Articles | Volume 33, issue 6
https://doi.org/10.5194/ejm-33-727-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-727-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ellinaite, CaCr2O4, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of
the RAS, 3 prospekt Akad. Koptyuga, Novosibirsk 630090, Russia
ExtraTerra Consortium, Institute of Physics and Technology, Ural
Federal University, 21 Mira Str., Ekaterinburg 620002, Russia
Sergey N. Britvin
Institute of Earth Sciences, Saint Petersburg State University, 7/9
Universitetskaya Nab., St. Petersburg 199034, Russia
Nanomaterials Research Center, Kola Science Center of the RAS, 14
Fersman Str., Apatity 184209, Russia
Felix V. Kaminsky
V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, 19
Kosygin Str., Moscow 119334, Russia
Richard Wirth
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences,
Section 3.3, Telegrafenberg, Potsdam 14473, Germany
Elena N. Nigmatulina
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of
the RAS, 3 prospekt Akad. Koptyuga, Novosibirsk 630090, Russia
Grigory A. Yakovlev
ExtraTerra Consortium, Institute of Physics and Technology, Ural
Federal University, 21 Mira Str., Ekaterinburg 620002, Russia
Konstantin A. Novoselov
South Urals Federal Research Center of Mineralogy and Geoecology,
Uralian Branch of the RAS, Miass 456317, Russia
Mikhail N. Murashko
Institute of Earth Sciences, Saint Petersburg State University, 7/9
Universitetskaya Nab., St. Petersburg 199034, Russia
Related authors
No articles found.
Gerhard Franz, Peter Lyckberg, Vladimir Khomenko, Vsevolod Chournousenko, Hans-Martin Schulz, Nicolaj Mahlstedt, Richard Wirth, Johannes Glodny, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 19, 1795–1811, https://doi.org/10.5194/bg-19-1795-2022, https://doi.org/10.5194/bg-19-1795-2022, 2022
Short summary
Short summary
In pegmatites from Ukraine Precambrian fossils between 1.5 Ga and 1.76 Ga were preserved in cavities connected to the surface in a geyser system. The fossilization process is silicification of the outermost rim of the fossils, stabilizing the remaining part of the organisms. The variety of organisms points to an ecosystem of several microorganisms which was active in the continental environment, and igneous rocks such as the pegmatites seem to be an ideal habitat for the deep biosphere.
Elena V. Belogub, Vladimir V. Shilovskikh, Konstantin A. Novoselov, Ivan A. Blinov, and Ksenia A. Filippova
Eur. J. Mineral., 33, 605–620, https://doi.org/10.5194/ejm-33-605-2021, https://doi.org/10.5194/ejm-33-605-2021, 2021
Short summary
Short summary
We found Ca- and S-rich rhabdophane in the upper part of the oxidation zone of a sulfide occurrence, where it forms spherules up to 35 µm in size and aggregates in fractures in goethite. Its formation is probably associated with desorption of REEs from Fe3+ oxyhydroxides and clay minerals in the oxidation zone and the influx of P from the soil as well as from the precursor rocks. The enrichment with REE phosphate in the studied case is similar to that in REE regolith-hosted deposits.
Aurèle Vuillemin, André Friese, Richard Wirth, Jan A. Schuessler, Anja M. Schleicher, Helga Kemnitz, Andreas Lücke, Kohen W. Bauer, Sulung Nomosatryo, Friedhelm von Blanckenburg, Rachel Simister, Luis G. Ordoñez, Daniel Ariztegui, Cynthia Henny, James M. Russell, Satria Bijaksana, Hendrik Vogel, Sean A. Crowe, Jens Kallmeyer, and the Towuti Drilling Project
Science team
Biogeosciences, 17, 1955–1973, https://doi.org/10.5194/bg-17-1955-2020, https://doi.org/10.5194/bg-17-1955-2020, 2020
Short summary
Short summary
Ferruginous lakes experience restricted primary production due to phosphorus trapping by ferric iron oxides under oxic conditions. We report the presence of large crystals of vivianite, a ferrous iron phosphate, in sediments from Lake Towuti, Indonesia. We address processes of P retention linked to diagenesis of iron phases. Vivianite crystals had light Fe2+ isotope signatures and contained mineral inclusions consistent with antecedent processes of microbial sulfate and iron reduction.
Nadezhda V. Shchipalkina, Igor V. Pekov, Natalia N. Koshlyakova, Sergey N. Britvin, Natalia V. Zubkova, Dmitry A. Varlamov, and Eugeny G. Sidorov
Eur. J. Mineral., 32, 101–119, https://doi.org/10.5194/ejm-32-101-2020, https://doi.org/10.5194/ejm-32-101-2020, 2020
Nadezhda V. Shchipalkina, Igor V. Pekov, Natalia N. Koshlyakova, Sergey N. Britvin, Natalia V. Zubkova, Dmitry A. Varlamov, and Eugeny G. Sidorov
Eur. J. Mineral., 32, 121–136, https://doi.org/10.5194/ejm-32-121-2020, https://doi.org/10.5194/ejm-32-121-2020, 2020
Cited articles
Biagioni, C. and Pasero, M.: The systematics of the spinel-type minerals: an
overview, Am. Mineral., 99, 1254–1264, https://doi.org/10.2138/am.2014.4816,
2014.
Bosi, F., Biagioni, C., and Pasero, M.: Nomenclature and classification of
the spinel supergroup, Eur. J. Mineral., 31, 183–192,
https://doi.org/10.1127/ejm/2019/0031-2788, 2019.
Bright, N. F. H., Rowland, J. F., and Wurm, J. G.: The compound
CaO.Ti2O3, Can. J. Chem., 36, 492–495,
https://doi.org/10.1139/v58-070, 1958.
Britvin, S. N., Murasko, M. N., Vapnik, Y., Polekhovsky, Y. S., and
Krivovichev, S. V.: Earth's phosphides in Levant and insights into the
source of Archaean prebiotic phosphorus, Sci. Rep., 5, 8355,
https://doi.org/10.1038/srep08355, 2015.
Britvin, S. N., Murasko, M. N., Vapnik, E., Polekhovsky, Y. S., and
Krivovichev, S. V.: Barringerite Fe2P from pyrometamorphic rocks of the
Hatrurim Formation, Israel, Geol. Ore Deposit, 59, 619–625,
https://doi.org/10.1134/S1075701517070029, 2017.
Britvin, S. N., Murashko, M. N., Krzhizhanovskaya, M. G., Vereshchagin, O.
S., Vapnik, Y., Shilovskikh, V. V., and Lozhkin, M. S.: Nazarovite, IMA
2019-013, CNMNC Newsletter No. 50, August 2019, Mineral. Mag., 83, 615–620,
https://doi.org/10.1180/mgm.2019.46, 2019a.
Britvin, S. N., Murashko, M. N., Vapnik, Y., Polekhovsky, Y. S.,
Krivovichev, S. V., Vereshchagin, O. S., Vlasenko, N. S., Shilovskikh, V.
V., and Zaitsev, A. N.: Zuktamrurite, FeP2, a new mineral, the
phosphide analogue of löllingite, FeAs2, Phys. Chem. Mineral., 46,
361–369, https://doi.org/10.1007/s00269-018-1008-4, 2019b.
Britvin, S. N., Murashko, M. N., Vereshchagin, O. S., Vapnik, Y.,
Shilovskikh, V. V., and Vlasenko, N. S.: Polekhovskyite, IMA 2018-147, CNMNC
Newsletter No. 48, April 2019, page 401, Eur. J. Mineral., 31, 399–402,
2019c.
Britvin, S. N., Vapnik, Y., Polekhovsky, Y.S., Krivovichev, S. V.,
Krzhizhanovskaya, M. G., Gorelova, L. A., Vereshchagin, O. S., Shilovskikh,
V. V., and Zaitsev, A. N.: Murashkoite, FeP, a new terrestrial phosphide
from pyrometamorphic rocks of the Hatrurim Formation, South Levant, Mineral.
Petrol., 113, 237–248, https://doi.org/10.1007/s00710-018-0647-y, 2019d.
Britvin, S. N., Murashko, M. N., Vapnik, Y., Polekhovsky, Y. S.,
Krivovichev, S. V., Vereshchagin, O. S., Shilovskikh, V. V., and
Krzhizhanovskaya, M. G.: Negevite, the pyrite-type NiP2, a new
terrestrial phosphide, Am. Mineral., 105, 422–427,
https://doi.org/10.2138/am-2020-7192, 2020a.
Britvin, S. N., Murashko, M. N., Vapnik, Y., Polekhovsky, Y. S.,
Krivovichev, S. V., Krzhizhanovskaya, M. G., Vereshchagin, O. S.,
Shilovskikh, V. V., and Vlasenko, N. S.: Transjordanite, Ni2P, a new
terrestrial and meteoritic phosphide, and natural solid solutions
barringerite-transjordanite (hexagonal Fe2P-Ni2P), Am. Mineral.,
105, 428–436, https://doi.org/10.2138/am-2020-7275, 2020b.
Britvin, S. N., Murashko, M. N., Vapnik, Y., Polekhovsky, Y. S.,
Krivovichev, S. V., Vereshchagin, O. S., Shilovskikh, V. V., Vlasenko, N.
S., and Krzhizhanovskaya, M. G.: Halamishite, Ni5P4, a new
terrestrial phosphide in the Ni–P system, Phys. Chem. Mineral., 47,
3, https://doi.org/10.1007/s00269-019-01073-7, 2020c.
Britvin, S. N., Murashko, M. N., Vapnik, Y., Vlasenko, N. S.,
Krzhizhanovskaya, M. G., Vereshchagin, O. S., Bocharov, V. N., and Lozhkin,
M. S.: Cyclophosphates, a new class of native phosphorus compounds, and some
insights into prebiotic phosphorylation on early Earth, Geology, 49,
382–386, https://doi.org/10.1130/G48203.1, 2021a.
Britvin, S. N., Vereshchagin, O. S., Shilovskikh, V. V., Krzhizhanovskaya,
M. G., Gorelova, L. A., Vlasenko, N. S., Pakhomova, A. S., Zaitsev, A. N.,
Zolotarev, A. A., Bykov, M., and Nestola, F.: Discovery of terrestrial
allabogdanite (Fe,Ni)2P, and the effect of Ni and Mo substitution on
the barringerite-allabogdanite high-pressure transition, Am. Mineral., 106,
944–952, https://doi.org/10.2138/am-2021-7621, 2021b.
Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S.,
Blundy, J., and Gobbo, L.: Mineral inclusions in sublithospheric diamonds
from Collier 4 kimberlite pipe, Juína, Brazil: subducted protoliths,
carbonated melts and primary kimberlite magmatism, Contrib. Mineral.
Petrol., 160, 489–510, https://doi.org/10.1007/s00410-010-0490-6, 2010.
Burg, A., Starinsky, A., Bartov, Y., and Kolodny, Y.: Geology of the
Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin, Israel J. Earth
Sci., 40, 107–124, 1992.
Chen, M., Shu, J., Mao, H.-K., Xie, X., and Hemley, R. J.: Natural
occurrence and synthesis of two new postspinel polymorphs of chromite, P. Natl. Acad. Sci. USA, 100, 14651–14654, https://doi.org/10.1073/pnas.2136599100, 2003a.
Chen, M., Shu, J., Xie, X., and Mao, H.-K.: Natural
CaTi2O4-structured FeCr2O4 polymorph in the Suizhou
meteorite and its significance in mantle mineralogy, Geochim. Cosmochim.
Ac., 67, 3937–3942, https://doi.org/10.1016/S0016-7037(03)00175-3, 2003b.
Chen, M., Shu, J., and Mao, H.-K.: Xieite, a new mineral of high-pressure
FeCr2O4 polymorph, Chinese Sci. Bull., 53, 3341–3345, 2008.
Chen, M., Shu, J., Xie, X., and Tan, D.: Maohokite, a post-spinel polymorph
of MgFe2O4 in shocked gneiss from the Xiuyan crater in China,
Meteor. Planet. Sci., 54, 495–502, https://doi.org/10.1111/maps.13222, 2019.
Chesnokov, B. V., Bazhenova, L. F., Bushmakin, A. F., Vilisov, A. F.,
Lotova, E. V., Mikhal', T. A., Nishanbaev, T. P., and Shcherbakova, E. P.:
New minerals from burnt dumps of the Chelyabinsk coal basin (the 2nd
report), in: New Data on the Mineralogy of Endogenic Deposits and
Technogenic Zones of the Urals, edited by: Chesnokov, B. V., PH UrD AS USSR,
Sverdlovsk, USSR, 5–14, 1991 (in Russian).
Damay, F., Martin, C., Hardy, V., Maignan, A., Andre, G., Knight, K., Giblin
S. R., and Chapon, L. C.: Zigzag ladders with staggered magnetic chirality
in the compound β-CaCr2O4, Phys. Rev. B, 81,
214405, https://doi.org/10.1103/PhysRevB.81.214405, 2010.
Degterov, S. and Pelton, A. D.: Critical evaluation and optimization of the
thermodynamic properties and phase diagrams of the CrO-Cr2O3,
CrO-Cr2O3-Al2O3, and CrO-Cr2O3-CaO systems, J.
Phase Equilib., 17, 476–487, 1996.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. and
Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis
program, J. Appl. Crystallogr., 42, 339–341,
https://doi.org/10.1107/S0021889808042726, 2009.
Galuskin, E. V., Kruger, B., Kruger, H., Blass, G., Widmer, R., and
Galuskina, I. O.: Wernerkrauseite, CaFe Mn4+O6: the
first nonstoichiometric post-spinel mineral, from Bellerberg volcano, Eifel,
Germany, Eur. J. Mineral., 28, 485–493, https://doi.org/10.1127/ejm/2016/0028-2509, 2016.
Galuskina, I. O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko,
M., and Galuskin, E. V.: Harmunite CaFe2O4: A new mineral from
the Jabel Harmun, West Bank, Palestinian Autonomy, Israel, Am. Mineral., 99,
965–975, https://doi.org/10.2138/am.2014.4563, 2014.
Galuskina, I. O., Vapnik, Y., Stachowicz, M., Woźniak K., and Galuskin,
E. V.: Mcconnellite, CuCrO2, and ellinaite, CaCr2O4, from
varicolored spurrite marble of the Daba-Siwaqa area, Hatrurim Complex,
Jordan, Min. Mag., 85, 387–397, https://doi.org/10.1180/mgm.2021.27, 2021a.
Galuskina, I., Galuskin, E., Vapnik, Y., Zeliński, G., and Prusik, K.:
Priscillagrewite-(Y), (Ca2Y)Zr2Al3O12 – a new garnet of
the bitikleite group from the Daba-Siwaqa area, the Hatrurim Complex,
Jordan, Am. Mineral., 106, 641–649,
https://doi.org/10.2138/am-2021-7692, 2021b.
Gaudefroy, C., Jouravsky, G., and Permingeat, F.: La marokite,
CaMn2O4 une nouvelle espèce minérale, B. Soc. Fr. Mineral.
Cr., 86, 359–367, 1963.
Geller, Y.I., Burg, A., Halicz, L., and Kolodny, Y.: System closure during
the combustion metamorphic “Mottled Zone” event, Israel. Chem. Geol., 334,
25–36, https://doi.org/10.1016/j.chemgeo.2012.09.029, 2012.
Gross, S.: The mineralogy of the Hatrurim Formation, Israel. Bull. Geol.
Surv. Israel, 70, 1–80, 1977.
Haccuria, E., Crivits, T., Hayes, P. C., and Jak, E.: Selected phase
equilibria studies in the Al2O3-CaO-SiO2 system, J.
Am. Ceram. Soc., 99, 691–704,
https://doi.org/10.1111/jace.13991, 2015.
Harte, B., Harris, J. W., Hutchison, M. T., Watt, G. R., and Wilding, M. C.:
Lower mantle mineral associations in diamonds from Sao Luiz, Brazil, in: Mantle petrology: field observations and
high pressure experimentation, edited by: Fei,
Y., Bertka, C. M., and Mysen, B. O., Geochemical Society Special Publications, Washington, USA,
125–153, 1999.
Hayman, P. C., Kopylova, M. G., and Kaminsky, F. V.: Lower mantle diamonds
from Rio Soriso (Juína area, Mato Grosso, Brazil), Contrib. Mineral.
Petrol., 140, 734–753, https://doi.org/10.1007/s00410-005-0657-8, 2005.
Hill, P. M., Peiser, H. S., and Rait, J. R.: The crystal structure of
calcium ferrite and β calcium chromite, Acta Crystallogr., 9,
981–986, 1956.
Hörkner, W. and Müller-Buschbaum, H. K.: Einkristalluntersuchungen
von β-CaCr2O4, Z. Naturforsch. B, 31, 1710–1711, 1976.
Hutchison, M. T., Hursthouse, M. B., and Light, M. E.: Mineral inclusions in
diamonds: associations and chemical distinctions around the 670-km
discontinuity, Contrib. Mineral. Petrol., 142, 119–126, https://doi.org/10.1007/s004100100279, 2001.
Irifune, T., Fujino, K., and Ohtani, K.: A new high pressure form of
MgAl2O4, Nature, 349, 409–411, https://doi.org/10.1038/349409a0,
1991.
Kaminsky, F. V., Zakharchenko, O. D., Davies, R., Griffin, W. L.,
Khachatryan-Blinova, G. K., and Shiryaev, A. A.: Superdeep diamonds from the
Juína area, Mato Grosso State, Brazil, Contrib. Mineral. Petrol., 140,
734–753, https://doi.org/10.1007/s004100000221, 2001.
Kaminsky, F. V., Khachatryan, G. K., Andreazza, P., Araujo, D. P., and
Griffin, W. L.: Super-deep diamonds from kimberlites in the Juína area,
Mato Grosso State, Brazil, Lithos, 112, 833–842,
https://doi.org/10.1016/J.LITHOS.2009.03.036, 2009.
Kaminsky, F. V., Wirth, R., and Schreiber, A.: Carbonatitic inclusions in
deep mantle diamond from Juína, Brazil: New minerals in the
carbonate-halide association, Can. Mineral., 51, 669–688,
https://doi.org/10.3749/canmin.51.5.669, 2013.
Kaminsky, F., Wirth, R., and Schreiber, A.: A microinclusion of lower mantle
rock and other mineral and nitrogen lower-mantle inclusions in a diamond,
Can. Mineral., 53, 83–104, https://doi.org/10.3749/canmin.1400070, 2015.
Khoury, H. N., Sokol, E. V., Kokh, S. N., Seryotkin, Y. V., Nigmatulina, E.
N., Goryainov, S. V., Belogub, E. V., and Clark, I. D.: Tululite,
Ca14(Fe3+,Al) (Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: A new Ca
zincate-aluminate from combustion metamorphic marbles, central Jordan,
Mineral. Petrol., 110, 125–140, https://doi.org/10.1007/s00710-015-0413-3,
2016.
Kirby, S. H., Stein, S., Okai, E. A., and Rubie, D. C.: Metastable mantle
phase transformations and deep earthquakes in subducting oceanic
lithosphere, Rev. Geophys., 34, 261–306, 1996.
Kolev, N., Iliev, M. N., Popov, V. N., and Gospodinov, M.:
Temperature-dependent polarized Raman spectra of CaFe2O4, Solid
State Comm., 128, 153–155,
https://doi.org/10.1016/S0038-1098(03)00660-4, 2003.
Kosyakov, V. I., Kraeva, A. G., Fedorova, Z. N., and Sinyakova, E. F.:
Topological analysis of evolution of phase equilibria in the Fe-Ni-S system
in the range XS <0.5 along the temperature axis, Geol.
Geofiz., 37, 5–15, 1996.
Lee, Y. M. and Nassaralla, C. L.: Minimization of hexavalent chromium in
magnesite-chrome refractory, Metall. Mater. Trans. B, 28, 855–859, 1997.
Lepicard, G. and Protas, J.: Etude structurale de l'oxyde double de
manganese et decalcium orthorhombique CaMn2O4 (marokite), B. Soc.
Fr. Mineral. Cr., 89, 318–324, 1966.
Ma, C. and Prakapenka, V.: Tschaunerite, IMA 2017-032a, CNMNC Newsletter No.
46, December 2018, page 1188, Eur. J. Mineral., 30, 1181–1189,
2018.
Ma, C., Tschauner, O., Beckett, J. R., Liu, Y., Greenberg, E., and
Prakapenka, V. B.: Chenmingite, FeCr2O4 in the
CaFe2O4-type structure, a shock-induced, high-pressure mineral in
the Tissint martian meteorite, Am. Mineral., 104, 1521–1529,
https://doi.org/10.2138/am-2019-6999, 2019.
Mao, H., Hillert, M., Selleby, M., and Sundman, B.: Thermodynamic assessment
of the CaO-Al2O3-SiO2 system, J. Am. Ceram. Soc., 89,
298–308, https://doi.org/10.1111/j.1551-2916.2005.00698.x, 2006.
Nigmatulina, E. A.: The first finding of aciculite CaO⚫Fe2O3 in natural and technogenous burned rocks of the Kuznetsk
Coal Basin, in: Mineralogy of Technogenesis-2006, PH IMin UrB RAS, Miass,
Russia, 107–122, 2006 (in Russian).
Nigmatulina, E. N. and Nigmatulina, E. A.: Pyrogenic iron ores of fossil
coal fires of the Kuznetsk coal basin, Zap. Russ. Mineral. Soc., 138,
52–68, 2009 (in Russian).
Pausch, H. and Müller Buschbaum, H. K.: Die Kristallstruktur von α-CaCr2O4, Z. Anorg. Allg. Chem., 405, 113–118, 1974.
Pouchou, I. L. and Pichoir, F.: “PaP” (phi-rho-z) procedure for improved
quantitative microanalysis, in: Microbeam analysis, edited by: Armstrong,
I. T., San Francisco Press, San Francisco, USA, 104–106, 1985.
Róg, G., Kozlowska-Róg, A., and Dudek, M.: The standard Gibbs free
energy of formation of calcium chromium (III) oxide in the temperature range
(1073 to 1273 K), J. Chem. Thermodynam., 39, 275–278, https://doi.org/10.1016/j.jct.2006.07.005, 2007.
Scheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr.,
C71, 3–8, https://doi.org/10.1107/S2053229614024218, 2015.
Seryotkin, Y. V., Sokol, E. V., Kokh, S. N., and Sharygin, V. V.: Natural
bentorite – Cr3+-derivate of ettringite: Determination of crystal
structure, Phys. Chem. Mineral., 46, 553–570,
https://doi.org/10.1007/s00269-019-01022-4, 2019.
Shabanova, G. N., Korohodska, A. N., and Deviatova, N. B.: Refinement of the
subsolidus structure of the four-component system Fe2O3 – CaO –
Al2O3 – Cr2O3, Vopr. Khim. Khim. Tekhnol., 2,
144–149, https://doi.org/10.32434/0321-4095-2019-123-2-144-149, 2019.
Sharygin, V. V.: Mayenite-supergroup minerals from burned dump of the
Chelyabinsk Coal Basin, Russ. Geol. Geophys., 56, 1603–1621,
https://doi.org/10.1016/j.rgg.2015.10.007, 2015.
Sharygin, V. V.: Orthorhombic CaCr2O4 in phosphide-bearing
gehlenite-rankinite paralava from Hatrurim Basin, Israel: preliminary data,
in: Proceedings of 36th International Conference “Magmatism of the
Earth and related strategic metal deposits”, Saint Petersburg, Russia, 23–26 May 2019, 272–276, 2019.
Sharygin, V. V., Vapnik, Y., Sokol, E. V., Kamenetsky, V. S., and Shagam,
R.: Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim
Basin, Israel: composition and homogenization temperatures, in: ACROFI I
Program with Abstracts, edited by: Ni, P. and Li, Z., Nanjing, China,
189–192, 2006.
Sharygin, V. V., Sokol, E. V., and Vapnik, Y.: Minerals of the pseudobinary
perovskite–brownmillerite series from combustion metamorphic larnite rocks
of the Hatrurim Formation (Israel), Russ. Geol. Geophys., 49, 709–726,
https://doi.org/10.1016/j.rgg.2008.03.001, 2008.
Sharygin, V. V., Britvin, S. N., Murashko, M. N., and Vapnik, Y.: Mineralogy
of phosphide-bearing gehlenite-rankinite paralavas, Hatrurim Basin, Israel,
in: Proceedings of scientific conference “Mineralogical museums: yesterday,
today and tomorrow”, Saint Petersburg, Russia, 17–19 September 2019,
188–190, 2019a (in Russian).
Sharygin, V. V., Yakovlev, G. A., Wirth, R., Seryotkin, Y. V., Sokol, E. V.,
Nigmatulina, E. N., Karmanov, N. S., and Pautov, L. A.: Nataliakulikite,
Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, a new
perovskite-supergroup mineral from Hatrurim Basin, Negev Desert, Israel,
Minerals, 9, 700, https://doi.org/10.3390/min9110700, 2019b.
Sharygin, V. V., Britvin, S. N., Kaminsky, F. V., Wirth, R., Nigmatulina, E. N., Yakovlev, G. A., Novoselov, K. A., and Murashko, M. N.: Ellinaite, IMA 2019-091, in: CNMNC Newsletter 53, Eur. J. Mineral., 32, https://doi.org/10.5194/ejm-32-209-2020, 2020.
Shizuya, M., Isobe, M., and Takayama-Muromachi, E.: Structure and properties
of the CaFe2O4-type cobalt oxide CaCo2O4, J. Solid State
Chem., 180, 2550–2557, https://doi.org/10.1016/j.jssc.2007.07.008, 2007.
Sokol, E., Sharygin, V., Kalugin, V., Volkova, N., and Nigmatulina, E.:
Fayalite and kirschsteinite solid solutions in melts from burned
spoil-heaps, South Urals, Russia, Eur. J. Mineral., 14, 795–807,
https://doi.org/10.1127/0935-1221/2002/0014-0795, 2002.
Sokol, E., Novikov, I., Zateeva, S., Vapnik, Y., Shagam, R., and Kozmenko,
O.: Combustion metamorphic rocks as indicators of fossil mud volcanism: New
implications for the origin of the Mottled Zone, Dead Sea area, Basin Res.,
22, 414–438, https://doi.org/10.1111/j.1365-2117.2010.00462.x, 2010.
Sokol, E. V., Maksimova, N. V., Nigmatulina, E. N., Sharygin, V. V., and
Kalugin, V. M.: Combustion Metamorphism, PH SB RAS, Novosibirsk, 284 pp., ISBN 5-7692-0783-3,
2005 (in Russian).
Sokol, E. V., Novikov, I. S., Zateeva, S. N., Sharygin, V. V., and Vapnik,
Y.: Pyrometamorphic rocks of the spurrite-merwinite facies as indicators of
hydrocarbon discharge zones (the Hatrurim Formation, Israel), Dokl. Earth
Sci., 420, 608–614, https://doi.org/10.1134/S1028334X08040181, 2008.
Sokol, E. V., Gaskova, O. L., Kokh, S. N., Kozmenko, O. A., Seryotkin, Y.
V., Vapnik, Y., and Murashko, M. N.: Chromatite and its Cr3+- and
Cr6+-bearing precursor minerals from the Nabi Musa Mottled Zone
complex, Judean Desert, Am. Mineral., 96, 659–674,
https://doi.org/10.2138/am.2011.3487, 2011.
Sokol, E. V., Kozmenko, O. A., Kokh, S. N., and Vapnik, Y.: Gas reservoirs
in the Dead Sea area: Evidence from chemistry of combustion metamorphic
rocks in Nabi Musa fossil mud volcano, Russ. Geol. Geophys., 53, 745–762,
https://doi.org/10.1016/j.rgg.2012.06.003, 2012.
Sokol, E. V., Gaskova, O. L., Kozmenko, O. A., Kokh, S. N., Vapnik, E. A.,
Novikova, S. A., and Nigmatulina, E. N.: Clastic dikes of the Hatrurim basin
(western flank of the Dead Sea) as natural analogues of alkaline concretes:
Mineralogy, solution chemistry, and durability, Dokl. Earth Sci., 459,
1436–1441, https://doi.org/10.1134/S1028334X14100122, 2014a.
Sokol, E. V., Kokh, S. N., Vapnik, Y., Thiery, V., and Korzhova, S. A.:
Natural analogs of belite sulfoaluminate cement clinkers from Negev Desert,
Israel, Am. Mineral., 99, 1471–1487, https://doi.org/10.2138/am.2014.4704,
2014b.
Sokol, E. V., Seryotkin, Y. V., Kokh, S. N., Vapnik, Y., Nigmatulina, E. N.;
Goryainov, S. V., Belogub, E. V., and Sharygin, V. V.: Flamite
(Ca,Na,K)2(Si,P)O4, a new mineral from the ultrahigh-temperature
combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel,
Mineral. Mag., 79, 583–596, https://doi.org/10.1180/minmag.2015.079.3.05,
2015.
Sokol, E. V., Kokh, S. N., Khoury, H. N., Seryotkin, Y. V., Goryainov, S.
V., Novikova, S. A., and Sokol, I. A.: Natural analogue approaches to
prediction of long-term behaviour of Ca2UO5⚫2-3H2O
X-phase: Case study from Tulul Al Hammam site, Jordan, Arab. J. Geosci., 10,
512, https://doi.org/10.1007/s12517-017-3305-5, 2017.
Sokol, E. V., Kokh, S. N., Sharygin, V. V., Danilovsky, V. A., Seryotkin, Y.
V., Liferovich, R., Deviatiiarova, A. S., Nigmatulina, E. N., and Karmanov,
N. S.: Mineralogical diversity of Ca2SiO4-bearing combustion
metamorphic rocks in the Hatrurim Basin: Implications for storage and
partitioning of elements in oil shale clinkering, Minerals, 9, 465, https://doi.org/10.3390/min9080465, 2019a.
Sokol, E. V., Polyansky, O. P., Semenov, A. N., Reverdatto, V. V., Kokh, S.
N., Devyatiyarova, A. S., Kolobov, V. Y., Khvorov, P. V., and Babichev, A.
V.: High-grade contact metamorphism in the Kochumdek River valley
(Podkamennaya Tunguska basin, East Siberia): Evidence for magma flow, Russ.
Geol. Geophys., 60, 386–399, https://doi.org/10.15372/GiG2019088, 2019b.
Sokol, E. V., Kokh, S. N., Seryotkin, Y. V., Deviatiiarova, A. S.,
Goryainov, S. V., Sharygin, V. V., Khoury, H. N., Karmanov, N. S.,
Danilovsky, V. A., and Artemyev D. A.: Ultrahigh-temperature sphalerite from
Zn-Cd-Se-rich combustion metamorphic marbles, Daba Complex, Central Jordan:
paragenesis, chemistry, and structure, Minerals, 10, 822,
https://doi.org/10.3390/min10090822, 2020.
Stoe & Cie: X-AREA (Version 1.35) and X-RED32 (Version 1.31), Stoe &
Cie GmbH, Darmstadt, Germany, 2006.
Toth, S., Lake, B., Kimber, S. A. J., Pieper, O., Reehuis, M., Islam, A. T.
M. N., Zaharko, O., Ritter, C., Hill, A. H., Ryll, H., Kiefer, K., Argyriou,
D. N., and Williams, A. J.: 120∘ helical magnetic order in the
distorted triangular antiferromagnet α-CaCr2O4, Phys. Rev.
B, 84, 054452, https://doi.org/10.1103/PhysRevB.84.054452, 2011.
Vapnik, Y., Sharygin, V., Sokol, E., and Shagam, R.: Paralavas in a
combustion metamorphic complex, Hatrurim Basin, Israel, GSA Rev. Engin.
Geol., 18, 133–154, https://doi.org/10.1130/2007.4118(09), 2007.
Walter, M., Bulanova, G., Armstrong, L., Keshav, S., Blundy, J. D.,
Gudfinnsson, G., Lord, O., Lennie, A., Smith, C., and Gobbo, L.: Primary
carbonatite melt from deeply subducted oceanic crust, Nature, 454, 622–625,
https://doi.org/10.1038/nature07132, 2008.
Zateeva, S. N., Sokol, E. V., and Sharygin, V. V.: Specificity of
pyrometamorphic minerals of the ellestadite group, Geol. Ore Deposit, 49,
792–805, https://doi.org/10.1134/S1075701507080132, 2007.
Xue, W., Zhai, K., and Zhai, S.: Thermal expansion of ellinaite (β-CaCr2O4): an in-situ high temperature X-ray diffraction study,
Phys. Chem. Mineral., 48, 2,
https://doi.org/10.1007/s00269-020-01126-2, 2021.
Zhai, S., Yin, Y., Shieh, S. R. Shan, S., Xue, W., Wang, C.-P., Yang, K.,
and Higo, Y.: High-pressure X-ray diffraction and Raman spectroscopy of
CaFe2O4-type β-CaCr2O4, Phys. Chem. Mineral., 43,
307–314, https://doi.org/10.1007/s00269-015-0795-0, 2016.
Short summary
Ellinaite, a natural analog of β-CaCr2O4, was discovered at Hatrurim Basin, Israel, and in an inclusion within the super-deep diamond from the Sorriso Creek placer, Brazil. Chemical composition, structural data and physical properties are given for this mineral. It is related to multiple oxides AB2O4 with tunnel structure. This group now includes eight minerals. The overview of ellinaite from all localities suggests different PT–X–fO2 conditions for the mineral and its host rocks.
Ellinaite, a natural analog of β-CaCr2O4, was discovered at Hatrurim Basin, Israel, and in an...