Articles | Volume 32, issue 1
https://doi.org/10.5194/ejm-32-57-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-57-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aluminosugilite, KNa2Al2Li3Si12O30, an Al analogue of sugilite, from the Cerchiara mine, Liguria, Italy
Mariko Nagashima
CORRESPONDING AUTHOR
Graduate school of Sciences and Technology for Innovation,
Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan
Chihiro Fukuda
Gem Research Japan Inc., Nagahorido BLDG 5F 1-3-10,
Higashi-Shinsaibashi, Chuo-ku, Osaka 542-0083, Japan
Takashi Matsumoto
Application Laboratories, Rigaku Corporation, 3-9-12 Matsubara-cho,
Akishima, Tokyo 196-8666, Japan
Teruyoshi Imaoka
Graduate school of Sciences and Technology for Innovation,
Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan
Gianluca Odicino
Associazione Micro-mineralogica Italiana, via Fasceto 15, 16032
Camogli, Genoa, Italy
Gianluca Armellino
Associazione Micro-mineralogica Italiana, via Piani del
Monastero 17, 17017 Millesimo, Savona, Italy
Related authors
Mariko Nagashima and Boriana Mihailova
Eur. J. Mineral., 35, 267–283, https://doi.org/10.5194/ejm-35-267-2023, https://doi.org/10.5194/ejm-35-267-2023, 2023
Short summary
Short summary
We provide a tool for fast preparation-free estimation of the Fe3+ content in Al–Fe3+ series epidotes by Raman spectroscopy. The peaks near 570, 600, and 1090 cm−1, originating from Si2O7 vibrations, strongly correlated with Fe content, and all three signals are well resolved in a random orientation. Among them, the 570 cm−1 peak is the sharpest and easily recognized. Hence, the linear trend, ω570 = 577.1(3) − 12.7(4)x, gives highly reliable Fe content, x, with accuracy ± 0.04 Fe3+ apfu.
Mariko Nagashima, Teruyoshi Imaoka, Takashi Kano, Jun-ichi Kimura, Qing Chang, and Takashi Matsumoto
Eur. J. Mineral., 34, 425–438, https://doi.org/10.5194/ejm-34-425-2022, https://doi.org/10.5194/ejm-34-425-2022, 2022
Short summary
Short summary
Ferro-ferri-holmquistite (IMA2022-020), ideal formula ☐Li2(Fe32+Fe23+)Si8O22(OH)2, was found in albitized granite from the Iwagi islet, Ehime, Japan. It is a Fe2+Fe3+ analogue of holmquistite and belongs to the lithium subgroup amphiboles. Ferro-ferri-holmquistite occurs as blue acicular crystals typically replacing the biotite and is the product of metasomatic mineral replacement reactions by dissolution–reprecipitation processes associated with Na- and Li-rich hydrothermal fluids.
Mariko Nagashima and Boriana Mihailova
Eur. J. Mineral., 35, 267–283, https://doi.org/10.5194/ejm-35-267-2023, https://doi.org/10.5194/ejm-35-267-2023, 2023
Short summary
Short summary
We provide a tool for fast preparation-free estimation of the Fe3+ content in Al–Fe3+ series epidotes by Raman spectroscopy. The peaks near 570, 600, and 1090 cm−1, originating from Si2O7 vibrations, strongly correlated with Fe content, and all three signals are well resolved in a random orientation. Among them, the 570 cm−1 peak is the sharpest and easily recognized. Hence, the linear trend, ω570 = 577.1(3) − 12.7(4)x, gives highly reliable Fe content, x, with accuracy ± 0.04 Fe3+ apfu.
Mariko Nagashima, Teruyoshi Imaoka, Takashi Kano, Jun-ichi Kimura, Qing Chang, and Takashi Matsumoto
Eur. J. Mineral., 34, 425–438, https://doi.org/10.5194/ejm-34-425-2022, https://doi.org/10.5194/ejm-34-425-2022, 2022
Short summary
Short summary
Ferro-ferri-holmquistite (IMA2022-020), ideal formula ☐Li2(Fe32+Fe23+)Si8O22(OH)2, was found in albitized granite from the Iwagi islet, Ehime, Japan. It is a Fe2+Fe3+ analogue of holmquistite and belongs to the lithium subgroup amphiboles. Ferro-ferri-holmquistite occurs as blue acicular crystals typically replacing the biotite and is the product of metasomatic mineral replacement reactions by dissolution–reprecipitation processes associated with Na- and Li-rich hydrothermal fluids.
Cited articles
Abraham, K., Gebert, W., Medenbach, O., Schreyer, W., and Hentschel, G.:
Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite
group with octahedral sodium, Contrib. Mineral. Petr., 82, 252–258,
https://doi.org/10.1007/BF01166619, 1983.
Armbruster, T.: Crystal chemistry of double-ring silicates: structure of
roedderite at 100 and 30 K, Eur. J. Mineral., 1, 715–718,
https://doi.org/10.2138/am-1999-1-210, 1989.
Armbruster, T.: Si, Al ordering in the double-ring silicate armenite,
BaCa2Al6Si9O20⋅2H2O: A single-crystal X-ray
and 29Si MAS NMR study, Am. Mineral., 84, 92–101,
https://doi.org/10.2138/am-1999-1-210, 1999.
Armbruster, T. and Czank, M.: H2O ordering and superstructures in
armenite BaCa2Al6Si9O20⋅2H2O: A
single-crystal X-ray and TEM study, Am. Mineral., 77, 422–430, 1992.
Armbruster, T. and Oberhänsli, R.: Crystal chemistry of double-ring
silicates: Structures of sugilite and brannockite, Am. Mineral., 73,
595–600, 1988.
Baur, H.: The geometry of polyhedral distortions. Predictive relationships
for the phosphate group, Acta Crystallogr., B30, 1195–1215,
https://doi.org/10.1107/S0567740874004560, 1974.
Bruker: SMART and SAINT–Plus, Versions 6.01, Bruker AXS Inc., Madison,
Wisconsin, USA, 1999.
Cabella, R., Lucchetti, G., and Palenzona, A.: Al-rich, Fe-poor manganoan
sugilite in a pectolite-bearing assemblage from Cerchiara Mine (Northern
Apennines, Italy), Neues Jb. Miner. Monat., 10, 443–448, 1990.
Cabella, R., Lucchetti, G., and Marescotti, P.: Mn-ores from Eastern
Ligurian ophiolitic sequences (“Diaspri di Monte Alpe Formation”, Northern
Apennines, Italy), Trends in Mineralogy, 2, 1–17, 1998.
Černý, P., Hawthorne, F. C., and Jarosewich, E.: Crystal chemistry of
milarite, Can. Mineral., 18, 41–57, 1980.
Chopin, C., Oberti, R., and Cámara, F.: The arrojadite enigma: II.
Compositional space, new members, and nomenclature of the group, Am.
Mineral., 91, 1260–1270, https://doi.org/10.2138/am.2006.2190, 2006.
Chukanov, N. V., Pekov, I. V., Rastsvetaeva, R. K., Aksenov, S. M., Belakovskiy,
D. I., Van, K. V., Schüller, W., and Ternes, B.: Osumilite-(Mg):
Validation as a mineral species and new data, Geol. Ore Deposit., 55, 587–593,
https://doi.org/10.1134/S1075701513070064, 2013.
Cooper, M. A., Hawthorne, F. C., Ball, N. A., Černý, P., and
Kristiansen, R.: Oftedalite,
, a new member of the
milarite group from the Heftetjern pegmatite, Tørdal, Norway: description
and crystal structure, Can. Mineral., 44, 943–949,
https://doi.org/10.2113/gscanmin.44.4.943, 2006.
Danhara, T., Yamashita, T., Iwano, H., and Kasuya, M.: An improved system
for measuring refractive index using the thermal immersion method, Quartern.
Int., 13/14, 89–91, https://doi.org/10.1016/1040-6182(92)90013-R, 1992.
Dunn, P. J., Brummer, J. J., and Belsky, H.: Sugilite, a second occurrence:
Wessels mine, Kalahari manganese field, Republic of South Africa, Can.
Mineral., 18, 37–39, 1980.
Dusmatov, V. D., Efimova, A. F., Kataeva, Z. T., Khoroshilova, L. A., and
Yanulov, K. P.: Sogdianite, a new mineral, Dokl. Akad. Nauk SSSR, 182, 1176–1177, 1968.
Forbes, W. C., Baur, W. H., and Kahn, A. A.: Crystal chemistry of milarite-type
minerals, Am. Mineral., 57, 463–472, 1972.
Gagné, O. and Hawthorne, F. C.: Chemographic exploration of the
milarite-type structure, Can. Mineral., 54, 1229–1247,
https://doi.org/10.3749/canmin.1500088, 2016.
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F.,
Schumacher, J. C., and Welch, M. D.: Nomenclature of the amphibole supergroup,
Am. Mineral., 97, 2031–2048, https://doi.org/10.2138/am.2012.4276, 2012.
Hawthorne, F. C., Abdu, Y. A., Ball, N. A., Černý, P., and Kristiansen,
R.: Agakhanovite-(Y), ideally (YCa) □2KBe3Si12O30, a new milarite-group mineral from the
Heftetjern Pegmatite, Tørdal, Southern Norway: Description and crystal
structure, Am. Mineral., 99, 2084–2088,
https://doi.org/10.2138/am-2014-4880, 2014.
Henry, D. J., Novák, M., Hawthorne, F. C., Ertl, A., Dutrow, B. L., Uher,
P., and Pezzotta, F.: Nomenclature of the tourmaline super-group minerals,
Am. Mineral., 96, 895–913, https://doi.org/10.2138/am.2011.3636, 2011.
Hey, M. H. and Gottardi, G.: On the use of names, prefixes and suffixes, and
adjectival modifiers in the mineralogical nomenclature, Can. Mineral., 18,
261–262, 1980.
Hirowatari, F. and Fukuoka, M.: Some Problems of the studies on the
manganese minerals in Japan, Journal of the Mineralogical Society of Japan, 18, 347–365,
https://doi.org/10.2465/gkk1952.18.347, 1989.
Jones, M. P. and Fleming, M. G.: Identification of mineral grains. Elsevier
Publishing Company, Amsterdam, 102 pp., 1965.
Kato, T., Miúra, Y., and Murakami, N.: Crystal structure of sugilite,
Mineralogical Journal, 8, 184–192, https://doi.org/10.2465/minerj.8.184, 1976.
Kolitsch, U., Merlino, S., Belmonte, D., Carbone, C., Cabella, R.,
Lucchetti, G., and Ciriotti, M. E.: Lavinskyite-1M,
K(LiCu)Cu6(Si4O11)2(OH)4, the monoclinic MDO
equivalent of lavinskyite-2O (formerly lavinskyite), from the Cerchiara
manganese mine, Liguria, Italy, Eur. J. Mineral., 30, 811–820,
https://doi.org/10.1127/ejm/2018/0030-2731, 2018.
Lepore, G. O., Bindi, L., Zanetti, A., Ciriotti, M. E., Medenbach, O., and
Bonazzi, P.: Balestraite, KLi2VSi4O10O2, the first
member of the mica group with octahedral V5+, Am. Mineral., 100,
608–614, https://doi.org/10.2138/am-2015-4972, 2015.
Lucchetti, G., Cortesogno, L., and Palenzona, A.: Low-temperature
metamorphic mineral assemblages in Mn-Fe ores from Cerchiara mine (northern
Apennine, Italy), Neues Jb. Miner. Monat., 8, 367–383, 1988.
Mandarino, J. A.: The Gladstone–Dale relationship: Part IV. The
compatibility concept and its application, Can. Mineral., 19, 441–450,
1981.
Mihajlović, T., Lengauer, C. L., Ntaflos, T., Kolitsch, U., and
Tillmanns, E.: Two new minerals, rondorfite,
Ca8Mg[SiO4]4Cl2, and almarudite, , and a study on
iron-rich wadalite, Ca12[(Al8Si4Fe2)O32]Cl6,
from the Bellerberg volcano, Eifel, Germany, Nues Jb. Miner. Abh., 179,
265–294, https://doi.org/10.1127/0077-7757/2004/0179-0265, 2004.
Miyashiro, A.: Osumilite, a new silicate mineral and its crystal structure,
Am. Mineral., 41, 104–116, 1956.
Momma, K. and Izumi, F.: VESTA3 for three-dimensional visualization of
crystal, volumetric and morphology data, J. Appl. Crystallogr., 44,
1257–1276, https://doi.org/10.1107/S0021889811038970, 2011.
Murakami, N., Kato, T., Miura, Y., and Hirowatari, F.: Sugilite, a new
silicate mineral from Iwagi Islet, Southwest Japan, Mineralogical Journal, 8,
110–121, https://doi.org/10.2465/minerj.8.110, 1976.
Nickel, E. H. and Grice, J. D.: The IMA commission on new minerals and mineral
names: Procedures and guidelines on mineral nomenclature, 1998, Miner.
Petrol., 64, 237–263, https://doi.org/10.1007/BF01226571, 1998.
Pautov, L. A. and Agakhanov, A. A.: Berezanskite
KLi3Ti2Si12O30, a new mineral, Zapiski Vsesoyuznogo
Mineralogicheskogo Obshchestva, 126, 75–80, 1997.
Pautov, L. A., Agakhanov, A. A., Sokolova, E. V., and Ignatenko, K. I.:
Dusmatovite, a new mineral of milarite group, Vestnik Moskovskogo
Universiteta, Seriya 4, Geologicheskaya, N2, 54–60, 1996.
Pautov, L. A., Agakhanov, A. A., and Sokolova, E. V.: Shibkovite, a new mineral
of milarite group, Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 127,
89–94, 1998.
Rigaku Oxford Diffraction: CrysAlisPro Software system, version
1.171.39.45e, Rigaku Corporation, Oxford, UK, 2018.
Shannon, R. D.: Revised effective ionic radii and systematic studies of
interatomic distances in halides and chalcogenides, Acta Crystallogr., A32,
751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Sheldrick, G. M.: SADABS, University of Göttingen, Germany, 1996.
Sheldrick, G. M.: A short history of SHELX, Acta Crystallogr., A64, 112–122,
https://doi.org/10.1107/S0108767307043930, 2008.
Wenger, M. and Armbruster, T.: Crystal chemistry of lithium: oxygen
coordination and bonding, Eur. J. Mineral., 3, 387–399,
https://doi.org/10.1127/ejm/3/2/0387, 1991.
White Jr., J. S., Arem, J. E., Nelen, J. A., Levens, P. B., and Thomssen, R. W.:
Brannockite, a new tin material, Miner. Rec., 4, 73–76, 1973.
Winter, W., Armbruster, T., and Lengauer, Ch.: Crystal structure refinement
of synthetic osumilite-type phases: BaMg2Al6Si9O30,
SrMg2Al6Si9O30 and Mg2Al4Si11O30,
Eur. J. Mineral., 7, 277–286, https://doi.org/10.1127/ejm/7/2/0277,
1995.