Altaner, S. P., Lander, R. H., Klimentidis, R. E., and Ylagan, R. F.:
Hydrothermal alteration in two active geothermal wells from the Phlegrean
volcanic fields, Italy, 28th Annual Clay Minerals Society Meeting, Houston,
TX, , Lunar and Planetary Institute, Houston, TX, 5–10 October, 28, 4, 1991.
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C.,
Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y.,
and Pasero, M.: Recommended nomenclature of epidote-group minerals, Eur. J.
Mineral., 18, 551–567, https://doi.org/10.1127/0935-1221/2006/0018-0551,
2006.
Armstrong, J. T.: CITZAF: A package of correction programs for the
quantitative electron microbeam X-ray analysis of thick polished materials,
thin ?lms, and particles, Microb. Anal., 4, 177–200, 1995.
Arnason, J. G. and Bird, D. K.: Formation of zoned epidote in hydrothermal
systems, Proceedings of the 7th International Symposium on Water-Rock
Interaction, Park City, Utah, USA, 13–18 July 1992, 1473–1476, A. A. Balkema, Rotterdam, Netherlands, ISBN 9789054100775, 1992.
Arnason, J. G., Bird, D. K., and Liou, J. G.: Variables controlling epidote
composition in hydrothermal and low-pressure regional metamorphic rocks,
Proceedings of a Symposium held in Neukirchen am Großvenediger,
Salzburg, Austria, September 1990, Abh. Geol. B-A., 49, 17–25, 1993.
Bagnato, E., Tamburello, G., Granieri, D., Caliro, S., D'Agostino, F.,
Avino, R., Capecchiacci, F., Carandente, A., D'Alessandro, A., Minopoli, C.,
and Santi, A.: First simultaneous mercury and major volatiles
characterization of atmospheric hydrothermal emissions at the Pisciarelli's
fumarolic system (Campi Flegrei, Italy), J. Volcanol. Geoth. Res., 406,
107074, https://doi.org/10.1016/j.jvolgeores.2020.107074 2020.
Belkin, H. E. and De Vivo, B.: Compositional variation of epidote in the
Campi Flegrei geothermal field, Naples, Italy, 13th Annual V.M. Goldschmidt
Conference, Copenhagen, Denmark, 5–11 June 2004, 68, A268, https://doi.org/10.1016/j.gca.2004.05.001, 2004.
Belkin, H. E., Caprarelli, G., and De Vivo, B.: The Campi Flegrei (Italy)
geothermal system: Epidote chemistry and radiogenic isotopes, Eos Trans.
Amer. Geophys. Union, 71, 1686, https://doi.org/10.1029/EO071i043p01219, 1990.
Belkin, H. E., Rolandi, G., Jackson, J. C., Cannatelli, C., Doherty, A. L.,
Petrosino, P., and De Vivo, B.: Mineralogy and geochemistry of the older
(
> 40 ka) ignimbrites on the Campanian Plain, southern Italy, J.
Volcanol. Geoth. Res., 323, 1–18,
https://doi.org/10.1016/j.jvolgeores.2016.05.002, 2016.
Bird, D. K. and Spieler, A. R.: Epidote in Geothermal Systems, in: Reviews in
Mineralogy and Geochemistry, Vol. 56, Epidotes, edited by: Liebscher, A. and
Franz, G., Mineralogical Society of America and Geochemical Society,
Washington, DC, USA, 235–300, https://doi.org/10.2138/gsrmg.56.1.235, 2004.
Bird, D. K., Cho, M., Janik, C. J., Liou, J. G., and Caruso, L. J.:
Compositional, Order/Disorder, and Stable Isotope Characteristics of Al-Fe
Epidote, State 2–14 Drill Hole, Salton Sea Geothermal System, J. Geophys.
Res.-Sol. Ea., 93, 13135–13144,
https://doi.org/10.1029/JB093iB11p13135, 1988.
Bodnar, R. J., Cannatelli, C., De Vivo, B., Lima, A., Belkin, H. E., and
Milia, A.: Quantitative model for magma degassing and ground deformation
(bradyseism) at Campi Flegrei, Italy: Implications for future eruptions,
Geology, 35, 791–794, https://doi.org/10.1130/G23653A.1, 2007.
Bonazzi, P. and Menchetti, S.: Monoclinic members of the epidote group:
effects of the AI Fe
3+ Fe
2+ substitution and of the entry of
REE
3+, Mineral. Petrol., 53, 133–153,
https://doi.org/10.1007/BF01171952, 1995.
Brunsmann, A., Franz, G., and Heinrich, W.: Experimental investigation of
zoisite-clinozoisite phase equilibria in the system
CaO-Fe
2O
3-Al
2O
3-SiO
2-H
2O, Contrib. Mineral.
Petrol., 143, 115–130, https://doi.org/10.1007/s00410-001-0335-4, 2002.
Caprarelli, G., Tsutsumi, M., and Turi, B.: Chemical and isotopic signatures
of the basement rocks from the Campi Flegrei geothermal field (Naples,
southern Italy); inferences about the origin and evolution of its
hydrothermal fluids, J. Volcanol. Geoth. Res., 76, 63–82,
https://doi.org/10.1016/S0377-0273(96)00072-8,1997.
Carlino, S., Somma, R., Troise, C., and De Natale, G.: The geothermal
exploration of Campanian volcanoes: Historical review and future
development, Renew. Sust. Energ. Rev., 16, 1004–1030,
https://doi.org/10.1016/j.rser.2011.09.023, 2012.
Caruso, L. J., Bird, D. K., Cho, M., and Liou, J. G.: Epidote-Bearing Veins in
the State 2–14 Drill Hole: Implications for Hydrothermal Fluid Composition,
J. Geophys. Res-Sol. Ea., 93, 13123–13133,
https://doi.org/10.1029/JB093iB11p13123, 1988.
Cavarretta, G., Gianelli, G., and Puxeddu, M.: Hydrothermal metamorphism in
the Larderello geothermal field, Geothermics, 9, 297–314,
https://doi.org/10.1016/0375-6505(80)90008-5, 1980.
Cavarretta, G., Gianelli, G., and Puxeddu, M.: Formation of authigenic
minerals and their use as indicators of the physicochemical parameters of
the fluid in the Larderello-Travale geothermal field, Econ. Geol., 77,
1071–1084, https://doi.org/10.2113/gsecongeo.77.5.1071, 1982.
Chelini, W. and Sbrana, A.: Subsurface geology, in: Phlegrean Fields, edited
by: Rosi, M. and Sbrana, A., Consiglio Nazionale delle Ricerche, Quaderni De
La Ricerca Scientifica, Roma, Italy, 94–103, ISSN 0556-9664, 1987.
Chen, A. P., Yang, J. J., Zhong, D. L., Shi, Y. H., and Liu, J. B.: Epidote
spherulites and radial euhedral epidote aggregates in a greenschist facies
metavolcanic breccia hosting an UHP eclogite in Dabieshan (China):
Implication for dynamic metamorphism, Am. Mineral., 104, 1197–1212,
https://doi.org/10.2138/am-2019-6980, 2019.
Chiodini, G., Caliro, S., Avino, R., Bagnato, E., Capecchiacci, F.,
Carandente, A., Cardellini, C., Minopoli, C., Tamburello, G., Tripaldi, S.,
and Aiuppa, A.: The Hydrothermal System of the Campi Flegrei Caldera, Italy,
in: Campi Flegrei, edited by: Orsi, G., D'Antonio, M., and Civetta, L.,
Springer, Berlin, Heidelberg, 239–255, https://doi.org/10.1007/978-3-642-37060-1_9, 2022.
Choo, C. O.: Complex compositional zoning in epidote from rhyodacitic tuff,
Bobae sericite deposit, southeastern Korea, Neues Jb. Miner. Abh., 177,
181–197, https://doi.org/10.1127/0077-7757/2002/0177-0181, 2002.
Dawes, R. L.: Evidence from rare earth zoning in magmatic epidote for
assimilation of peraluminous granulite by dacitic magmas at 30 km depth,
Eos, Trans. Amer. Geophys. Union, 71, 1144, https://doi.org/10.1029/EO071i043p01219, 1990.
Deer, W. A., Howie, R. A., and Zussman, J. (Eds.): Disilicates and Ring
Silicates, Vol. 1B, 2nd Edn., Longman Scientific and Technical, Essex,
United Kingdom, ISBN 0582465214, 1986.
De Vivo, B., Belkin, H. E., Barbieri, M., Chelini, W., Lattanzi, P., Lima,
A., and Tolomeo, L.: The Campi Flegrei (Italy) geothermal system: a fluid
inclusion study of the Mofete and San Vito fields, J. Volcanol. Geoth. Res.,
36, 303–326, https://doi.org/10.1016/0377-0273(89)90076-0, 1989.
De Vivo, B. and Lima, A.: A hydrothermal model for ground movements
(bradyseism) at Campi Flegrei, Italy, in: Volcanism in the Campania Plain –
Vesuvius, Campi Flegrei and Ignimbrites, edited by: De Vivo, B., Elsevier,
Amsterdam, the Netherlands, 289–317,
https://doi.org/10.1016/S1871-644X(06)80028-8, 2006.
De Vivo, B., Rolandi, G., Gans, P. B., Calvert, A., Bohrson, W. A., Spera,
F. J., and Belkin, H. E.: New constraints on the pyroclastic eruptive history
of the Campanian volcanic Plain, (Italy), Miner. Petrol., 73, 47–65,
https://doi.org/10.1007/s007100170010, 2001.
De Vivo, B., Belkin, H. E., and Rolandi, G. (Eds.): Vesuvius, Campi Flegrei,
and Campanian Volcanism, Elsevier, Amsterdam, the Netherlands, ISBN 9780128164549, 2020.
Dowty, E.: Crystal structure and crystal growth: II. Sector zoning in
minerals, Am. Mineral., 61, 460–469, 1976.
Exley, R. A.: Microprobe studies of REE-rich accessory minerals: Implications
for Skye granite petrogenesis and REE mobility in hydrothermal systems,
Earth Planet. Sc. Lett., 48, 97–110,
https://doi.org/10.1016/0012-821X(80)90173-9, 1980.
Fowler, A. P. and Zierenberg, R. A.: Rare earth element concentrations in
geothermal fluids and epidote from the Reykjanes geothermal system, Iceland,
in: Proceedings World Geothermal Congress 2015, International Geothermal Association, Den Haag, the Netherlands, Melbourne, Australia, 19–25
April 2015, 1–11, ISBN 1877040029, 2015.
Franz, G. and Liebscher, A.: Physical and chemical properties of the epidote
minerals – An introduction, in: Reviews in Mineralogy and Geochemistry, Vol.
56, Epidotes, edited by: Liebscher, A. and Franz, G., Mineralogical Society
of America and Geochemical Society, Washington, DC, USA, 1–81,
https://doi.org/10.2138/gsrmg.56.1.1, 2004.
Giacomelli, L. and Scandone, R.: History of the exploitation of
thermo-mineral resources in Campi Flegrei and Ischia, Italy, J. Volcanol.
Geoth. Res., 209, 19–32, https://doi.org/10.1016/j.jvolgeores.2011.10.004,
2012.
Gieré, R. and Sorensen, S. S.: Allanite and other REE-rich epidote-group
minerals, in: Reviews in Mineralogy and Geochemistry, Vol. 56, Epidotes,
edited by: Liebscher, A. and Franz, G., Mineralogical Society of America and
Geochemical Society, Washington, DC, USA, 431–493,
https://doi.org/10.2138/gsrmg.56.1.431, 2004.
Guglielminetti, M.: Mofete geothermal field, Geothermics, 15, 781–790,
https://doi.org/10.1016/0375-6505(86)90091-X, 1986.
Guidi, A., and Antonelli, G.: Modeling in the Mofete field, in: European
Geothermal Update, edited by: Louwrier, K., Staroste, E., Garnish, J. D., and
Karkoulias, V., Kluwer Academic Publishers, Dordrecht, the Netherlands,
119–128, ISBN 0792301986, 1989.
Holdaway, M. J.: Thermal stability of Al-Fe epidote as a function of
fO
2 and Fe content, Contrib. Mineral. Petr., 37, 307–340,
https://doi.org/10.1007/BF00371011, 1972.
Huebner, J. S. and Woodruff, M. E.: Chemical compositions and critical
evaluation of microprobe standards available from the Reston microprobe
facility, U.S. Geological Survey Open File Report 85-718, 45 pp.,
https://doi.org/10.3133/ofr85718, 1985.
Inoue, A. and Utada, M.: Pinkish colored epidotes found in a geothermal
exploration well NB–1, Noboribetsu, Hokkaido, J. Miner. Petrol. Sci., 112,
147–158, https://doi.org/10.2465/jmps.161229, 2017.
Janeczek, J. and Sachanbinsk, M.: Babingtonite, Y-Al-rich titanite, and
zoned epidote from the Strzegom pegmatites, Poland, Eur. J. Mineral.,
307–320, Eur. J. Mineral., https://doi.org/10.1127/ejm/4/2/0307, 1992.
Lima, A., De Vivo, B., Spera, F. J., Bodnar, R. J., Milia, A., Nunziata, C.,
Belkin, H. E., and Cannatelli, C.: Thermodynamic model for uplift and
deflation episodes (bradyseism) associated with magmatic-hydrothermal
activity at Campi Flegrei, Italy, Earth Sci. Rev., 97, 44–58, 2009.
Lima, A., Bodnar, R. J., De Vivo, B., Spera, F. J., and Belkin, H. E.:
Interpretation of Recent Unrest Events (Bradyseism) at Campi Flegrei, Napoli
(Italy): Comparison of Models Based on Cyclical Hydrothermal Events versus
Shallow Magmatic Intrusive Events, Geofluids, 2021, 1–16,
https://doi.org/10.1155/2021/2000255, 2021.
Liou, J. G.: Synthesis and stability relations of epidote,
Ca
2Al
2FeSi
3O
12(OH), J. Petrol., 14, 381–413,
https://doi.org/10.1093/petrology/14.3.381, 1973.
Liou, J. G., Seki, Y., Guillemette, R. N., and Sakai, H.: Compositions and
parageneses of secondary minerals in the Onikobe geothermal system, Japan,
Chem. Geol., 49, 1–20, https://doi.org/10.1016/0009-2541(85)90143-3, 1985.
Loomis, T. P.: Compositional zoning of crystals: A record of growth and
reaction history, in: Kinetic and equilibrium in mineral reactions, edited
by: Saxena, S. K., Springer-Verlag, New York, NY, USA, 1–60,
https://doi.org/10.1007/978-1-4612-5587-1_1, 1983.
McKibben, M. A., Andes Jr., J. P., and Williams, A. E.: Active ore formation
at a brine interface in metamorphosed deltaic lacustrine sediments; the
Salton Sea geothermal system, California, Econ. Geol., 83, 511–523,
https://doi.org/10.2113/gsecongeo.83.3.511, 1988.
Mills, S. J., Hatert, F., Nickel, E. H., and Ferraris, G.: The standardisation
of mineral group hierarchies: application to recent nomenclature proposals,
Eur. J. Mineral., 21, 1073–1080,
https://doi.org/10.1127/0935-1221/2009/0021-1994, 2009.
Möller, P.: Rare earth elements and yttrium in geothermal fluids, Water
Trans., 40, 97–125, 2002.
Mormone, A., Tramelli, A., Di Vito, M. A., Piochi, M., Troise, C., and De
Natale, G.: Secondary hydrothermal minerals in buried rocks at the Campi
Flegrei caldera, Italy: a possible tool to understand the rock-physics and
to assess the state of the volcanic system, Period. Mineral., 80, 385–406, https://doi.org/10.2451/2011PM0027, 2011.
Orsi, G., D'Antonio, M., and Civetta, L., (Eds.): Campi Flegrei – A Restless
Caldera in a Densely Populated Area, Springer, Berlin, Germany, ISBN 3642370594, 2022.
Ortoleva, P. J.: Geochemical Self-Organization, Oxford University Press, New
York, NY, USA, ISBN 0195044762, 1994.
Patrier, P., Beaufort, D., Touchard, G., and Fouillac, A.-M.: Crystal size of
epidotes: A potentially exploitable geothermometer in geothermal fields?,
Geology, 18, 1126–1129, https://doi.org/10.1130/0091-7613(1990)018<1126:CSOEAP>2.3.CO;2, 1990.
Piochi, M., Kilburn, C. R. J., Di Vito, M. A., Mormone, A., Tramelli, A.,
Troise, C., and De Natale, G.: The volcanic and geothermally active Campi
Flegrei caldera: an integrated multidisciplinary image of its buried
structure, Int. J. Earth Sci., 103, 401–421, https://doi.org/10.1007/s00531-013-0972-7,
2014.
Piochi, M., Cantucci, B., Montegrossi, G., and Currenti, G.: Hydrothermal
Alteration at the San Vito Area of the Campi Flegrei Geothermal System in
Italy, Mineral Review and Geochemical Modeling, Minerals, 11, 810,
https://doi.org/10.3390/min11080810, 2021.
Poli, S. and Schmidt, M. W.: Experimental subsolidus studies on epidote
minerals, in: Reviews in Mineralogy and Geochemistry, Vol. 56, Epidotes,
edited by: Liebscher, A. and Franz, G., Mineralogical Society of America and
Geochemical Society, Washington, DC, USA, 171–195,
https://doi.org/10.2138/gsrmg.56.1.171, 2004.
Potel, S., Schmidt, S. T., and de Capitani, C.: Composition of pumpellyite,
epidote and chlorite from New Caledonia. How important are metamorphic grade
and whole-rock composition?, Schweiz. Miner. Petrog., 82, 229–252,
https://doi.org/10.5169/seals-62363, 2002.
Rolandi, G., Bellucci, F., Heizler, M. T., Belkin, H. E., and De Vivo, B.:
Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic
Zone, southern, Italy, Miner. Petrol., 79, 3–31,
https://doi.org/10.1007/s00710-003-0014-4, 2003.
Rolfo, F., Compagnoni, R., Xu, S., and Jiang, L.: First report of felsic
whiteschist in the ultrahigh-pressure metamorphic belt of Dabie Shan, China,
Eur. J. Mineral., 12, 883–898,
https://doi.org/10.1127/0935-1221/2000/0012-0883, 2000.
Rosi, M. and Sbrana, A. (Eds.): Phlegrean Fields, Consiglio Nazionale delle
Ricerche, Quaderni de La Ricerca Scientifica 114, Consiglio Nazionale delle Ricerche, Roma, Italy, 1987.
Santaguida, F.: The paragenetic relationships of epidote-quartz hydrothermal
alteration within the Noranda volcanic complex, Quebec, Ph.D. dissertation, Department of Earth Sciences,
Carleton University, Ottawa, ON, Canada, 302 pp., https://doi.org/10.22215/etd/1999-04190, 1999.
Scherrer, N. C., Engi, M., Gnos, E., Jakob, V., and Leichti, A.: Monazite
analysis; from sample preparation to microprobe age dating and REE
quantification, Schweiz. Miner. Petrog., 80, 93–105, 2000.
Shearer, C. K., Papike, J. J., Simon, S. B., Davis, B. L, and Laul, J. C.:
Mineral reactions in altered sediments from the California State 2–14 well:
Variations in the modal mineralogy, mineral chemistry and bulk composition
of the Salton Sea Scientific Drilling Project core, J. Geophys. Res.-Sol.
Ea., 93, 13104–13122, https://doi.org/10.1029/JB093iB11p13104, 1988.
Shikazono, N.: Compositional variations in epidote from geothermal areas,
Geochem. J., 18, 181–187, https://doi.org/10.2343/geochemj.18.181, 1984.
Smulikowski, W. and Kozłowski, A.: Distribution of cerium, lanthanum and
yttrium in allanites and associated epidotes of metavolcanic rocks of
Hornsund area, Vestspitzbergen, Neues Jb. Miner. Abh., 166, 295–324, 1994.
Somma, R., Blessent, D., Raymond, J., Constance, M., Cotton, L., Natale,
G. D., Fedele, A., Jurado, M. J., Marcia, K., Miranda, M., and Troise, C.:
Review of recent drilling projects in unconventional geothermal resources at
Campi Flegrei Caldera, Cornubian Batholith, and Williston Sedimentary Basin,
Energies, 14, 3306, https://doi.org/10.3390/en14113306, 2021.
Sorby, H. C.: On the microscopic structure of crystals, indicating the origin
of minerals and rocks, Q. J. Geol. Soc. Lond., 14, 453–500,
https://doi.org/10.1144/GSL.JGS.1858.014.01-02.44, 1858.
Valentino, G. M., Cortecci, G., Franco, E., and Stanzione, D.: Chemical and
isotopic compositions of minerals and waters from the Campi Flegrei volcanic
system, Naples, Italy, J. Volcanol. Geoth. Res., 91, 329–344,
https://doi.org/10.1016/S0377-0273(99)00042-6, 1999.
Williams-Jones, A. E.: The hydrothermal mobility of the rare earth elements,
in: Symposium on Strategic and Critical Materials Proceedings, British
Columbia Geological Survey Paper 2015-3, Victoria, BC, Canada, 13–14
November 2015, 119–123, 2015.
Yavuz, F. and Yildirim, D. K.: A Windows program for calculation and
classification of epidote-supergroup minerals, Period. Mineral., 87,
269–285, 2018.
Yoshizawa, H.: Notes on petrography and rock-forming mineralogy (16)
Sector-zoned epidote from Sanbagawa schist in central Shikoku, Japan, J.
Miner. Petrol. Sci., 79, 101–110, https://doi.org/10.2465/ganko1941.79.101,
1984.
Zamora, M., Sartoris, G., and Chelini, W.: Laboratory measurements of
ultrasonic wave velocities in rocks from the Campi Flegrei volcanic system
and their relation to other field data, J. Geophys. Res., 99, 13553–13561,
https://doi.org/10.1029/94JB00121, 1994.
Zen, E.-A. and Hammarstrom, J. M.: Magmatic epidote and its petrologic
significance, Geology, 12, 515–518,
https://doi.org/10.1130/0091-7613(1984)12<515:MEAIPS>2.0.CO;2, 1984.