Articles | Volume 33, issue 6
https://doi.org/10.5194/ejm-33-717-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-717-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New data on gersdorffite and associated minerals from the Peloritani Mountains (Sicily, Italy)
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa
Maria 53, 56126 Pisa, Italy
Cristian Biagioni
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa
Maria 53, 56126 Pisa, Italy
Federica Zaccarini
Department of Applied Geological Sciences and Geophysics, University
of Leoben, Peter Tunner Str. 5, 8700 Leoben, Austria
Related authors
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Cristian Biagioni, Marco E. Ciriotti, Georges Favreau, Daniela Mauro, and Federica Zaccarini
Eur. J. Mineral., 34, 365–374, https://doi.org/10.5194/ejm-34-365-2022, https://doi.org/10.5194/ejm-34-365-2022, 2022
Short summary
Short summary
The paper reports the type description of the new mineral species graulichite-(La). This is a new addition to the dussertite group within the alunite supergroup, and its discovery improves our knowledge on the crystal chemistry of this important supergroup of minerals, having both technological and environmental applications.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Cristian Biagioni, Anatoly V. Kasatkin, Fabrizio Nestola, Radek Škoda, Vladislav V. Gurzhiy, Atali A. Agakhanov, and Natalia N. Koshlyakova
Eur. J. Mineral., 36, 529–540, https://doi.org/10.5194/ejm-36-529-2024, https://doi.org/10.5194/ejm-36-529-2024, 2024
Short summary
Short summary
Zvěstovite-(Fe) is a new, Ag-rich, member of the tetrahedrite group, the most widespread sulfosalts in ore deposits. Its discovery stresses the chemical variability of this mineral group, allowing for a better understanding of the structural plasticity of these compounds, which are able to host a plethora of different elements typical of hydrothermal environments.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Cristian Biagioni, Marco E. Ciriotti, Georges Favreau, Daniela Mauro, and Federica Zaccarini
Eur. J. Mineral., 34, 365–374, https://doi.org/10.5194/ejm-34-365-2022, https://doi.org/10.5194/ejm-34-365-2022, 2022
Short summary
Short summary
The paper reports the type description of the new mineral species graulichite-(La). This is a new addition to the dussertite group within the alunite supergroup, and its discovery improves our knowledge on the crystal chemistry of this important supergroup of minerals, having both technological and environmental applications.
Yves Moëlo and Cristian Biagioni
Eur. J. Mineral., 32, 623–635, https://doi.org/10.5194/ejm-32-623-2020, https://doi.org/10.5194/ejm-32-623-2020, 2020
Short summary
Short summary
The plagionite group is a family of complex sulfides (
lead-antimony sulfosalts) encountered in various Pb-Cu-Zn ore deposits. Analysis of these crystal structures confirms a systematic Pb-versus-Sb substitution in two adjacent cation positions. Such a substitution varies according not only to the Pb / Sb ratio of each member but also, apparently, to the kinetics of crystallization. Re-examination of a Pb-free synthetic derivative permitted its redefinition as a Na-Sb sulfosalt.
Related subject area
Ore deposits and mineral resources
Micro- to nano-sized solid inclusions in magnetite record skarn reactions
First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland
Mineralogy and mineral chemistry of detrital platinum-group minerals and gold particles from the Elbe, Germany
Multistage fluorite mineralization in the southern Black Forest, Germany: evidence from rare earth element (REE) geochemistry
Vibrational spectroscopic study of three Mg–Ni mineral series in white and greenish clay infillings of the New Caledonian Ni-silicate ores
A remarkable discovery of electrum on the island of Sylt, northern Germany, and its Scandinavian origin
Igor González-Pérez, José María González-Jiménez, Lola Yesares, Antonio Acosta-Vigil, Jordi Llopís, and Fernando Gervilla
Eur. J. Mineral., 36, 925–941, https://doi.org/10.5194/ejm-36-925-2024, https://doi.org/10.5194/ejm-36-925-2024, 2024
Short summary
Short summary
This study examines solid nano-inclusions in magnetite from the La Víbora magnesian skarn, Spain, revealing insights into mineral formation. We found two types of inclusions: representing fossilized skarn reactions and precipitated from supersaturated fluids. Nano-inclusions provide valuable clues about the Fe mineralization event, highlighting the significance of nano-inclusions in understanding geological processes and resource exploration.
Krisztián Szentpéteri, Kathryn Cutts, Stijn Glorie, Hugh O'Brien, Sari Lukkari, Radoslaw M. Michallik, and Alan Butcher
Eur. J. Mineral., 36, 433–448, https://doi.org/10.5194/ejm-36-433-2024, https://doi.org/10.5194/ejm-36-433-2024, 2024
Short summary
Short summary
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum (LCT) pegmatite from the Somero–Tammela pegmatite region. The age obtained was 1801 ± 53 Ma, which is consistent with zircon ages of 1815–1740 Ma obtained from the same pegmatite. We show the in situ Lu–Hf method is a fast way of obtaining reliable age dates from LCT pegmatites.
Malte Junge, Simon Goldmann, and Hermann Wotruba
Eur. J. Mineral., 35, 439–459, https://doi.org/10.5194/ejm-35-439-2023, https://doi.org/10.5194/ejm-35-439-2023, 2023
Short summary
Short summary
The analysis by electron microprobe of platinum-group minerals, gold and cinnabar particles from heavy mineral concentrates of the Elbe showed a broad compositional variation of Os–Rus–Irs–(Pt) alloys as well as Pts–Fe alloys. The comparison with the literature showed that different sources account for the heavy mineral concentrate. This compositional variation of the alloys is also of interest for other placers of platinum-group minerals worldwide.
Robin Hintzen, Wolfgang Werner, Michael Hauck, Reiner Klemd, and Lennart A. Fischer
Eur. J. Mineral., 35, 403–426, https://doi.org/10.5194/ejm-35-403-2023, https://doi.org/10.5194/ejm-35-403-2023, 2023
Short summary
Short summary
The diversity of chemical patterns in multi-stage fluorite mineralization from two neighbouring deposits in the Black Forest is investigated. From over 70 samples, 7 fluorite groups and 3 hydrothermal events are identified after chemical and mathematical classification. The relative chronology and features suggest different mineralization histories and source aquifers for both deposits despite their proximity. Genetic differences are likely controlled by different behaviours of their host rocks.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 743–763, https://doi.org/10.5194/ejm-33-743-2021, https://doi.org/10.5194/ejm-33-743-2021, 2021
Short summary
Short summary
The study presents and discusses mid- and near-infrared spectra of three Mg–Ni mineral series (serpentine-like and talc-like minerals, sepiolite) commonly found in reactivated faults and sequences of clay infillings of the New Caledonian Ni-silicate deposits. This spectroscopic study sheds light on the nature of the residual mineral phases found in the clay infillings (serpentine-like minerals) and reveals the aptitude of the newly formed minerals (talc-like minerals and sepiolite) to store Ni.
Jochen Schlüter, Stephan Schuth, Raúl O. C. Fonseca, and Daniel Wendt
Eur. J. Mineral., 33, 373–387, https://doi.org/10.5194/ejm-33-373-2021, https://doi.org/10.5194/ejm-33-373-2021, 2021
Short summary
Short summary
On the west coast of the German North Sea island of Sylt, an electrum–quartz pebble weighing 10.4 g was discovered in a cliff of Saalian glaciogenic sediments. This is an unusually large and rare precious metal to find. Within our paper we document and characterize this discovery. An attempt to investigate its provenance points towards a southern Norwegian origin. This leads to the conclusion that ice advance events were involved in transporting this pebble from Norway to Germany.
Cited articles
Andreasen, J. W., Makovicky, E., Lebech, B., and Karup Møller, S.: The
role of iron in tetrahedrite determined by Rietveld refinement of neutron
powder diffraction data, Phys. Chem. Mineral., 35, 447–454, 2008.
Artini, E.: Note mineralogiche sulla Valsassina, Atti Soc. Ital. Sci. Nat.,
Mus. Civ. Stor. Nat. Milano, 42, 101–11, 1903.
Baldanza, B. Z.: Contributo alla conoscenza dei minerali metalliferi dei
Monti Peloritani – (Gli affioramenti), Notizie di Mineralogia Siciliana e
Calabrese, 2, 23-40, 1948.
Bayliss, P.: The crystal structure of disordered gersdorffite, Am. Mineral.,
53, 290–293, 1968.
Bayliss, P.: X-ray data, optical anisotropism, and thermal stability of
cobaltite, gersdorffite, and ullmannite, Mineral. Mag., 37, 26–33, 1969.
Bayliss, P.: A further crystal structure refinement of gersdorffite, Am.
Mineral., 67, 1058–1064, 1982.
Bayliss, P. and Stephenson, N. C.: The crystal structure of gersdorffite,
Mineral. Mag., 36, 38–42, 1967.
Bayliss, P. and Stephenson, N. C.: The crystal structure of gersdorffite
(III), a distorted and disordered pyrite structure, Mineral. Mag., 36,
940–947, 1968.
Benvenuti, M.: Ni-sulphides from Bottino mine (Tuscany, Italy), Eur. J.
Mineral., 3, 79–84, https://doi.org/10.1127/ejm/3/1/0079, 1991.
Biagioni, C., George, L. L., Cook, N. J., Makovicky, E., Moëlo, Y.,
Pasero, M., Sejkora, J., Stanley, C. J., Welch, M. D., and Bosi, F.: The
tetrahedrite group: Nomenclature and classification, Am. Mineral., 105,
109–122, 2020a.
Biagioni, C., Sejkora, J., Musetti, S., Velebil, D., and Pasero, M.:
Tetrahedrite-(Hg), a new “old” member of the tetrahedrite group, Mineral.
Mag., 84, 584–592, 2020b.
Biagioni, C., D'Orazio, M., Fulignati, P., George, L. L., Mauro, D., and
Zaccarini, F.: Sulfide melts in ore deposits from low-grade metamorphic
settings: Insigths from fluid and Tl-rich sulfosalt microinclusions from the
Monte Arsiccio mine (Apuan Alps, Tuscany, Italy), Ore Geol. Rev., 123,
103589, https://doi.org/10.1016/j.oregeorev.2020.103589, 2020c.
Bossolasco, M. and Bonetti, A.: Le possibilità minerarie della provincia
di Messina, Geofisica pura e applicata 2, 60–71, 1940.
Brese, N. E. and O'Keeffe, M.: Bond-valence parameters for solids, Acta
Crystallogr., B47, 192–197, 1991.
Bruker AXS Inc.: APEX 3. Bruker Advanced X-ray Solutions, Madison,
Wisconsin, USA, 2016.
Carbone, S., Messina, A., and Lentini, F.: Note illustrative della Carta
Geologica d'Italia alla scala 1:50.000. Foglio 601. Messina-Reggio di
Calabria, Serv. Geol. Ital., 1–179, 2007.
Carrozzini, B., Garavelli, C. L., and Vurro, F.: Tetrahedrite (supposed
Frigidite) and associated Ni minerals from Frigido mine (Apuane Alps),
Period. Mineral., 60, 5–14, 1991.
Censi, P. and Ferla, P.: I marmi dei Monti Peloritani. Composizione
isotopica dell'ossigeno e del carbonio e ricostruzione degli ambienti
formazionali, Rend. Soc. Ital. Mineral. Petrol., 38, 1101–1117, 1982/1983.
Costagliola, P., Benvenuti, M., Lattanzi, P., and Tanelli, G.: Metamorphogenic
barite-pyrite (Pb-Zn-Ag) veins at Pollone, Apuane Alps, Tuscany: vein
geometry, geothermobarometry, fluid inclusions and geochemistry, Mineral.
Petrol., 62, 29–60, 1998.
Dessau, G.: I minerali dei filoni a nichelio e cobalto dell'Arburese
(Sardegna), Period. Mineral., 7, 21–39, 1936.
Donati, G., Stagno, F., and Triscari, M.: Ricerche sulle mineralizzazioni
metallifere dei M. Peloritani. III) Giacimenti delle C.de S. Carlo, Montagne
e viciniori presso Fiumedinisi (Messina), Atti Accad. Peloritana
Pericolanti, Cl. Sc. Mat. Fis. Nat., 56, 177–238, 1978.
Fanlo, I., Subías, I., Gervilla, F., and Manuel, J.: Textures and
compositional variability in gersdorffite from the Crescencia Ni-(Co-U)
showing, Central Pyrenees, Spain: primary deposition or re-equilibration?,
Can. Mineral., 44, 1513–1528, 2006.
Ferla, P.: Inquadramento geologico-petrografico delle mineralizzazioni
metallifere nei Monti Peloritani (Sicilia), Rend. Soc. Ital. Min. Petr., 38,
1075–1091, 1982/1983.
Ferla, P. and Omenetto, P.: Metallogenetic evolution of Peloritani
Mountains (NE-Sicily): a summary, Mem. Soc. Geol. It., 55, 293–297, 2000.
Fleet, M. E. and Burns, P. C.: Structure and twinning of cobaltite, Can.
Mineral., 28, 719–723, 1990.
Garuti, G., Bea, F., Zaccarini, F., and Montero, P.: Age, geochemistry and
petrogenesis of the ultramafic pipes in the Ivrea Zone, NW Italy, J.
Petrol., 42, 433–457, 2001.
Grapes, R. H. and Challis, G. A.: Gersdorffite with pentlandite, violarite,
pyrrhotite, and pyrite, nortwest Nelson, New Zealand, New Zealand J. Geol.
Geophys., 42, 189–204, 1999.
Hem, S. R. and Makovicky, E.: The system Fe-Co-Ni-As-S. II. Phase
relations in the (Fe,Co,Ni)As1.5S0.5 section at 650∘ and
500 ∘C, Can. Mineral., 42, 63–86, 2004.
Henning, A., van der Westhuizen, W. A., de Bruiyn, H., and Beukes, G. J.:
Hydrothermal Cu-Ni-Au-Ag mineralization in a granodiorite sill north of
Cradock, Republic of South Africa, Mineralium Dep., 32, 410–418, 1997.
Jervis, W. P.: I tesori sotterrannei dell'Italia: Regione delle Isola
Sardegna e Sicilia, Ermanno Loescher, Torino, 540 pp., 1881.
Johnson, M. L. and Burnham, C. W.: Crystal structure refinement of an
arsenic-bearing argentian tetrahedrite, Am. Mineral., 70, 165–170, 1985.
Klemm, D. D.: Synthesen und Analysen in den Dreiecksdiagrammen
FeAsS-CoAsS-NiAsS und FeS2-CoS2-NiS2, Neues Jb.
Miner. Abh., 103, 205–255, 1965.
La Valle, G.: Su di alcuni nuovi minerali cobaltiferi e nichiliferi nella
provincia di Messina, Atti R. Accad. Lincei, 7, 68–71, 1898.
La Valle, G.: I giacimenti metalliferi di Sicilia in provincia di Messina,
Tipografia Fratelli Fugazotto, Messina, 83 pp., 1899.
Lovisato, D.: Sulla senarmontite di Nieddoris in Sardegna e sui minerali che
l'accompagnano in quella miniera, Rend. R. Accad. Lincei, 3, 82–89, 1894.
Mederski, S., Wojsław, M., Pršek, J., Majzlan, J., Kiefer, S., and
Asllani, B.: A geochemical study of gersdorffite from the Trepça Mineral
Belt, Vandar Zone, Kosovo, J. Geosci., 66, 97–115, 2021.
Messina, A., Somma, R., Macaione, E., Carbone, G., and Careri, G: Peloritani
continental crust composition (Southern Italy): geological and petrochemical
evidence, Boll. Soc. Geol. It., 123, 405–441, 2004.
Moroni, M., Rossetti, P., Naitza, S., Magnani, L., Ruggieri, G., Aquino, A.,
Tartarotti, P., Franklin, A., Ferrari, E., Castelli, D., Oggiano, G., and
Secchi, F.: Factors controlling hydrothermal nickel and cobalt
mineralization – Some suggestions from historical ore deposits in Italy,
Minerals, 9, 429, https://doi.org/10.3390/min9070429, 2019.
Musumeci, T.: Notizie sui cristalli delle mineralizzazioni metallifere dei
Monti Peloritani, Rend. Soc. Ital. Min. Petrol., 14, 277–286, 1958.
Oteri, F., Saccà, C., Stagno, F., and Triscari, M.: Confronto tra
composizione chimica e modalità giaciturali di alcuni minerali
metalliferi dei Monti Peloritani (Sicilia N.E.), Rend. Soc. Ital. Min.
Petrol., 41, 41–52, 1986.
Persuad, E. C. R., Morton, R.D., and Launspach, S.: Bismuthian gersdorffites
from the Dawn Lake U-Ni deposit, N. Saskatchewan, Canada, Neues Jb. Miner.,
Monat., 7, 309–323, 1988.
Petruk, W., Harris, D. C., and Stewart, J. M.: Characteristics of the
arsenides, sulpharsenides, and antimonides, Can. Mineral., 11, 150–186,
1971.
Rodolico, F.: Studio a luce riflessa di alcuni minerali italiani, Period.
Mineral., 11, 1–14, 1940.
Saccà, C., Saccà, D., Nucera, P., and Somma, R.: Gold-bearing
polymetalliferous mineralization in the Central Peloritani Mts. (NE Sicily,
Italy), Boll. Soc. Geol. It., 122, 503–509, 2003.
Saccà, C., Saccà, D., and Nucera, P.: Le mineralizzazioni dei Monti
Peloritani. Storia e attualità, Aracne Editrice, Roma, 300 pp., 2015.
Seguenza, G.: Ricerche mineralogiche sui filoni metalliferi di Fiumedinisi e
suoi dintorni in Sicilia, Stamperia Antonino D'Amico Arena, Messina, 70 pp.,
1856.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr.,
C71, 3–8, 2015.
Traina, E.: Sull'anglesite dei giacimenti metalliferi della provincia di
Messina, Atti R. Accad. Lincei, 14, 220–223, 1905.
Triscari, M.: A first occurrence of gersdorffite in the Peloritani Mts.
(Sicily N.E.), Rend. Soc. Ital. Min. Petrol., 40, 289–294, 1985.
Triscari, M. and Saccà, C.: Scheelite at the “San Carlo” Sb-Cu-Ag
mine, Fiumedinisi, Messina, Italy, Mineral. Petrogr. Acta, 26, 159–168,
1982.
Triscari, M. and Saccà, C.: Contributo alla conoscenza dei minerali
metalliferi dei Monti Peloritani (Sicilia N.E.) VI) La boulangerite, Rend.
Soc. Ital. Min. Petrol., 39, 145–154, 1984.
Voudouris, P., Mavrogonatos, C., Rieck, B., Kolitsch, U., Spry, P. G.,
Scheffer, C., Tarantola, A., Vanderhaeghe, O., Galanos, E., Melfos, V.,
Zaimis, S., Soukis, K., and Photiades, A.: The
gersdorffite-bismuthinite-native gold association and the skarn-porphyry
mineralization in the Kamariza mining district, Lavrion, Greece, Minerals,
8, 531, https://doi.org/10.3390/min8110531, 2018.
Welch, M. D., Stanley, C. J., Spratt, J., and Mills, S. J.: Rozhdestvenskayaite,
Ag10Zn2Sb4S13, and argentotetrahedrite,
Ag6Cu4(Fe2+,Zn)2Sb4S13: two Ag-dominant
members of the tetrahedrite group, Eur. J. Mineral., 30, 1163–1172, https://doi.org/10.1127/ejm/2018/0030-2773, 2018.
Wilson, A. J. C. (Ed.): International Tables for Crystallography Volume C:
Mathematical, Physical and Chemical Tables, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1992.
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
This work reports the full crystal-chemical characterization of gersdorffite from Contrada...