes, E., and Chigna, G.: Thermal
vesiculation during volcanic eruptions, Nature, 528, 544–547, https://doi.org/10.1038/nature16153, 2015.
Leat, P. T., Jackson, S. E., Thorpe, R. S., and Stillman, C. J.: Geochemistry of bimodal
basalt-subalkaline/peralkaline rhyolite provinces within the Southern
British Caledonides, J. Geol. Soc. Lond., 143, 259–273,
https://doi.org/10.1144/gsjgs.143.2.0259, 1986.
Le Gall, N. and Pichavant, M.: Homogeneous bubble nucleation in H2O- and
H2O-CO2-bearing basaltic melts: Results of high temperature decompression
experiments, J. Volcanol. Geoth. Res., 327, 604–621,
https://doi.org/10.1016/j.jvolgeores.2016.10.004, 2016.
Leonard, G. S., Cole, J. W., Nairn, I. A., and Self, S.: Basalt triggering of the c. AD 1305
Kaharoa rhyolite eruption, Tarawera Volcanic Complex, New Zealand, J.
Volcanol. Geoth. Res., 115, 461–486,
https://doi.org/10.1016/S0377-0273(01)00326-2, 2002.
Liu, Y., Behrens, H., and Zhang, Y.: The speciation of dissolved H2O in dacitic melt,
Am. Mineral., 89, 277–284, https://doi.org/10.2138/am-2004-2-304, 2004.
Mangan, M. and Sisson, T.: Delayed, disequilibrium degassing in rhyolite magma:
decompression experiments and implications for explosive volcanism, Earth
Planet. Sc. Lett., 183, 441–455,
https://doi.org/10.1016/S0012-821X(00)00299-5, 2000.
Mangan, M. and Sisson, T.: Evolution of melt-vapor surface tension in silicic
volcanic systems: Experiments with hydrous melts, J. Geophys. Res., 110, B01202,
https://doi.org/10.1029/2004JB003215, 2005.
Martel, C., Brooker, R. A., Andújar, J., Pichavant, M., Scaillet, B., and Blundy, J. D.:
Experimental Simulations of Magma Storage and Ascent, in: Volcanic Unrest, edited by: Gottsmann, J.,
Neuberg, J., and Scheu, B., Adv. Volcanol., 101–110,
https://doi.org/10.1007/11157_2017_20, 2017.
Marxer, H., Bellucci, P., and Nowak, M.: Degassing of H2O in a phonolitic melt: A
closer look at decompression experiments, J. Volcanol. Geoth. Res, 297,
109–124, https://doi.org/10.1016/j.jvolgeores.2014.11.017, 2015.
Mayerhöfer, T. G. and Popp, J.: Beer's Law – Why Absorbance Depends (Almost)
Linearly on Concentration, Chemphyschem, 20, 511–515,
https://doi.org/10.1002/cphc.201900103, 2019.
McIntosh, I. M., Llewellin, E. W., Humphreys, M. C. S., Nichols, A. R. L., Burgisser, A.,
Schipper, C. I., and Larsen, J. F.: Distribution of dissolved water in magmatic glass records growth and
resorption of bubbles, Earth Planet. Sc. Lett., 401, 1–11, https://doi.org/10.1016/j.epsl.2014.05.037,
2014.
Miller, C. F. and Wark, D. A.: Supervolcanoes and their explosive supereruptions,
Elements, 4, 11–15, https://doi.org/10.2113/GSELEMENTS.4.1.11, 2008.
Montagna, C. P., Papale, P., and Longo, A.: Timescales of mingling in shallow magmatic
reservoirs, Geol. Soc. Lond. Spec. Publ., 422, 131–140,
https://doi.org/10.1144/SP422.6, 2015.
Morgan, G. and London, D.: Effect of current density on the electron microprobe
analysis of alkali aluminosilicate glasses, Am. Mineral., 90, 1131–1138,
https://doi.org/10.2138/am.2005.1769, 2005.
Morgavi, D., Perugini, D., De Campos, C. P., Ertel-Ingrisch, W., and Dingwell, D. B.: Time
evolution of chemical exchanges during mixing of rhyolitic and basaltic
melts, Contrib. Mineral. Petr., 166, 615–638,
https://doi.org/10.1007/s00410-013-0894-1, 2013.
Murphy, M. D., Sparks, R. S. J., Barclay, J., Carroll, M. R., Lejeune, A.-M., Brewer, T. S.,
Macdonald, R., Black, S., and Young, S.: The role of magma mixing in triggering the
current eruption at the Soufriere Hills Volcano, Montserrat, West Indies,
Geophys. Res. Lett., 25, 3433–3436, https://doi.org/10.1029/98GL00713,
1998.
Navon, O. and Lyakhovsky, V.: Vesiculation processes in silicic magmas, Geol. Soc.
Spec. Publ., 145, 27–50, https://doi.org/10.1144/GSL.SP.1996.145.01.03,
1998.
Navon, O., Chekhmir, A., and Lyakhovsky, V.: Bubble growth in highly viscous melts:
theory, experiments, and autoexplosivity of dome lavas, Earth Planet. Sc. Lett.,
160, 763–776, https://doi.org/10.1016/S0012-821X(98)00126-5, 1998.
Ngounounoa, I., Déruelle, B., and Demaiffe, D.: Petrology of the bimodal Cenozoic
volcanism of the Kapsiki plateau (northernmost Cameroon, Central Africa), J.
Volcanol. Geoth. Res., 102, 21–44,
https://doi.org/10.1016/S0377-0273(00)00180-3, 2000.
Nowak, M., Cichy, S. B., Botcharnikov, R. E., Walker, N., and Hurkuck, W.: A new type of high
pressure low-flow metering valve for continuous decompression: First 86
experimental results on degassing of rhyodacitic melts, Am. Mineral., 96,
1373–1380, https://doi.org/10.2138/am.2011.3786, 2011.
Ohlhorst, S., Behrens, H., and Holtz, F.: Compositional dependence of molar
absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic
glasses, Chem. Geol., 174, 5–20,
https://doi.org/10.1016/S0009-2541(00)00303-X, 2001.
Paredes-Marino, J., Dobson, K. J., Ortenzi, G., Kueppers, U., Morgavi, D., Petrelli, M.,
Hess, K.-U., Laeger, K., Porreca, M., Pimentel, A., and Perugini, D.: Enhancement of
eruption explosivity by heterogeneous bubble nucleation triggered by magma
mingling, Sci. Rep.-UK, 7, 16897, https://doi.org/10.1038/s41598-017-17098-3, 2017.
Perugini, D. and Poli, G.: The mixing of magmas in plutonic and volcanic
environments: analogies and differences, Lithos, 153, 261–277,
https://doi.org/10.1016/j.lithos.2012.02.002, 2012.
Perugini, D., De Campos, C. P., Ertel-Ingrisch, W., and Dingwell, D. B.: The space and time
complexity of chaotic mixing of silicate melts: Implications for igneous
petrology, Lithos, 155, 326–340,
https://doi.org/10.1016/j.lithos.2012.09.010, 2012.
Phillips, J. C. and Woods, A. W.: Suppression of large-scale magma mixing by
melt-volatile separation, Earth Planet. Sc. Lett., 204, 47–60,
https://doi.org/10.1016/S0012-821X(02)00978-0, 2002.
Philpotts, A. R. and Ague, J. J.: Principles of Igneous and Metamorphic Petrology,
Cambridge University Press, 700 pp., https://doi.org/10.1017/9781108631419,
2009.
Pichavant, M., Poussineau, S., Lesne, P., Solaro, C., and Bourdier, J. L.: Experimental
Parametrization of Magma Mixing: Application to the AD 1530 Eruption of La
Soufrière, Guadeloupe (Lesser Antilles), J. Petrol., 2, 257–282,
https://doi.org/10.1093/petrology/egy030, 2018.
Preuss, O., Marxer, H., Ulmer, S., Wolf, J., and Nowak, M.: Degassing of hydrous trachytic
Campi Flegrei and phonolitic Vesuvius melts: Experimental limitations and
chances to study homogeneous bubble nucleation, Am. Mineral., 101, 859–875,
https://doi.org/10.2138/am-2016-5480, 2016.
Pritchard, C. J., Larson, P. B., Spell, T. L., and Tarbert, K. D.: Eruption-triggered mixing of
extra-caldera basalt and rhyolite complexes along the East
Gallatin–Washburn fault zone, Yellowstone National Park, WY, USA, Lithos,
175/176, 163–177, https://doi.org/10.1016/j.lithos.2013.04.022, 2013.
Rose, W. I. and Chesner, C. A. : Dispersal of ash in the great Toba eruption, 7 KA,
Geology, 15, 913–917,
https://doi.org/10.1130/0091-7613(1987)15<913:DOAITG>2.0.CO;2,
1987.
Sahagian, D. and Carley, T. L.: Explosive Volcanic Eruptions and Spinodal
Decomposition: A different Approach to Deciphering the Tiny Bubble Paraox,
Geochem. Geophy. Geosy., 21, 6, https://doi.org/10.1029/2019GC008898, 2020.
Saito, G., Stimac, J. A., Kawanabe, Y., and Goff, F.: Mafic-felsic magma interaction at
Satsuma-Iwojima volcano, Japan: Evidence from mafic inclusions in rhyolites,
Earth Planet. Space, 54, 303–325, https://doi.org/10.1186/BF03353030,
2002.
Sato, H., Nakada, S., Fujii, T., Nakamura, M., and Suzuki-Kamata, K.: Groundmass pargasite
in the 1991–1995 dacite of Unzen volcano: phase stability experiments and
volcanological implications, J. Volcanol. Geoth. Res., 89, 197–212,
https://doi.org/10.1016/S0377-0273(98)00132-2, 1999.
Scaillet, B. and Pichavant, M.: Experimental constraints on volatile abundances
in arc magmas and their implications for degassing processes, in:
Volcanic degassing, edited by: Oppenheimer, C., Pyle, D., and Barclay, J., Geol.
Soc. Lond. Spec. Publ., 213, 23–52,
https://doi.org/10.1144/GSL.SP.2003.213.01.03, 2003.
Self, S. and Blake, S.: Consequences of explosive supereruptions, Elements, 4,
41–46, https://doi.org/10.2113/GSELEMENTS.4.1.41, 2008.
Sigmundsson, F., Hreinsdóttir, S., Hooper, A., Árnadóttir, T., Pedersen,
R., Roberts, M. J., Óskarsson, N., Auriac, A., Decriem, J., Einarsson, P., Geirsson,
H., Hensch, M., Ófeigsson, B. G., Sturkell, E., Sveinbjörnsson, H., and Feigl, K. L.:
Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption,
Nature, 468, 426–430, https://doi.org/10.1038/nature09558, 2010.
Sigurdsson, H. and Sparks, R. S. J.: Petrology of rhyolitic and mixed magma ejecta
from the 1875 eruption of Askja, Iceland, J. Petrol., 22, 41–84,
https://doi.org/10.1093/petrology/22.1.41, 1981.
Smithies, R. H., Howard, H. M., Kirkland, C. L., Korhonen, F. J., Medlin, C. C., Maier, W. D.,
Quentin de Gromard, R., and Wingate, M. T. D.: Piggy-back Supervolcanoes – Long-Lived,
Voluminous, Juvenile Rhyolite Volcanism in Mesoproterozoic Central
Australia, J. Petrol., 56,
735–763, https://doi.org/10.1093/petrology/egv015,
2015.
Snyder, D.: Thermal effects of the intrusion of basaltic magma into a more
silicic magma chamber and implications for eruption triggering, Earth Planet. Sc. Lett., 175,
257–273, https://doi.org/10.1016/S0012-821X(99)00301-5, 2000.
Sparks, R. S. J.: The dynamics of bubble formation and growth in magmas: a review
and analysis, J. Volcanol. Geoth. Res., 3, 1–37,
https://doi.org/10.1016/0377-0273(78)90002-1, 1978.
Sparks, R. S. J., Sigurdsson, H., and Wilson, L.: Magma mixing: a mechanism for triggering
acid explosive eruptions, Nature, 267, 315–318,
https://doi.org/10.1038/267315a0, 1977.
Spera, F. J., Schmidt, J. S., Bohrson, W. A., and Brown, G. A.: Dynamics and thermodynamics of
magma mixing: Insights from a simple exploratory model, Am. Mineral., 101,
627–643, https://doi.org/10.2138/am-2016-5305, 2016.
Stelling, J., Botcharnikov, R. E., Beermann, O., and Nowak, M.: Solubility of H2O- and
chlorine -bearing fluids in basaltic melt of Mount Etna at
T = 1050–1250 ∘C and P = 200 MPa, Chem. Geol., 256, 102–110,
https://doi.org/10.1016/j.chemgeo.2008.04.009, 2008.
Tinker, D. and Lesher, C. E.: Self diffusion of Si and O in dacitic liquid at high
pressures, Am. Mineral., 86, 1–13, https://doi.org/10.2138/am-2001-0101,
2001.
Toramaru, A.: BND (bubble number density) decompression rate meter for
explosive volcanic eruptions, J. Volcanol. Geoth. Res., 154, 303–316,
https://doi.org/10.1016/j.jvolgeores.2006.03.027, 2006.
Troll, V. R., Donaldson, C. H., and Emeleus, C. H.: Pre-eruptive magma mixing in ash-flow
deposits of the Tertiary Rum Igneous Centre, Scotland, Contrib. Mineral. Petr.,
147, 722–739, https://doi.org/10.1007/s00410-004-0584-0, 2004.
Watson, B.: Basalt Contamination by Continental Crust: Some Experiments and
Models, Contrib. Mineral. Petr., 80, 73–87,
https://doi.org/10.1007/BF00376736, 1982.
Wiesmaier, S., Morgavi, D., Renggli, C. J., Perugini, D., De Campos, C. P., Hess, K.-U., Ertel-Ingrisch, W., Lavallée, Y., and Dingwell, D. B.: Magma mixing enhanced by bubble segregation, Solid Earth, 6, 1007–1023, https://doi.org/10.5194/se-6-1007-2015, 2015.
Yamashita, S., Kitamura, T., and Kusakabe, M.: Infrared spectroscopy of hydrous
glasses of arc magma compositions, Geochem. J., 31, 169–174,
https://doi.org/10.2343/geochemj.31.169, 1997.
Yoder, H. S.: Contemporaneous basaltic and rhyolitic magmas, Am. Mineral., 58,
153–171, 1973.
Zhang, Y., Ni, H., and Chen, Y: Diffusion Data in Silicate Melts, Rev. Mineral. Geochem.,
72, 311–408, https://doi.org/10.2138/rmg.2010.72.8, 2010.
Short summary
These results represent the first high-pressure and high-temperature degassing experiments simulating the injection of basaltic melt into a hydrous rhyolitic melt reservoir. Diffusion processes in the contact zone of the melts lead to a depletion of alkalis in the rhyolitic melt interface. The reduced alkali concentration significantly decreases the H2O solubility of the rhyolitic melt and promotes enhanced H2O vesicle formation and further degassing, which can trigger volcanic eruptions.
These results represent the first high-pressure and high-temperature degassing experiments...