Research article
12 Oct 2022
Research article
| 12 Oct 2022
Ferri-taramite, a new member of the amphibole supergroup, from the Jakobsberg Mn–Fe deposit, Värmland, Sweden
Dan Holtstam et al.
Related authors
Fernando Cámara, Dan Holtstam, Nils Jansson, Erik Jonsson, Andreas Karlsson, Jörgen Langhof, Jaroslaw Majka, and Anders Zetterqvist
Eur. J. Mineral., 33, 659–673, https://doi.org/10.5194/ejm-33-659-2021, https://doi.org/10.5194/ejm-33-659-2021, 2021
Short summary
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Andreas Karlsson, Dan Holtstam, Luca Bindi, Paola Bonazzi, and Matthias Konrad-Schmolke
Eur. J. Mineral., 32, 77–87, https://doi.org/10.5194/ejm-32-77-2020, https://doi.org/10.5194/ejm-32-77-2020, 2020
Fernando Cámara, Dan Holtstam, Nils Jansson, Erik Jonsson, Andreas Karlsson, Jörgen Langhof, Jaroslaw Majka, and Anders Zetterqvist
Eur. J. Mineral., 33, 659–673, https://doi.org/10.5194/ejm-33-659-2021, https://doi.org/10.5194/ejm-33-659-2021, 2021
Short summary
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Cristiano Ferraris, Isabella Pignatelli, Fernando Cámara, Giancarlo Parodi, Sylvain Pont, Martin Schreyer, and Fengxia Wei
Eur. J. Mineral., 32, 355–365, https://doi.org/10.5194/ejm-32-355-2020, https://doi.org/10.5194/ejm-32-355-2020, 2020
Short summary
Short summary
Laurentthomasite is a new mineral from Madagascar showing a very strong dichroism going from deep blue to yellow-green colours. The physical and chemical characteristics of this gem quality mineral bring it to the attention of the jewel industry as well as collectors of cut stones.
Andreas Karlsson, Dan Holtstam, Luca Bindi, Paola Bonazzi, and Matthias Konrad-Schmolke
Eur. J. Mineral., 32, 77–87, https://doi.org/10.5194/ejm-32-77-2020, https://doi.org/10.5194/ejm-32-77-2020, 2020
Related subject area
New minerals and systematic mineralogy
Ferro-ferri-holmquistite, □Li2(Fe2+3Fe3+2)Si8O22(OH)2, Fe2+Fe3+ analogue of holmquistite, from the Iwagi islet, Ehime, Japan
Tomsquarryite, NaMgAl3(PO4)2(OH)6 ● 8H2O, a new crandallite-derivative mineral from Tom's phosphate quarry, Kapunda, South Australia
Graulichite-(La), LaFe3+3(AsO4)2(OH)6, a new addition to the alunite supergroup from the Patte d'Oie mine, Bou Skour mining district, Morocco
Arrojadite-group nomenclature: sigismundite reinstated
Redefinition of beraunite, Fe3+6(PO4)4O(OH)4 ⋅ 6H2O, and discreditation of the name eleonorite: a re-investigation of type material from the Hrbek Mine (Czech Republic)
Redefinition of angastonite, CaMgAl2(PO4)2(OH)4 ⋅ 7H2O, as an amorphous mineral
Liguowuite, WO3, a new member of the A-site vacant perovskite type minerals from the Panzhihua–Xichang region, China
Zinkgruvanite, Ba4Mn2+4Fe3+2(Si2O7)2(SO4)2O2(OH)2, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
Kahlenbergite KAl11O17, a new β-alumina mineral and Fe-rich hibonite from the Hatrurim Basin, the Negev desert, Israel
Occurrence of silesiaite, a new calcium–iron–tin sorosilicate in the calcic skarn of El Valle-Boinás, Asturias, Spain
Grimmite, NiCo2S4, a new thiospinel from Příbram, Czech Republic
Freitalite, C14H10, a new aromatic hydrocarbon mineral from Freital, Saxony, Germany
Gobelinite, the Co analogue of ktenasite from Cap Garonne, France, and Eisenzecher Zug, Germany
Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids?
Wumuite (KAl0.33W2.67O9) – a new mineral with an HTB-type structure from the Panzhihua–Xichang region in China
Luxembourgite, AgCuPbBi4Se8, a new mineral species from Bivels, Grand Duchy of Luxembourg
Niasite and johanngeorgenstadtite, Ni2+4.5(AsO4)3 dimorphs from Johanngeorgenstadt, Germany
Laurentthomasite, Mg2K(Be2Al)Si12O30: a new milarite-group-type member from the Ihorombe region, Fianarantsoa Province, Madagascar
Tancaite-(Ce), ideally FeCe(MoO4)3 ● 3H2O: description and average crystal structure
Heliophyllite: a discredited mineral species identical to ecdemite
New IMA CNMNC guidelines on combustion products from burning coal dumps
Crystal chemistry of fluorcarletonite, a new mineral from the Murun alkaline complex (Russia)
Halilsarpite, a new arsenate analogue of walentaite, from the Oumlil mine, Bou Azzer district, Morocco
Mariko Nagashima, Teruyoshi Imaoka, Takashi Kano, Jun-ichi Kimura, Qing Chang, and Takashi Matsumoto
Eur. J. Mineral., 34, 425–438, https://doi.org/10.5194/ejm-34-425-2022, https://doi.org/10.5194/ejm-34-425-2022, 2022
Short summary
Short summary
Ferro-ferri-holmquistite (IMA2022-020), ideal formula ☐Li2(Fe32+Fe23+)Si8O22(OH)2, was found in albitized granite from the Iwagi islet, Ehime, Japan. It is a Fe2+Fe3+ analogue of holmquistite and belongs to the lithium subgroup amphiboles. Ferro-ferri-holmquistite occurs as blue acicular crystals typically replacing the biotite and is the product of metasomatic mineral replacement reactions by dissolution–reprecipitation processes associated with Na- and Li-rich hydrothermal fluids.
Peter Elliott, Ian E. Grey, William G. Mumme, Colin M. MacRae, and Anthony R. Kampf
Eur. J. Mineral., 34, 375–383, https://doi.org/10.5194/ejm-34-375-2022, https://doi.org/10.5194/ejm-34-375-2022, 2022
Short summary
Short summary
This paper describes the characterisation of a new mineral from a South Australian phosphate quarry. The characterisation included chemical analyses, infrared spectroscopy, and a determination and refinement of the crystal structure. The results showed that the mineral has a unique crystal chemistry, but it is closely related to the well-known phosphate mineral crandallite.
Cristian Biagioni, Marco E. Ciriotti, Georges Favreau, Daniela Mauro, and Federica Zaccarini
Eur. J. Mineral., 34, 365–374, https://doi.org/10.5194/ejm-34-365-2022, https://doi.org/10.5194/ejm-34-365-2022, 2022
Short summary
Short summary
The paper reports the type description of the new mineral species graulichite-(La). This is a new addition to the dussertite group within the alunite supergroup, and its discovery improves our knowledge on the crystal chemistry of this important supergroup of minerals, having both technological and environmental applications.
Frank de Wit and Stuart J. Mills
Eur. J. Mineral., 34, 321–324, https://doi.org/10.5194/ejm-34-321-2022, https://doi.org/10.5194/ejm-34-321-2022, 2022
Short summary
Short summary
The name sigismundite has been reinstated for what was previously arrojadite-(BaFe). Sigismundite honours Pietro Sigismund (1874–1962), and this paper outlines his significant contributions to Italian mineralogy.
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Ian Edward Grey, Peter Elliott, William Gus Mumme, Colin M. MacRae, Anthony R. Kampf, and Stuart J. Mills
Eur. J. Mineral., 34, 215–221, https://doi.org/10.5194/ejm-34-215-2022, https://doi.org/10.5194/ejm-34-215-2022, 2022
Short summary
Short summary
A reinvestigation of angastonite from the type locality has shown that it is a mixture of crystalline phases and an amorphous phase, with the published formula corresponding to the amorphous phase. A redefinition proposal for angastonite as an amorphous mineral was approved by the IMA CNMNC. Our study showed how the amorphous phase formed and how it progressively recrystallises as new crandallite-related minerals.
Yuan Xue, Ningyue Sun, Hongping He, Aiqing Chen, and Yiping Yang
Eur. J. Mineral., 34, 95–108, https://doi.org/10.5194/ejm-34-95-2022, https://doi.org/10.5194/ejm-34-95-2022, 2022
Short summary
Short summary
Liguowuite, a new member of the non-stoichiometric perovskite group minerals, ideally WO3, has been found in the Panzhihua–Xichang region, China. Liguowuite is monoclinic and is in space group P21 / n, with a = 7.32582(18) Å, b = 7.54767(18) Å, c = 7.71128(18) Å, β = 90.678(3)°, V = 426.348(19) Å3, and Z = 8. According to the hierarchical scheme for perovskite supergroup minerals, liguowuite is the first reported example of A-site vacant single oxide, i.e., a new perovskite subgroup.
Fernando Cámara, Dan Holtstam, Nils Jansson, Erik Jonsson, Andreas Karlsson, Jörgen Langhof, Jaroslaw Majka, and Anders Zetterqvist
Eur. J. Mineral., 33, 659–673, https://doi.org/10.5194/ejm-33-659-2021, https://doi.org/10.5194/ejm-33-659-2021, 2021
Short summary
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Biljana Krüger, Evgeny V. Galuskin, Irina O. Galuskina, Hannes Krüger, and Yevgeny Vapnik
Eur. J. Mineral., 33, 341–355, https://doi.org/10.5194/ejm-33-341-2021, https://doi.org/10.5194/ejm-33-341-2021, 2021
Short summary
Short summary
This is the first description of the new mineral kahlenbergite, found in the Hatrurim Basin, Israel, which is a region with unusual pyrometamorphic rocks. Kahlenbergite is chemically and structurally characterized. It is very similar to β-alumina compounds, which are synthetic materials known for their properties as fast ion conductors. Research in the Hatrurim Basin is needed to understand the complex mechanisms that created this mineralogically diverse
hotspotof new minerals.
Antonia Cepedal, Mercedes Fuertes-Fuente, and Agustín Martin-Izard
Eur. J. Mineral., 33, 165–174, https://doi.org/10.5194/ejm-33-165-2021, https://doi.org/10.5194/ejm-33-165-2021, 2021
Pavel Škácha, Jiří Sejkora, Jakub Plášil, Zdeněk Dolníček, and Jana Ulmanová
Eur. J. Mineral., 33, 175–187, https://doi.org/10.5194/ejm-33-175-2021, https://doi.org/10.5194/ejm-33-175-2021, 2021
Short summary
Short summary
Grimmite, sulfide of cobalt and nickel, is the new mineral for the mineralogical system.
Thomas Witzke, Martin Schreyer, Benjamin Brandes, René Csuk, and Herbert Pöllmann
Eur. J. Mineral., 33, 1–8, https://doi.org/10.5194/ejm-33-1-2021, https://doi.org/10.5194/ejm-33-1-2021, 2021
Short summary
Short summary
The new mineral species freitalite, C14H10, corresponding to the aromatic hydrocarbon anthracene, has been discovered on the mine dump of the Königin Carola shaft (Paul Berndt Mine), Freital, near Dresden, Saxony, Germany. Freitalite is a product of pyrolysis of coal and was formed by sublimation from a gas phase. The mineral was identified by several analytical methods.
Stuart J. Mills, Uwe Kolitsch, Georges Favreau, William D. Birch, Valérie Galea-Clolus, and Johannes Markus Henrich
Eur. J. Mineral., 32, 637–644, https://doi.org/10.5194/ejm-32-637-2020, https://doi.org/10.5194/ejm-32-637-2020, 2020
Fahui Xiong, Xiangzhen Xu, Enrico Mugnaioli, Mauro Gemmi, Richard Wirth, Edward S. Grew, Paul T. Robinson, and Jingsui Yang
Eur. J. Mineral., 32, 557–574, https://doi.org/10.5194/ejm-32-557-2020, https://doi.org/10.5194/ejm-32-557-2020, 2020
Short summary
Short summary
Two new nanominerals: titanium monophosphide and titanium disilicide, formed at pressures of Earth’s upper mantle by the action of methane and hydrogen from the mantle on basaltic melts in the Luobusa ophiolite (Tibet). The minerals were characterized by 3D electron diffraction, which can solve the crystal structures of phases less than a micrometer in size. The results contribute to our understanding of deeply subducted crustal rocks and their exhumation back to the Earth's surface.
Yuan Xue, Guowu Li, and Yingmei Xie
Eur. J. Mineral., 32, 483–494, https://doi.org/10.5194/ejm-32-483-2020, https://doi.org/10.5194/ejm-32-483-2020, 2020
Short summary
Short summary
Wumuite, ideally KAl0.33W2.67O9 with a hexagonal tungsten bronze (HTB)-type structure, is another new mineral containing potassium and tungsten found in the Pan–Xi region in China after tewite was discovered. In this study, artificial synthetic experiments have been conducted to explore the formation process of wumuite and tewite. Wumuite was speculated to be formed by a metasomatic reaction between W-rich hydrothermal fluids and the potassium feldspar in the monzonite.
Simon Philippo, Frédéric Hatert, Yannick Bruni, Pietro Vignola, and Jiří Sejkora
Eur. J. Mineral., 32, 449–455, https://doi.org/10.5194/ejm-32-449-2020, https://doi.org/10.5194/ejm-32-449-2020, 2020
Short summary
Short summary
Luxembourgite, ideally AgCuPbBi4Se8, is a new selenide discovered at Bivels, Grand Duchy of Luxembourg. The mineral forms tiny fibres deposited on dolomite crystals. Its crystal structure is similar to those of litochlebite and watkinsonite, and can be described as an alternation of two types of anionic layers: a pseudotetragonal layer four atoms thick and a pseudohexagonal layer one atom thick. The species named for the city of Luxembourg, close to its locality of discovery.
Anthony R. Kampf, Barbara P. Nash, Jakub Plášil, Jason B. Smith, and Mark N. Feinglos
Eur. J. Mineral., 32, 373–385, https://doi.org/10.5194/ejm-32-373-2020, https://doi.org/10.5194/ejm-32-373-2020, 2020
Cristiano Ferraris, Isabella Pignatelli, Fernando Cámara, Giancarlo Parodi, Sylvain Pont, Martin Schreyer, and Fengxia Wei
Eur. J. Mineral., 32, 355–365, https://doi.org/10.5194/ejm-32-355-2020, https://doi.org/10.5194/ejm-32-355-2020, 2020
Short summary
Short summary
Laurentthomasite is a new mineral from Madagascar showing a very strong dichroism going from deep blue to yellow-green colours. The physical and chemical characteristics of this gem quality mineral bring it to the attention of the jewel industry as well as collectors of cut stones.
Elena Bonaccorsi and Paolo Orlandi
Eur. J. Mineral., 32, 347–354, https://doi.org/10.5194/ejm-32-347-2020, https://doi.org/10.5194/ejm-32-347-2020, 2020
Short summary
Short summary
Molybdates are of a great interest due to their ionic conductivity, negative thermal expansion, and immobilization of radionuclides. The new mineral tancaite-(Ce), FeCe(MoO4)3•3H2O, shows a new structure type never observed in natural and synthetic molybdates. Its cubic average structure may be described as a derivative of the perovskite structure, in which Fe-centred octahedra are linked through MoO4 groups. The ordering of Mo and O atoms results in one or more complex superstructures.
Natale Perchiazzi, Ulf Hålenius, Nicola Demitri, and Pietro Vignola
Eur. J. Mineral., 32, 265–273, https://doi.org/10.5194/ejm-32-265-2020, https://doi.org/10.5194/ejm-32-265-2020, 2020
Short summary
Short summary
Type material for heliophyllite, preserved in the Swedish Museum of Natural History in Stockholm, was re-investigated through a combined EPMA (electron probe X-ray microanalysis), Raman, and X-ray powder diffraction (XRPD) and single-crystal study. EPMA chemical data, together with Raman and single-crystal structural studies, point to heliophyllite being identical to ecdemite. XRPD synchrotron data highlight the presence of a minor quantity of finely admixed finnemanite in the analyzed material.
Jan Parafiniuk and Frédéric Hatert
Eur. J. Mineral., 32, 215–217, https://doi.org/10.5194/ejm-32-215-2020, https://doi.org/10.5194/ejm-32-215-2020, 2020
Ekaterina Kaneva, Tatiana Radomskaya, Ludmila Suvorova, Irina Sterkhova, and Mikhail Mitichkin
Eur. J. Mineral., 32, 137–146, https://doi.org/10.5194/ejm-32-137-2020, https://doi.org/10.5194/ejm-32-137-2020, 2020
Tomas Husdal, Ian E. Grey, Henrik Friis, Fabrice Dal Bo, Anthony R. Kampf, Colin M. MacRae, W. Gus Mumme, Ole-Thorstein Ljøstad, and Finlay Shanks
Eur. J. Mineral., 32, 89–98, https://doi.org/10.5194/ejm-32-89-2020, https://doi.org/10.5194/ejm-32-89-2020, 2020
Short summary
Short summary
This paper describes the characterization of a new mineral from the Oumlil mine in the Bou Azzer cobalt mining district in Morocco. This mining district is one of the world's largest producers of the important element cobalt. This study on the new mineral halilsarpite provides useful information on the results of chemical weathering processes on the primary arsenide minerals at the mine.
Cited articles
Björck, L.: Beskrivning till berggrundskartan Filipstad NV, Sver. Geol.
Undersök., Swedish Geological Survey, series Af, 147, 1–110, 1986.
Boström, K., Rydell, H., and Joensuu, O.: Långban – An exhalative
sedimentary deposit?, Econ. Geol., 74, 1002–1011, https://doi.org/10.2113/gsecongeo.74.5.1002, 1979.
Burns, R. G.: Mineralogical applications of crystal field theory (No. 5),
Cambridge University Press, 551 pp., https://doi.org/10.1017/CBO9780511524899, 1993.
Christy, A. G. and Gatedal, K.: Extremely Pb-rich rock-forming silicates
including a beryllian scapolite and associated minerals in a skarn from
Långban, Värmland, Sweden. Mineral. Mag., 69, 995–1018, https://doi.org/10.1180/0026461056960304, 2005.
Compagnoni, R. and Rolfo, F.: Characteristics of UHP pelites, gneisses, and
other unusual rocks, Internat. Geol. Rev., 41, 552–570, https://doi.org/10.1080/00206819909465157, 1999.
Faryad, S. W. and Bernhardt, H.-J.: Taramite-bearing metabasites from Rakovec
(Gemeric unit, the western Carpathians), Geol. Carpathica, 47, 349–357,
1996.
Flink, G.: Bidrag till Sveriges mineralogi III, Ark. Kem. Mineral. Geol., 5,
1–273, 1914.
Giret, A., Bonin, B., and Leger, J. M.: Amphibole compositional trends in
oversaturated and undersaturated alkaline plutonic ring-composition, Can.
Mineral., 18, 481–495, 1980.
Graser, G. and Markl, G.: Ca-rich ilvaite–epidote–hydrogarnet endoskarns:
a record of late-magmatic fluid influx into the persodic Ilímaussaq
Complex, South Greenland, J. Petrol., 49, 239–265, https://doi.org/10.1093/petrology/egm079, 2008.
Hålenius, U. and Bosi, F.: Cation ordering in Pb2+-bearing,
Mn3+-rich pargasite from Långban, Sweden. Am. Mineral., 97,
1635–1640, https://doi.org/10.2138/am.2012.4137, 2012.
Harlow, G. E. and Sorensen, S. S.: Jade (nephrite and jadeitite) and
serpentinite: metasomatic connections, Inter. Geol. Rev, 47, 113–146,
https://doi.org/10.2747/0020-6814.47.2.113, 2008.
Hawthorne, F. C. and Grundy, H. D.: The crystal chemistry of the amphiboles,
VII. The crystal structure and site chemistry of potassian ferri-taramite,
Can. Mineral., 16, 53–62, 1978.
Hawthorne, F. C. and Della Ventura, G.: Short range order in amphiboles, in:
Amphiboles: Crystal chemistry, occurrence and health issues, edited by:
Hawthorne, F. C., Oberti, R., Della Ventura, G. and Mottana, A., Rev. Mineral.
Geochem., 67, 173–222, 2007.
Hawthorne, F. C., Ungaretti, L., and Oberti, R.: Site populations in minerals: Terminology and presentation of results of crystal-structure refinement, Can. Mineral., 33, 907–911, 1995.
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F.,
Schumacher, J. C., and Welch, M. D.: Nomenclature of the amphibole supergroup,
Am. Mineral., 97, 2031–2048, https://doi.org/10.2138/am.2012.4276, 2012.
Holland, T. J. B. and Redfern, S. A. T.: Unit cell refinement from powder
diffraction data: the use of regression diagnostics, Mineral. Mag., 61,
65–77, https://doi.org/10.1180/minmag.1997.061.404.07, 1997.
Holtstam, D. and Langhof, J.: Hancockite from Jakobsberg, Filipstad, Sweden:
the second world occurrence, Mineral. Mag., 58, 172–174, https://doi.org/10.1180/minmag.1994.058.390.18, 1994.
Holtstam, D. and Mansfeld, J.: Origin of a carbonate-hosted
Fe-Mn-(Ba-As-Pb-Sb-W) deposit of Långban-type in Central Sweden,
Mineral. Dep., 36, 641–657, 2001.
Holtstam, D., Cámara, F., Skogby, H., Karlsson, A., and Langhof, J.:
Description and recognition of potassic-richterite, an amphibole supergroup
mineral from the Pajsberg ore field, Värmland, Sweden, Mineral. Petrol.,
113, 7–16, https://doi.org/10.1007/s00710-018-0623-6, 2019a.
Holtstam, D., Cámara, F., Skogby, H., and Karlsson, A.: Hjalmarite, a
new Na–Mn member of the amphibole supergroup, from Mn skarn in the
Långban deposit, Värmland, Sweden, Eur. J. Mineral., 31, 565–574,
https://doi.org/10.1127/ejm/2019/0031-2822, 2019b.
Holtstam, D., Cámara, F., and Karlsson, A.: Instalment of the
margarosanite group, and data on walstromite–margarosanite solid solutions
from the Jakobsberg Mn–Fe deposit, Värmland, Sweden, Mineral. Mag., 85,
224–232, https://doi.org/10.1180/mgm.2021.15, 2021.
Libowitzky, E.: Correlation of OH stretching frequencies and OH…O hydrogen bond lengths in minerals, Monatsh. Chem., 130, 1047–1059,
https://doi.org/10.1007/BF03354882, 1999.
Magnusson, N. H.: Nordmarks malmtrakt: geologisk beskrivning, Sver. Geol.
Undersök, Swedish Geological Survey, series Ca, 13, 1–98, 1929.
Magnusson, N. H.: Långbans malmtrakt, Sver. Geol. Undersök, Swedish Geological Survey, series Ca, 23,
1–111, 1930.
Makagonov, E. P., Kotlyarov, V. A., and Korinevsky, E. V.: Amphiboles of
alkaline rocks of the Ilmenogorsky Complex and country metamorphic rocks,
South Urals, Mineralogiya, 4, 8–26, 2018 (in Russian).
Moore, P. B.: Mineralogy & chemistry of Långban-type deposits in
Bergslagen, Sweden, Mineral. Record, 1, 154–172, 1970.
Morozewicz, J.: Über einige Eisenalkali-amphibole, Tscher. Miner.
Petrog., 38, 210–222, https://doi.org/10.1007/BF02993932, 1925.
Nikandrov, S. N., Kobyashev, Y. S., and Valizer, P. M.: Amphiboles of the
Ilmenogorsky complex. IGZ UB RAS (Ilmensky State Reserve, Ural branch of the
Russian Academy of Sciences), Miass, Russia, 120 pp., 2000 (in Russian).
Oberti, R., Boiocchi, M., Smith, D. C., and Medenbach, O: Aluminotaramite,
alumino-magnesiotaramite, and fluoro-alumino-magnesiotaramite: Mineral data
and crystal chemistry, Am. Mineral., 92, 1428–1435, https://doi.org/10.2138/am.2007.2529, 2007a.
Oberti, R., Hawthorne, F. C., Cannillo, E., and Cámara, F.: Long-range
order in amphiboles, in: Amphiboles: Crystal chemistry, occurrence and
health issues, edited by: Hawthorne, F. C., Oberti, R., Della Ventura, G., and
Mottana, A., Rev. Mineral. Geochem., 67, 125–172, https://doi.org/10.2138/rmg.2007.67.4, 2007b.
Oberti, R., Boiocchi, M., Smith, D. C., Medenbach, O., and Helmers, H.:
Potassic-aluminotaramite from Sierra de los Filabres, Spain. Eur. J.
Mineral., 20, 1005–1010, https://doi.org/10.1127/0935-1221/2008/0020-1837, 2008.
Oberti, R., Boiocchi, M., Hawthorne, F. C., Ball, N. A., and Harlow, G. E.:
Katophorite from the Jade Mine Tract, Myanmar: mineral description of a rare
(grandfathered) endmember of the amphibole supergroup, Mineral. Mag., 79,
355–363, https://doi.org/10.1180/minmag.2015.079.2.13, 2015a.
Oberti, R., Boiocchi, M., Hawthorne, F. C., Cámara, F., Ciriotti, M. E.,
and Berge, S. A.: Ti-rich fluoro-richterite from Kariåsen (Norway): the
oxo-component and the use of Ti4+ as a proxy, Can. Mineral., 53,
285–294, https://doi.org/10.3749/canmin.1400086, 2015b.
Pirard, C. and Hermann, J.: Experimentally determined stability of alkali
amphibole in metasomatised dunite at sub-arc pressures, Contrib. Mineral.
Petrol., 169, 1–26, https://doi.org/10.1007/s00410-014-1095-2,
2015.
Prescher, C., McCammon, C., and Dubrovinsky, L.: MossA: a program for
analyzing energy-domain Mössbauer spectra from conventional and
synchrotron sources, J. Appl. Cryst., 45, 329–331, https://doi.org/10.1107/S0021889812004979, 2012.
Puga, E., Ruiz-Cruz, M. D., and Diaz de Federico, A.: Polymetamorphic
amphibole veins in metabasalts from the betic ophiolitic association at
Cóbdar, southeastern Spain: relics of ocean-floor metamorphism preserved
through the alpine orogeny, Can. Mineral., 40, 67–83, https://doi.org/10.2113/gscanmin.40.1.67, 2002.
Reece, J. J., Redfern, S. A. T., Welch, M. D., Henderson, M. B., and McCammon,
C. A.: Temperature-dependent Fe2+–Mn2+ order–disorder behaviour
in amphiboles, Phys. Chem. Minerals, 29, 562–570, https://doi.org/10.1007 s−100269-002-0267-1, 2002.
Rezvukhin, D. I., Alifirova, T. A., Golovin, A. V., and Korsakov, A. V.: A
plethora of epigenetic minerals reveals a multistage metasomatic overprint
of a mantle orthopyroxenite from the Udachnaya Kimberlite, Minerals, 10,
264, https://doi.org/10.3390/min10030264, 2020.
Sandström, F. and Holtstam, D.: Geology of the Långban deposit, in:
Långban: the mines, their minerals,
geology and explorers, edited by: Holtstam, D. and Langhof, J., Naturhistoriska riksmuseet and Raster Förlag,
Stockholm, ISBN 91 87214 881, 1999.
Schumacher, J. C.: Metamorphic amphiboles: composition and coexistence, Rev.
Mineral. Geochem., 67, 359–416, https://doi.org/10.2138/rmg.2007.67.10, 2007.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Cryst., C71,
3–8, https://doi.org/10.1107/S2053229614024218, 2015.
Skublov, S. and Drugova, G.: Patterns of trace-element distribution in
calcic amphiboles as a function of metamorphic grade, Can. Mineral., 41,
383–392, https://doi.org/10.2113/gscanmin.41.2.383, 2003.
Stephens, M. B. and Jansson, N. F.: Paleoproterozoic (1.9–1.8 Ga)
syn-orogenic magmatism, sedimentation and mineralization in the Bergslagen
lithotectonic unit, Svecokarelian orogen, Geol. Soc. Mem., 50, 155–206,
https://doi.org/10.1144/M50-2017-40, 2020.
Sundius, N.: The position of richterite in the amphibole group, Geol.
Fören. Stock. För., 67, 266–270, https://doi.org/10.1080/11035894509446100, 1945.
Takasu, A. and Orozbaev, R.: Variety of chemical compositions of amphiboles
from eclogites in the Aktyuz area, northern Kyrgyz Tien-Shan, Geoscience
Report Shimane Univ., Shimane University, 28, 51–63, 2009.
Ungaretti, L., Smith, D. C., and Rossi, G.: Crystal-chemistry by X-ray
structure refinement and electron microprobe analysis of a series of
sodic-calcic to alkali-amphiboles from the Nybö eclogite pod, Norway,
Bull. Minéral., 104, 400–412, 1983.
Waeselmann, N., Schlüter, J., Malcherek, T., Della Ventura, G., Oberti,
R., and Mihailova, B.: Nondestructive determination of the amphibole
crystal-chemical formulae by Raman spectroscopy: One step closer, J. Raman
Spectrosc., 51, 1530–1548, https://doi.org/10.1002/jrs.5626,
2020.
Wang, R., Xu, S., and Xu, S.: First occurrence of preiswerkite in the Dabie
UHP metamorphic belt, Chinese Sci. Bull., 45, 748–750, https://doi.org/10.1007/BF02886183, 2000.
Wilson, A. J. C.: International Tables for Crystallography, Volume C:
Mathematical, physical and chemical tables, Kluwer Academic, Dordrecht,
Netherlands, 883 pp., ISBN 0‐792‐3‐16‐38X, 1992.
Žáček, V.: Potassian hastingsite and potassichastingsite from
garnet hedenbergite skarn at Vlastejovice, Czech Republic, Neues Jb. Miner.
Abh., 2007, 161–168, https://doi.org/10.1127/0077-7757/2007/0089,
2007.
Zhang, R. Y. and Liou, J. G.: Coesite-bearing eclogite in Henan Province,
central China: detailed petrography, glaucophane stability and PT-path, Eur.
J. Mineral., 9, 217–234, https://doi.org/10.1127/ejm/6/2/0217,
1994.
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now...