Articles | Volume 35, issue 2
https://doi.org/10.5194/ejm-35-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-171-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pervasive carbonation of peridotite to listvenite (Semail Ophiolite, Sultanate of Oman): clues from iron partitioning and chemical zoning
Thierry Decrausaz
CORRESPONDING AUTHOR
Géosciences Montpellier, Université de Montpellier, CNRS,
Montpellier, 34095, France
Marguerite Godard
Géosciences Montpellier, Université de Montpellier, CNRS,
Montpellier, 34095, France
Manuel D. Menzel
Tectonics and Geodynamics, RWTH Aachen University, 52056 Aachen,
Germany
Petrology, Geochemistry and Geochronology (PGG), Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC–UGR, Armilla,
18100, Spain
Fleurice Parat
Géosciences Montpellier, Université de Montpellier, CNRS,
Montpellier, 34095, France
Emilien Oliot
Géosciences Montpellier, Université de Montpellier, CNRS,
Montpellier, 34095, France
Romain Lafay
Géosciences Montpellier, Université de Montpellier, CNRS,
Montpellier, 34095, France
Fabrice Barou
Géosciences Montpellier, Université de Montpellier, CNRS,
Montpellier, 34095, France
Related authors
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Sylvie Demouchy, Manuel Thieme, Fabrice Barou, Benoit Beausir, Vincent Taupin, and Patrick Cordier
Eur. J. Mineral., 35, 219–242, https://doi.org/10.5194/ejm-35-219-2023, https://doi.org/10.5194/ejm-35-219-2023, 2023
Short summary
Short summary
We report a comprehensive data set characterizing and quantifying two types of mineral defects in the most abundant mineral of Earth's upper mantle: olivine. Namely, we investigate translation defects of dislocation and rotation defects, called disclinations, in polycrystalline olivine deformed in uniaxial compression or torsion, at high temperature and pressure. The defects are identified via mapping of the crystallographic disorientation detected using electron backscatter diffraction.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Mathieu Rospabé, Fatma Kourim, Akihiro Tamura, Eiichi Takazawa, Manolis Giampouras, Sayantani Chatterjee, Keisuke Ishii, Matthew J. Cooper, Marguerite Godard, Elliot Carter, Natsue Abe, Kyaw Moe, Damon A. H. Teagle, and Oman Drilling Project “ChikyuOman2018 Leg 3” Science
Team
Sci. Dril., 30, 75–99, https://doi.org/10.5194/sd-30-75-2022, https://doi.org/10.5194/sd-30-75-2022, 2022
Short summary
Short summary
During ChikyuOman2018 Leg3, we adapted a sample preparation and analytical procedure in order to analyse (ultra-)trace element concentrations using the D/V Chikyu on-board instrumentation. This dry (acid-free) and safe method has been developed for the determination of 37 elements (lowest reachable concentrations: 1–2 ppb) in igneous rocks from the oceanic lithosphere and could be adapted to other materials and/or chemicals of interest in the course of future ocean drilling operations.
Valentin Basch, Martyn R. Drury, Oliver Plumper, Eric Hellebrand, Laura Crispini, Fabrice Barou, Marguerite Godard, and Elisabetta Rampone
Eur. J. Mineral., 33, 463–477, https://doi.org/10.5194/ejm-33-463-2021, https://doi.org/10.5194/ejm-33-463-2021, 2021
Short summary
Short summary
This paper investigates the possibility for melts to migrate within extensively deformed crystals and assesses the impact of this intracrystalline melt percolation on the chemical composition of the deformed crystal. We here document that the presence of melt within a crystal greatly enhances chemical diffusive re-equilibration between the percolating melt and the mineral and that such a process occurring at crystal scale can impact the large-scale composition of the oceanic lithosphere.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Anne-Marie Boullier, Odile Robach, Benoît Ildefonse, Fabrice Barou, David Mainprice, Tomoyuki Ohtani, and Koichiro Fujimoto
Solid Earth, 9, 505–529, https://doi.org/10.5194/se-9-505-2018, https://doi.org/10.5194/se-9-505-2018, 2018
Short summary
Short summary
The paper describes microstructures in granitic rocks located 50 m away from the Nojima fault in Japan. Although macroscopically undeformed, the sample displays evidence for intense dynamic damage at the microscopic scale. Elastic strain and high residual stresses stored in quartz grains suggest that they were produced by propagating rupture fronts associated with M6 to M7 earthquakes and contributed to the widening of the damaged fault zone along the Nojima fault during the Paleocene.
Related subject area
Fluid-rock interaction
Multiple growth of zirconolite in marble (Mogok metamorphic belt, Myanmar): evidence for episodes of fluid metasomatism and Zr–Ti–U mineralization in metacarbonate systems
Contact metamorphic reactions and fluid–rock interactions related to magmatic sill intrusion in the Guaymas Basin
Qian Guo, Shun Guo, Yueheng Yang, Qian Mao, Jiangyan Yuan, Shitou Wu, Xiaochi Liu, and Kyaing Sein
Eur. J. Mineral., 36, 11–29, https://doi.org/10.5194/ejm-36-11-2024, https://doi.org/10.5194/ejm-36-11-2024, 2024
Short summary
Short summary
We investigate the occurrence, texture, composition, and chronology of three types of zirconolite in dolomite marbles from the Mogok metamorphic belt, Myanmar. These zirconolites, which were formed by multiple episodes of fluid–marble interaction, record the time-resolved fluid infiltration history in metacarbonates and reactive fluid compositions from ~35 to ~19 Ma. Zirconolite is expected to play a more important role in orogenic CO2 release and the transfer and deposition of rare metals.
Alban Cheviet, Martine Buatier, Flavien Choulet, Christophe Galerne, Armelle Riboulleau, Ivano Aiello, Kathleen M. Marsaglia, and Tobias W. Höfig
Eur. J. Mineral., 35, 987–1007, https://doi.org/10.5194/ejm-35-987-2023, https://doi.org/10.5194/ejm-35-987-2023, 2023
Short summary
Short summary
The present study is based on sample chemical and mineralogical analyses of oceanic sediment and rock that were collected in the Guaymas Basin during IODP Expedition 385. The contact aureoles are not only affected by maturation of organic matter and dehydration reaction, but mineralogical reactions concern all sediment components (silicates, sulfides, carbonates, organic matter) and can be the result of the combination of different stages of alteration during and after the sill emplacement.
Cited articles
Aftabi, A. and Zarrinkoub, M. H.: Petrogeochemistry of listvenite
association in metaophiolites of Sahlabad region, eastern Iran: Implications
for possible epigenetic Cu–Au ore exploration in metaophiolites, Lithos,
156–159, 186–203, https://doi.org/10.1016/j.lithos.2012.11.006, 2013.
Alt, J. C., Schwarzenbach, E. M., Früh-Green, G. L., Shanks, W. C.,
Bernasconi, S. M., Garrido, C. J., Crispini, L., Gaggero, L.,
Padrón-Navarta, J. A., and Marchesi, C.: The role of serpentinites in
cycling of carbon and sulfur: Seafloor serpentinization and subduction
metamorphism, Lithos, 178, 40–54, https://doi.org/10.1016/j.lithos.2012.12.006, 2013.
Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoisé, E., and
Gibert, B.: Experimental Study of Carbon Sequestration Reactions Controlled
by the Percolation of CO2-Rich Brine through Peridotites, Environ. Sci.
Technol., 43, 1226–1231, https://doi.org/10.1021/es8018429, 2009.
Auclair, M., Gauthier, M., Trottier, J., Jebrak, M., and Chartrand, F.:
Mineralogy, geochemistry, and paragenesis of the Eastern Metals
serpentinite-associated Ni-Cu-Zn deposit, Quebec Appalachians, Econ. Geol.,
88, 123–138, https://doi.org/10.2113/gsecongeo.88.1.123, 1993.
Austrheim, H., Corfu, F., and Renggli, C. J.: From peridotite to fuchsite
bearing quartzite via carbonation and weathering: with implications for the
Pb budget of continental crust, Contrib. Mineral. Petrol., 176, 94, https://doi.org/10.1007/s00410-021-01851-z, 2021.
Bechennec, F., Le Metour, J., Rabu, D., Bourdillon-de-Grissac, C., de Wever,
P., Beurrier, M., and Villey, M.: The Hawasina Nappes: stratigraphy,
palaeogeography and structural evolution of a fragment of the south-Tethyan
passive continental margin, Geol. Soc. Spec. Publ., 49, 213–223,
https://doi.org/10.1144/gsl.sp.1992.049.01.14, 1990.
Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H., and
Jamtveit, B.: Massive serpentinite carbonation at Linnajavri, N–Norway,
Terra Nova, 24, 446–455, https://doi.org/10.1111/j.1365-3121.2012.01083.x, 2012.
Beinlich, A., Plümper, O., Boter, E., Müller, I. A., Kourim, F.,
Ziegler, M., Harigane, Y., Lafay, R., Kelemen, P. B., and the Oman Drilling
Project Science Team: Ultramafic rock carbonation: Constraints from
listvenite core BT1B, Oman drilling project, J. Geophys. Res.-Sol. Ea.,
125, e2019JB019060, https://doi.org/10.1029/2019JB019060, 2020.
Belogub, E. V., Melekestseva, I. Y., Novoselov, K. A., Zabotina, M. V.,
Tret'yakov, G. A., Zaykov, V. V., and Yuminov, A. M.: Listvenite-related gold
deposits of the South Urals (Russia): A review, Ore Geol. Rev., 85, 247–270,
https://doi.org/10.1016/j.oregeorev.2016.11.008, 2017.
Boskabadi, A., Pitcairn, I. K., Leybourne, M. I., Teagle, D. A. H., Cooper,
M. J., Hadizadeh, H., Bezenjani, R. N., and Bagherzadeh, R. M.: Carbonation of
ophiolitic ultramafic rocks: Listvenite formation in the Late Cretaceous
ophiolites of eastern Iran, Lithos, 352/353, 105307,
https://doi.org/10.1016/j.lithos.2019.105307, 2020.
Boudier, F. and Nicolas, A.: Synchronous Seafloor Spreading and Subduction
at the Paleo-Convergent Margin of Semail and Arabia, Tectonics, 37,
2961–2982, https://doi.org/10.1029/2018TC005099, 2018.
Boudier, F., Ceuleneer, G., and Nicolas, A.: Shear zones, thrusts and
related magmatism in the Oman ophiolite: Initiation of thrusting on an
oceanic ridge, Tectonophysics, 151, 275–296,
https://doi.org/10.1016/0040-1951(88)90249-1, 1988.
Boudier, F., Baronnet, A., and Mainprice, D.: Serpentine mineral
replacements of natural olivine and their seismic implications: Oceanic
lizardite versus subduction-related antigorite, J. Petrol., 51,
495–512, https://doi.org/10.1093/petrology/egp049, 2010.
Buisson, G. and Leblanc, M.: Gold in carbonatized ultramafic rocks from
ophiolite complexes, Econ. Geol., 80, 2028–2029,
https://doi.org/10.2113/gsecongeo.80.7.2028, 1985.
Cannaò, E., Scambelluri, M., Bebout, G. E., Agostini, S., Pettke, T.,
Godard, M., and Crispini, L.: Ophicarbonate evolution from seafloor to
subduction and implications for deep-Earth C cycling, Chem. Geol., 546,
119626, https://doi.org/10.1016/j.chemgeo.2020.119626, 2020.
Coleman, R.: Tectonic setting for ophiolite obduction in Oman, J. Geophys.
Res.-Sol. Ea., 86, 2497–2508, https://doi.org/10.1029/JB086iB04p02497, 1981.
Connolly, J. A. D.: Computation of phase equilibria by linear programming: A
tool for geodynamic modeling and its application to subduction zone
decarbonation, Earth Planet. Sc. Lett., 236, 524–541, https://doi.org/10.1016/j.epsl.2005.04.033, 2005.
Connolly, J. A. D.: The geodynamic equation of state: What and how,
Geochem. Geophy. Geosy. 10, Q10014, https://doi.org/10.1029/2009GC002540,
2009.
Debret, B., Bouilhol, P., Pons, M. L., and Williams, H.: Carbonate Transfer
during the Onset of Slab Devolatilization: New Insights from Fe and Zn
Stable Isotopes, J. Petrol., 59, 1145–1166, https://doi.org/10.1093/petrology/egy057,
2018.
Decrausaz, T., Godard, M., Menzel, M.D., Parat, F., Oliot, E., Lafay, R., and Barou, F.: Major and trace element mineral compositions of carbonated serpentinites and listvenites from Oman Drilling Project Hole BT1B (Semail Ophiolite, Oman), Version 2.0, Interdisciplinary Earth Data Alliance (IEDA) [data set],
https://doi.org/10.26022/IEDA/112834, 2023.
de Obeso J. C. and Kelemen, P. B.: Major element mobility during
serpentinization, oxidation and weathering of mantle peridotite at low
temperatures, Philos. T. R. Soc. A, 378, 20180433,
https://doi.org/10.1098/rsta.2018.0433, 2020.
Deschamps, F., Godard, M., Guillot, S., and Hattori, K.: Geochemistry of
subduction zone serpentinites: A review, Lithos, 178, 96–127,
https://doi.org/10.1016/j.lithos.2013.05.019, 2013.
Eckstrand, O. R.: The Dumont serpentinite; a model for control of
nickeliferous opaque mineral assemblages by alteration reactions in
ultramafic rocks, Econ. Geol., 70, 183–201,
https://doi.org/10.2113/gsecongeo.70.1.183, 1975.
Emam, A. and Zoheir, B.: Au and Cr mobilization through metasomatism:
Microchemical evidence from ore-bearing listvenite, South Eastern Desert of
Egypt, J. Geochem. Explor., 125, 34–45, https://doi.org/10.1016/j.gexplo.2012.11.004
Falk, E. S. and Kelemen P. B.: Geochemistry and petrology of listvenite in
the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite
during ophiolite emplacement, Geochim. Cosmochim. Ac., 160, 70–90,
https://doi.org/10.1016/j.gca.2015.03.014, 2015.
Frost, B. R.: On the Stability of Sulfides, Oxides, and Native Metals in
Serpentinite, J. Petrol., 26, 31–63, https://doi.org/10.1093/petrology/26.1.31,
1985.
Frost, B. R. and Beard, J. S.: On Silica Activity and Serpentinization, J.
Petrol., 48, 1351–1368, https://doi.org/10.1093/petrology/egm021, 2007.
Gahlan, H. A., Azer, M. K., Asimow, P. D., and Al-Kahtany, K. M.: Petrogenesis
of gold-bearing listvenites from the carbonatized mantle section of the
Neoproterozoic Ess ophiolite, Western Arabian Shield, Saudi Arabia, Lithos,
372–373, 105679, https://doi.org/10.1016/j.lithos.2020.105679, 2020.
Garber, J. M., Rioux, M., Searle, M. P., Kylander-Clark, A. R. C., Hacker, B. R.,
Vervoort, J. D., Warren, C. J., and Smye, A. J.: Dating continental subduction
beneath the Samail Ophiolite: Garnet, zircon, and rutile petrochronology of
the As Sifah eclogites, NE Oman. J. Geophys. Res.-Sol. Ea., 126,
e2021JB022715, https://doi.org/10.1029/2021JB022715, 2021.
Glennie, K. W., Boeuf, M. G. A., Hugues Clark, M. W., Moody-Stuart, M., Pilaar,
W. F. H., and Reinhardt, B. M.: Geology of the Oman Mountains, Neder. Mijn.
Geol. Genoot., Delft, the Netherlands, 423 pp., ISBN 978-90-01-01310-3, 1974.
Godard, M., Jousselin, D., and Bodinier, J.-L.: Relationships between
geochemistry and structure beneath a paleo-spreading centre: a study of the
mantle section in the Oman ophiolite, Earth Planet. Sc. Lett., 180,
133–148, https://doi.org/10.1016/S0012-821X(00)00149-7, 2000.
Godard, M., Carter, E. J., Decrausaz, T., Lafay, R., Bennett, E., Kourim, F.,
de Obeso, J. C., Michibayashi, K., Harris, M., Coggon, J., Teagle, D.,
Kelemen, P., and the Oman Drilling Project Phase 1 Science Party:
Geochemical Profiles Across the Listvenite-Metamorphic Transition in the
Basal Megathrust of the Semail Ophiolite: Results from Drilling at Oman DP
Hole BT1B, J. Geophys. Res.-Sol. Ea., 126, e2021JB022733,
https://doi.org/10.1029/2021JB022733, 2021.
Griffin, W., Powell, W., Pearson, N. J., and O'Reilly, S.: GLITTER: data
reduction software for laser ablation ICP-MS, Short Course Series, 40,
308–311, 2008.
Halls, C. and Zhao, R.: Listvenite and related rocks: perspectives on
terminology and mineralogy with reference to an occurrence at Cregganbaun,
Co. Mayo, Republic of Ireland, Mineral. Deposita, 30, 303–313,
https://doi.org/10.1007/BF00196366, 1995.
Hanghøj, K., Kelemen, P. B., Hassler, D., and Godard, M.: Composition and
Genesis of Depleted Mantle Peridotites from the Wadi Tayin Massif, Oman
Ophiolite; Major and Trace Element Geochemistry, and Os Isotope and PGE
Systematics, J. Petrol., 51, 201–227, https://doi.org/10.1093/petrology/egp077,
2010.
Hansen, L. D., Dipple, G. M., Gordon, T. M., and Kellett, D. A.: Carbonated
serpentinite (listwanite) at Atlin, British Columbia: a geological analogue
to carbon dioxide sequestration, Can. Mineral., 43, 225–239,
https://doi.org/10.2113/gscanmin.43.1.225, 2015.
Hinsken, T., Bröcker, M., Strauss, H., and Bulle, F.: Geochemical,
isotopic and geochronological characterization of listvenite from the Upper
Unit on Tinos, Cyclades, Greece, Lithos, 282/283, 281–297,
https://doi.org/10.1016/j.lithos.2017.02.019, 2017.
Holland, T. and Powell, R.: An improved and extended internally consistent
thermodynamic dataset for phases of petrological interest, involving a new
equation of state for solids, J. Metamorph. Geol., 29, 333–383,
https://doi.org/10.1111/j.1525-1314.2010.00923.x, 2011.
Holland, T. J. B. and Powell, R.: An internally consistent thermodynamic data
set for phases of petrological interest, J. Metamorph. Geol., 16, 309–343,
https://doi.org/10.1111/j.1525-1314.1998.00140.x, 1998.
Johannes, W.: An experimental investigation of the system MgO-SiO2–H2O-CO2,
Am. J. Sci., 267, 1083–1104, https://doi.org/10.2475/ajs.267.9.1083, 1969.
Kelemen, P. B. and Matter, J. M.: In situ carbonation of peridotite for CO2
storage, P. Natl. Acad. Sci. USA, 105, 17295–17300,
https://doi.org/10.1073/pnas.0805794105, 2008.
Kelemen, P. B. and Manning, C. E.: Reevaluating carbon fluxes in subduction
zones, what goes down, mostly comes up, P. Natl. Acad. Sci. USA, 112, 30,
https://doi.org/10.1073/pnas.1507889112, 2015.
Kelemen, P. B., Matter, J. M., Teagle, D. A. H., Coggon, J. A., and the Oman
Drilling Project Science Team: Site BT1: fluid and mass exchange on a
subduction zone plate boundary, in: Proceedings of the Oman Drilling
Project, College Station, Texas, International Ocean Discovery Program, International Ocean Discovery Program, https://doi.org/10.14379/OmanDP.proc.2020, 2020.
Kelemen, P. B., de Obeso, J. C., Leong, J. A., Godard, M., Okazaki, K.,
Kotowski, A. J., Manning, C. E., Ellison, E. T., Menzel, M. D., Urai, J. L.,
Hirth, G., Rioux, M., Stockli, D. F., Lafay, R., Beinlich, A. M., Coggon,
J. A., Warsi, N. H., Matter, J. M., Teagle, D. A. H., Harris, M., Michibayashi,
K., Takazawa, E., Al Sulaimani, Z., and the Oman Drilling Project Science
Team: Listvenite formation during mass transfer into the leading edge of the
mantle wedge: Initial results from Oman Drilling Project Hole BT1B, J.
Geophys. Res.-Sol. Ea., 127, e2021JB022352, https://doi.org/10.1029/2021JB022352,
2022.
Khedr, M. Z., Arai, S., and Python, M.: Petrology and chemistry of basal
lherzolites above the metamorphic sole from Wadi Sarami central Oman
ophiolite, J. Mineral. Petrol. Sci., 108, 13–24, https://doi.org/10.2465/jmps.121026,
2013.
Klein, F. and Bach, W.: Fe-Ni-Co-O-S Phase Relations in Peridotite-Seawater
Interactions, J. Petrol., 50, 37–59, https://doi.org/10.1093/petrology/egn071, 2009.
Lanari, P., Vho, A., Bovay, T., Airaghi, L., and Centrella, S.: Quantitative
compositional mapping of mineral phases by electron probe micro-analyser,
Geol. Soc. Spec. Publ., 478, 39–63, https://doi.org/10.1144/SP478.4, 2019.
Lippard, S. J., Shelton, A. W., and Gass, I. G.: The Ophiolite of Northern
Oman, Geological Society of London Memoir 11, Blackwell Scientific
Publications, Oxford, 178 pp., Blackwell Scientific Publications,
ISBN 0 632 01587 X, 1986.
Mayhew, L. E., Ellison, E. T., Miller, H. M., Kelemen, P. B., and Templeton,
A. S.: Iron transformations during low temperature alteration of variably
serpentinized rocks from the Samail ophiolite, Oman, Geochim. Cosmochim.
Ac., 222, 704–728, https://doi.org/10.1016/j.gca.2017.11.023, 2018.
Menzel, M. D., Garrido, C. J., Sánchez-Vizcaíno V. L., Marchesi, C.,
Hidas, K., Escayola, M. P., and Huertas, A. D.: Carbonation of mantle
peridotite by CO2-rich fluids: the formation of listvenites in the
Advocate ophiolite complex (Newfoundland, Canada), Lithos, 323, 238–261,
https://doi.org/10.1016/j.lithos.2018.06.001, 2018.
Menzel, M. D., Urai, J. L., de Obeso, J. C., Kotowski, A., Manning, C. E.,
Kelemen, P. B., Kettermann, M., Jesus, A. P., Harigane, Y., and the Oman
Drilling Project Phase 1 Science Party: Brittle Deformation of Carbonated
Peridotite-Insights From Listvenites of the Samail Ophiolite (Oman Drilling
Project Hole BT1B), J. Geophys. Res.-Sol. Ea., 125, e2020JB020199,
https://doi.org/10.1029/2020JB020199, 2020.
Menzel, M. D., Urai, J. L., Ukar, E., Decrausaz, T., and Godard, M.: Progressive veining during peridotite carbonation: insights from listvenites in Hole BT1B, Samail ophiolite (Oman), Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, 2022.
Nasir, S., Al Sayigh, A. R., Al Harthy, A., Al-Khirbash, S., Al-Jaaidi, O.,
Musllam, A., Al-Mishwat, A., and Al-Bu'saidi, S.: Mineralogical and
geochemical characterization of listwaenite from the Semail Ophiolite, Oman,
Geochemistry, 67, 213–228, https://doi.org/10.1016/j.chemer.2005.01.003, 2007.
Nicolas, A., Boudier, F., Ildefonse, I., and Ball, E.: Accretion of Oman and
United Arab Emirates ophiolite – Discussion of a new structural map, Mar.
Geophys. Res., 21, 147–180, https://doi.org/10.1023/A:1026769727917, 2000.
Noël, J., Godard, M., Oliot, E., Martinez, I., Williams, M., Boudier,
F., Rodriguez, O., Chaduteau, C., Escario, S., and Gouze, P.: Evidence of
polygenetic carbon trapping in the Oman Ophiolite: Petro-structural,
geochemical, and carbon and oxygen isotope study of the Wadi Dima
harzburgite-hosted carbonates (Wadi Tayin massif, Sultanate of Oman),
Lithos, 323, 218–237, https://doi.org/10.1016/j.lithos.2018.08.020, 2018.
Okazaki, K., Michibayashi, K., Hatakeyama, K., Abe, N., Johnson, K. T. M.,
Kelemen, P. B., and the Oman Drilling Project Science Team: Major mineral
fraction and physical properties of carbonated peridotite (listvenite) from
ICDP Oman Drilling Project Hole BT1B inferred from X-ray CT core images, J.
Geophys. Res.-Sol. Ea., 126, e2021JB022719, https://doi.org/10.1029/2021JB022719,
2021.
Oman Drilling Project: Samples & Data, Oman Drilling Project
[data set], https://www.omandrilling.ac.uk/samples-data#SOAC,
last access: 2 January 2023.
Padrón-Navarta, J. A., López Sánchez-Vizcaíno, V., Hermann,
J., Connolly, J. A. D., Garrido, C. J., Gómez-Pugnaire, M. T., and Marchesi,
C.: Tschermak's substitution in antigorite and consequences for phase
relations and water liberation in high-grade serpentinites, Lithos, 178,
186–196, https://doi.org/10.1016/j.lithos.2013.02.001, 2013.
Peuble, S., Godard, M., Luquot, L., Andreani, M., Martinez, I., and Gouze,
P.: CO2 geological storage in olivine rich basaltic aquifers: New insights
from reactive-percolation experiments, Appl. Geochem., 52, 174–190,
https://doi.org/10.1016/j.apgeochem.2014.11.024, 2015a.
Peuble, S., Andreani, M., Godard, M., Gouze, P., Barou, F., Van De Moortele,
B., Mainprice, D., and Reynard, B.: Carbonate mineralization in percolated
olivine aggregates: Linking effects of crystallographic orientation and
fluid flow, Am. Min., 100, 474–482, https://doi.org/10.2138/am-2015-4913, 2015b.
Pitzer, K. S. and Sterner, S. M.: Equations of state valid continuously from
zero to extreme pressures with H2O and CO2 as examples, Int. J. Thermophys.,
16, 511–518, https://doi.org/10.1007/BF01441917, 1995.
Prigent, C., Agard, P., Guillot, S., Godard, M., and Dubacq, B.: Mantle
wedge (de)formation during subduction infancy: evidence from the base of the
Semail ophiolitic mantle, J. Petrol., 59, 2061–2091,
2018.
Qiu, T. and Zhu, Y.: Listwaenite in the Sartohay ophiolitic mélange
(Xinjiang, China): A genetic model based on petrology, U-Pb chronology and
trace element geochemistry, Lithos, 302/303, 427–446,
https://doi.org/10.1016/j.lithos.2018.01.029, 2018.
Rioux, M., Garber, J. M., Searle, M., Kelemen, P. B., Miyashita, S., Adachi,
Y., and Bowring, S.: High-Precision U-Pb Zircon Dating of Late Magmatism in
the Samail Ophiolite: A Record of Subduction Initiation, J. Geophys. Res.-Sol. Ea., 126, e2020JB020758, https://doi.org/10.1029/2020JB020760, 2021.
Schröder, T., Bach, W., Jöns, N., Jöns, S., Monien, P., and
Klügel, A.: Fluid circulation and carbonate vein precipitation in the
footwall of an oceanic core complex, Ocean Drilling Program Site 175,
Mid-Atlantic Ridge, Geochem. Geophy. Geosy., 16, 3716–3732,
https://doi.org/10.1002/2015GC006041, 2015.
Schwarzenbach, E. M., Früh-Green, G. L., Bernasconi, S. M., Alt, J. C., and
Plas, A.: Serpentinization and carbon sequestration: A study of two ancient
peridotite-hosted hydrothermal systems, Chem. Geol., 351, 115–133,
https://doi.org/10.1016/j.chemgeo.2013.05.016, 2013.
Searle, M. J. and Cox, J.: Tectonic setting, origin, and obduction of the
Oman ophiolite, Geol. Soc. Am. Bull., 111, 104–122,
https://doi.org/10.1130/0016-7606(1999)111<0104:TSOAOO>2.3.CO;2,
1999.
Sieber, M. J., Yaxley, G. M., and Hermann, J.: COH-fluid induced metasomatism
of peridotites in the forearc mantle, Contrib. Mineral. Petrol., 177, 44,
https://doi.org/10.1007/s00410-022-01905-w, 2022.
Soret, M., Agard, P., Dubacq, B., Plunder, A., and Yamato, P.: Petrological
evidence for stepwise accretion of metamorphic soles during subduction
infancy (Semail ophiolite, Oman and UAE), J. Metamorph. Geol., 35,
1051–1080, https://doi.org/10.1111/jmg.12267, 2017.
Stanger, G.: Silicified serpentinite in the Semail nappe of Oman, Lithos,
18, 13–22, https://doi.org/10.1016/0024-4937(85)90003-9, 1985.
Takazawa, E., Okayasu, T., and Satoh, K.: Geochemistry and origin of the
basal lherzolites from the northern Oman ophiolite (northern Fizh block),
Geochem. Geophy. Geosy., 4, 1021, https://doi.org/10.1029/2001GC000232, 2013.
Tominaga, M., Beinlich, A., Lima, E. A., Tivey, M. A., Hampton, B. A., Weiss,
B., and Harigane, Y.: Multi-scale magnetic mapping of serpentinite
carbonation, Nat. Commun., 8, 1870, https://doi.org/10.1038/s41467-017-01610-4, 2017.
Ulrich, M., Muñoz, M., Guillot, S., Cathelineau, M., Picard, C.,
Quesnel, B., Boulvais, P., and Couteau, C.: Dissolution-precipitation
processes governing the carbonation and silicification of the serpentinite
sole of the New Caledonia ophiolite, Contrib. Mineral. Petrol., 167, 952,
https://doi.org/10.1007/s00410-013-0952-8, 2014.
Villey, M., Le Metour, J., and De Gramont, X.: Geological map of Fanja,
Sheet NF 40-3F, Explanatory Notes, BRGM and Oman Ministry of Petroleum and
Minerals, Oman Ministry of Petroleum and Minerals, 1986.
Zhao, J., Brugger, J., and Pring, A.: Mechanism and kinetics of hydrothermal replacement of magnetite by hematite, Geosci. Front., 10, 29–41, https://doi.org/10.1016/j.gsf.2018.05.015, 2010.
Short summary
The carbonation of peridotites occurs during the fluxing of reactive CO2-bearing fluids, ultimately producing listvenites (magnesite and quartz assemblage). We studied the most extended outcrops of listvenites worldwide, found at the base of the Semail Ophiolite (Oman). Our study highlights the partitioning of iron during early pervasive carbonation revealed by chemical zoning in matrix magnesites, and we discuss the conditions favoring the formation of Fe-rich magnesite.
The carbonation of peridotites occurs during the fluxing of reactive CO2-bearing fluids,...