Articles | Volume 32, issue 1
https://doi.org/10.5194/ejm-32-41-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-41-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How do diamonds grow in metal melt together with silicate minerals? An experimental study of diamond morphology
Sobolev Institute of Geology and Mineralogy SB RAS, Koptyuga Ave.
3, Novosibirsk, 630090, Russia
Valery Sonin
Sobolev Institute of Geology and Mineralogy SB RAS, Koptyuga Ave.
3, Novosibirsk, 630090, Russia
Jean-Marie Dereppe
University of Louvain, Place des Sciences 2, bte L6.06.01 à 1348 Louvain-la-Neuve, Belgium
Egor Zhimulev
Sobolev Institute of Geology and Mineralogy SB RAS, Koptyuga Ave.
3, Novosibirsk, 630090, Russia
Anatoly Chepurov
Sobolev Institute of Geology and Mineralogy SB RAS, Koptyuga Ave.
3, Novosibirsk, 630090, Russia
Cited articles
Anzolini, C., Prencipe, M., Alvaro, M., Romano, C., Vona, A., Lorenzon, S.,
Smith, E. M., Brenker, F. E., and Nestola, F.: Depth of formation of super-deep
diamonds: Raman barometry of CaSiO3-walstromite inclusions, Am.
Mineral., 103, 69–74, https://doi.org/10.2138/am-2018-6184, 2018.
Anzolini, C., Nestola, F., Mazzucchelli, M. L., Alvaro, M., Nimis, P.,
Gianese, A., Morganti, S., Marone, F., Campione, M., Hutchison, M. T., and
Harris, J. W.: Depth of diamond formation obtained from single periclase
inclusions, Geology, 47, 219–222, https://doi.org/10.1130/G45605.1, 2019.
Bartoshinsky, Z. V. and Kvasnitsa, V. N. (Eds.): Crystallomorphology of
diamond from kimberlites, Naukova Dumka, Kiev, 1991 (in Russian).
Beskrovanov, V. V.: Ontogeny of the diamond, Nauka, Novosibirsk, 2000 (in
Russian).
Bulanova, G. P.: The formation of diamond, J. Geochem. Explor., 53, 1–23,
https://doi.org/10.1016/0375-6742(94)00016-5, 1995.
Bulanova, G. P. and Zayakina, N. V.: Graphite – iron – cohenite assemblage
in the central zone of diamond from 23rd Party Congress kimberlite, Dokl.
Akad. Nauk SSSR, 317, 706–709, 1991 (in Russian).
Bulanova, G. P., Spetsius, Z. V., and Leskova, N. V. (Eds.): Sulfides in
diamonds and in xenoliths from kimberlite pipes of Yakutiia, Nauka,
Novosibirsk, 1990 (in Russian).
Bulanova, G. P., Griffin, W. L., and Ryan, G. G.: Nucleation environment of
diamonds from Yakutian Kimberlites, Mineral. Mag., 62, 409–419,
https://doi.org/10.1180/002646198547675, 1998.
Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S.,
Blundy, J., and Gobbo, L.: Mineral inclusions in sublithospheric diamonds
from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths,
carbonated melts and primary kimberlite magmatism, Contrib. Mineral.
Petrol., 160, 489–510, https://doi.org/10.1007/s00410-010-0490-6, 2010.
Bulanova, G. P., Smith, C. B., Kohn, S. C., and Speich, L.: Natural diamond
growth conditions recorded by their internal structures, 11th International
Kimberlite Conference, Gaborone, Botswana, 18–22 September, 11IKC-4523,
2017.
Chepurov, A. A., Dereppe, J. M., Fedorov, I. I., and Chepurov, A. I.: The change
of Fe-Ni alloy inclusions in synthetic diamond crystals due to annealing,
Diam. Relat. Mater., 9, 1374–1379,
https://doi.org/10.1016/S0925-9635(00)00260-0, 2000.
Chepurov, A. I., Tomilenko, A. A., Zhimulev, E. I., Sonin, V. M., Chepurov,
A. A., Surkov, N. V., and Kovyazin, S. V.: Problem of water in the upper mantle:
antigorite breakdown, Dokl. Earth Sci., 434, 1275–1278, https://doi.org/10.1134/S1028334X10090291, 2010.
Chepurov, A. I., Sonin, V. M., Zhimulev, E. I., Chepurov, A. A., and Tomilenko,
A. A.: On the formation of element carbon during decomposition of CaCO3 at high P-T parameters under reducing conditions, Dokl. Earth Sci., 441, 1738–1741,
https://doi.org/10.1134/S1028334X11120233, 2011.
Chepurov, A., Sonin, V., Shcheglov, D., Latyshev, A., Filatov, E., and
Yelisseyev, A.: A highly porous surface of synthetic monocrystalline
diamond: Effect of etching by Fe nanoparticles in hydrogen atmosphere, Int.
J. Refract. Met. H., 76, 12–15,
https://doi.org/10.1016/j.ijrmhm.2018.05.011, 2018a.
Chepurov, A. I., Sonin, V. M., Zhimulev, E. I., Chepurov, A. A., Pomazansky,
B. S., and Zemnukhov, A. L.: Dissolution of diamond crystals in a heterogeneous
(metal-sulfide-silicate) medium at 4 GPa and 1400 ∘C, J.
Miner. Petrol. Sci., 113, 59–67, https://doi.org/10.2465/jmps.170526, 2018b.
Davis, W. J., Jones, A. G., Bleeker, W., and Grutter, H.: Lithosphere
development in the Slave craton: a linked crustal and mantle perspective,
Lithos, 71, 575–589, https://doi.org/10.1016/S0024-4937(03)00131-2, 2003.
Day, H. W.: A revised diamond-graphite transition curve, Am. Mineral., 97,
52–62, https://doi.org/10.2138/am.2011.3763, 2012.
Fedorov, I. I., Chepurov, A. A., and Dereppe, J. M.: Redox conditions of
metal-carbon melts and natural diamond genesis, Geochem. J., 36, 247–253,
https://doi.org/10.2343/geochemj.36.247, 2002.
Fedorov, I. I., Chepurov, A. I., Chepurov, A. A., and Kuroedov, A. V.: Estimation
of the rate of postcrystallization self-purification of diamond from metal
inclusions in the earth's mantle, Geochem. Int., 43, 1235–1239,
2005.
Fedorov, I. I., Chepurov, A. I., Sonin, V. M., and Zhimulev, E. I.: Experimental
study of the effect of high pressure and high temperature on silicate and
oxide inclusions in diamonds, Geochem. Int., 44, 1048–1052,
https://doi.org/10.1134/S0016702906100107, 2006.
Field, E. J. (Eds.): The properties of natural and synthetic diamonds,
Academic Press, London, 1992.
Frost, D. J. and McCammon, C. A.: The redox state of Earth's mantle, Annu.
Rev. Earth Planet. Sci., 36, 389–420,
https://doi.org/10.1146/annurev.earth.36.031207.124322, 2008.
Galvez, M. E., Beyssac, O., Martinez, I., Benzerara, K., Chaduteau, C.,
Malvoisin, B., and Malavieille, J.: Graphite formation by carbonate reduction
during subduction, Nat. Geosci., 6, 473–477,
https://doi.org/10.1038/NGEO1827, 2013.
Garanin, V. K. and Kudryavtseva, G. P.: Morphology, physical properties and
paragenesis of inclusion-bearing diamonds from Yakutian kimberlites, Lithos,
25, 211–217, https://doi.org/10.1016/0024-4937(90)90016-T, 1990.
Giardini, A. A. and Tydings, J. E.: Diamond synthesis: Observations on the
mechanism of formation, Am. Mineral., 47, 1393–1421, 1962.
Gorshkov, A. I., Yanan, B., Bershov, L. V., Ryabchikov, I. D., Sivtsov, A. V.,
and Lapina, M.: Inclusions in Diamond from the Liaoning Deposit (China) and
Their Genetic Meaning, Geochem. Int., 35, 51–57, 1997.
Gurney, J. J.: A correlation between garnets and diamonds in kimberlites, in:
Kimberlite Occurrence and origin: a Basis for Conceptual Models in
Exploration, edited by: Glover, J. E. and Harris, P. G., University of Western
Australia, Geology Department and Extension Service, 8, 143–166, 1984.
Gurney, J. J.: Diamonds, in: Kimberlites and related rocks, edited by: Ross,
J., Blackwell, Carlton, 935–965, 1989.
Gurney, J. J., Helmstaedt, H. H., Richardson, S. H., and Shirey, S. B.: Diamonds
through Time, Econ. Geol., 105, 689–712,
https://doi.org/10.2113/gsecongeo.105.3.689, 2010.
Harris, J. W. and Gurney, J. J.: Inclusions in diamond, in: The properties of
diamond, edited by: Field, J. E., Academic press, London, 555–591, 1979.
Harte, B.: Diamond formation in the deep mantle: the record of mineral
inclusions and their distribution in relation to mantle dehydration zones,
Mineral. Mag., 74, 189–215, https://doi.org/10.1180/minmag.2010.074.2.189,
2010.
Hayman, P., Kopylova, M., and Kaminsky, F.: Lower mantle diamonds from Rio
Soriso (Juina area, Mato Grosso, Brazil), Contrib. Mineral. Petrol., 149,
430–445, https://doi.org/10.1007/s00410-005-0657-8, 2005.
Kadik, A., Pineau, F., Litvin, Yu., Jendrzejewski, N., Martinez, I., and
Javoy, M.: Formation of Carbon and Hydrogen Species in Magmas at Low
Oxygen Fugacity, J. Petrol., 45, 1297–1310,
https://doi.org/10.1093/petrology/egh007, 2004.
Kagi, H., Zedgenizov, D. A., Ohfuji, H., and Ishibashi, H.: Micro- and
nano-inclusions in a superdeep diamond from São Luiz, Brazil, Geochem.
Int., 54, 834–838, https://doi.org/10.1134/S0016702916100062, 2016.
Kaminsky, F.: Mineralogy of the lower mantle: A review of “super-deep”
mineral inclusions in diamond, Earth-Sci. Rev., 110, 127–147,
https://doi.org/10.1016/j.earscirev.2011.10.005, 2012.
Kaminsky, F. V. and Khachatryan, G. K.: The relationship between the
distribution of nitrogen impurity centers in diamond crystals and their
internal structure and mechanism of growth, Lithos, 77, 255–271,
https://doi.org/10.1016/j.lithos.2004.04.035, 2004.
Kaminsky, F. V. and Wirth, R.: Iron carbide inclusions in lower-mantle
diamond from Juina, Brazil, Can. Mineral., 49, 555–572,
https://doi.org/10.3749/canmin.49.2.555, 2011.
Kaminsky, F. V., Khachatryan, G. K., Andreazza, P., Araujo, D., and
Griffin, W. L.: Super-deep diamonds from kimberlites in the Juina area, Mato
Grosso State, Brazil, Lithos, 112S, 833–842,
https://doi.org/10.1016/j.lithos.2009.03.036, 2009.
Kanda, H. and Oshawa, T.: Growth hillocks on the {111} surface of high pressure synthetic diamond, Diam. Relat.
Mater., 5, 8–12, https://doi.org/10.1016/0925-9635(95)00336-3, 1996.
Kanda, H., Akaishi, M., Setaka, N., Yamaoka, S., and Fukunaga, O.: Surface
structures on synthetic diamonds, J. Mater. Sci., 15, 2743–2748,
https://doi.org/10.1007/BF00550541, 1980.
Liu, Y., Taylor, L. A., Sarbadhikari, A. B., Valley, J. W., Ushikubo, T.,
Spicuzza, M. J., Kita, N., Ketcham, R. A., Carlson, W., Shatsky, V., and
Sobolev, N. V.: Metasomatic origin of diamonds in the world's largest
diamondiferous eclogite, Lithos, 112, 1014–1024,
https://doi.org/10.1016/j.lithos.2009.06.036, 2009.
Malvoisin, B., Chopin, C., Brunet, F., and Galvez, M. E.: Low-temperature
Wollastonite Formed by Carbonate Reduction: a Marker of Serpentinite Redox
Conditions, J. Petrol., 53, 159–176,
https://doi.org/10.1093/petrology/egr060, 2012.
Martirosyan, N. S., Yoshino, T., Shatskiy, A., Chanyshev, A. D., and Litasov,
K. D.: The CaCO3-Fe interaction: kinetic approach for carbonate
subduction to the deep Earth's mantle, Phys. Earth Planet. Int., 259, 1–9,
https://doi.org/10.1016/j.pepi.2016.08.008, 2016.
Meyer, H. O. A. and McCallum, M. E.: Mineral inclusions in diamonds from the
Sloan kimberlites, Colorado, J. Geol., 94, 600–612,
https://doi.org/10.1086/629062, 1986.
Mikhno, A. O. and Korsakov, A. V.: Carbonate, silicate, and sulfide melts:
heterogeneity of the UHP mineral-forming media in calc-silicate rocks from
the Kokchetav massif, Russ. Geol. Geophys., 56, 81–99,
https://doi.org/10.1016/j.rgg.2015.01.005, 2015.
Nasdala, L., Hofmeister, W., Harris, J., and Glinnemann, J.: Growth zoning and
strain patterns inside diamond crystals as revealed by Raman maps, Am.
Mineral., 90, 745–748, https://doi.org/10.2138/am.2005.1690, 2005.
Nestola, F.: Inclusions in super-deep diamonds: windows on the very deep
Earth, Rend. Fis. Acc. Lincei., 28, 595–604,
https://doi.org/10.1007/s12210-017-0607-1, 2017.
Nestola, F., Jung, H., and Taylor, L. A.: Mineral inclusions in diamonds may be
synchronous but not syngenetic, Nat. Commun., 8, 14168,
https://doi.org/10.1038/ncomms14168, 2017.
Nestola, F., Korolev, N., Kopylova, M., Rotiroti, N., Pearson, D. G., Pamato,
M. G., Alvaro, M., Peruzzo, L., Gurney, J. J., Moore, A. E., and Davidson, J.: CaSiO3 perovskite in diamond indicates the recycling of oceanic crust
into the lower mantle, Nature, 555, 237–241,
https://doi.org/10.1038/nature25972, 2018.
Nestola, F., Jacob, D. E., Pamato, M. G., Pasqualetto, L., Oliveira, B.,
Greene, S., Perritt, S. H., Chinn, I., Milani, S., Kueter, N., Sgreva, N.,
Nimis, P., Secco, L., and Harris, J. W.: Protogenetic garnet inclusions and the
age of diamonds, Geology, 47, 431–434, https://doi.org/10.1130/G45781.1,
2019.
Orlov, Yu. L. (Eds.): Morphology of diamond, Acad. Sci. USSR, Moscow, 1963
(in Russian).
Palyanov, Y. N., Bataleva, Y. V., Sokol, A. G., Borzdov, Y. M., Kupriyanov,
I. N., Reutsky, V. N., and Sobolev, N. V.: Mantle–slab interaction and redox
mechanism of diamond formation, P. Natl. Acad. Sci. USA, 110, 20408–20413,
https://doi.org/10.1073/pnas.1313340110, 2013.
Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala,
L., Hutchison, M. T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S.,
Vekemans, B., and Vincze, L.: Hydrous mantle transition zone indicated by
ringwoodite included within diamond, Nature, 507, 221–224,
https://doi.org/10.1038/nature13080, 2014.
Richardson, S. H., Gurney, J. J., Erlank, A., and Harris, J. W.: Origin of
diamonds in old enriched mantle, Nature, 310, 198–202,
https://doi.org/10.1038/310198a0, 1984.
Rohrbach, A., Ballhaus, C., Ulmer, P., Golla-Schindler, U., Kamenetsky, V. S.,
and Kuzmin, D. V.:
Metal saturation in the upper mantle, Nature, 449, 456–458,
https://doi.org/10.1038/nature06183, 2007.
Rohrbach, A., Ballhaus, C., Ulmer, P., Golla-Schindler, U., and
Schönbohm, D.: Experimental Evidence for a Reduced Metal-saturated Upper
Mantle, J. Petrol., 52, 717–731, https://doi.org/10.1093/petrology/egq101,
2011.
Scarratt, K. and Shor, R.: The Cullinan Diamond Centennial: A history and
gemological analysis of Cullinans I and II, Gems Gemol., 42, 120–132,
https://doi.org/10.5741/GEMS.42.2.120, 2006.
Shigley, J. E., Fritsch, E., Stocton, C. M., Koivula, J. I., Fryer, C. W.,
Kane, R. E., Hargett, D. R., and Welch, C. W.: The gemological properties of the
De Beers gem-quality synthetic yellow diamonds, Gems Gemol., 23, 187–206,
https://doi.org/10.5741/GEMS.23.4.187, 1987.
Shigley, J. E., Fritsch, E., Reinitz, J., and Moon, H.: An update on Sumitomo
gem-quality synthetic diamonds, Gems Gemol., 28, 116–122,
https://doi.org/10.5741/GEMS.28.2.116, 1992.
Shigley, J. E., Fritsch, E., Stockton, C. M., Koivula, J. I., Fryer, C. W., and
Kane, R. E.: The gemological properties of Russian gem-quality synthetic
yellow diamonds, Gems Gemol., 29, 228–248,
https://doi.org/10.5741/GEMS.22.4.192, 1993.
Shirey, S. B. and Shigley, J. E.: Recent advances in understanding the geology
of diamond, Gems Gemol., 49, 188–222, https://doi.org/10.5741/GEMS.49.4.188,
2013.
Shirey, S. B., Cartigny, P., Frost, D. J., Keshav, S., Nestola, F., Nimis, P.,
Pearson, D. G., Sobolev, N. V., and Walter, M. J.: Diamonds and the geology of
mantle carbon, Rev. Mineral. Geochem., 75, 355–421,
https://doi.org/10.2138/rmg.2013.75.12, 2013.
Smith, E. M. and Kopylova, M. G.: Implications of metallic iron for diamonds
and nitrogen in the sublithospheric mantle, Can. J. Earth Sci., 51, 510–516,
https://doi.org/10.1139/cjes-2013-0218, 2014.
Smith, E. M. and Wang, W.: Type IIb diamonds originate from the
sublithospheric mantle, 11th International Kimberlite Conference, Gaborone,
Botswana, 18–22 September, 11IKC-4502, 2017.
Smith, E. M., Shirey, S. B., Nestola, F., Bullock, E. S., Wang, J., Richardson,
S. H., and Wang, W.: Large gem diamonds from metallic liquid in Earth's deep
mantle, Science, 354, 1403–1405, https://doi.org/10.1126/science.aal1303,
2016.
Smith, E. M., Shirey, S. D., and Wang, W.: The very deep origin of the World's
biggest diamond, Gems Gemol., 53, 388–403,
https://doi.org/10.5741/GEMS.53.4.388, 2017.
Smith, E. M., Shirey, S. B., Richardson, S. H., Nestola, F., Bullock, E. S.,
Wang, J., and Wang, W.: Blue boron-bearing diamonds from Earth's lower
mantle, Nature, 560, 84–87, https://doi.org/10.1038/s41586-018-0334-5, 2018.
Sobolev, N. V. (Eds.): Deep-seated Inclusions in Kimberlites and the Problems
of the Composition of the Upper Mantle, Am. Geophys. Union, Washington,
1977.
Sobolev, N. V., Lavrent'ev, Y. G., Pokhilenko, N. P., and Usova, N. P.:
Chrome-rich garnets of Yakutia and their parageneses, Contrib. Mineral.
Petrol., 40, 39–52, 1973.
Sobolev, N. V., Efimova, E. S., and Pospelova, L. N.: Native iron in Yakutian
diamonds and its paragenesis, Geologia i Geofizika, 12, 25–29, 1981 (in
Russian).
Sobolev, N. V., Logvinova, A. M., Zedgenizov, D. A., Seryotkin, Y. V., Yefimova,
E. S., Floss, C., and Taylor, L. A.: Mineral inclusions in microdiamonds and
macrodiamonds from kimberlites of Yakutia: a comparative study, Lithos, 77,
225–242, https://doi.org/10.1016/j.lithos.2004.04.001, 2004.
Stachel, T.: Diamonds from the asthenosphere and the transition zone, Eur.
J. Mineral., 13, 883–892, https://doi.org/10.1127/0935-1221/2001/0013/0883,
2001.
Stachel, T. and Harris, J. W.: The origin of cratonic diamonds – constraints
from mineral inclusions, Ore Geol. Rev., 34, 5–32,
https://doi.org/10.1016/j.oregeorev.2007.05.002, 2008.
Stachel, T., Harris, J. W., and Brey, G. P.: Rare and unusual mineral
inclusions in diamond from Mwadui, Tanzania, Contrib. Mineral. Petrol., 132,
34–47, https://doi.org/10.1007/s004100050403, 1998.
Stachel, T., Brey, G. P., and Harris, J. W.: Inclusions in sublithospheric
diamonds: Glimpses of deep Earth, Elements, 1, 73–78,
https://doi.org/10.2113/gselements.1.2.73, 2005.
Sunagava, I., Tsukamoto, K., and Yasuda, T.: Surface micrographic and X-ray
topographic study of octahedral crystals of natural diamond from Siberia,
in: Materials Science of the Earth's Interior, edited by: Sunagava I.,
TERRABUB, Tokyo, 331–349, 1984.
Thomson, A. R., Kohn, S. C., Bulanova, G. P., Smith, C. B., Araujo, D., and
Walter, M. J.: Origin of sub-lithospheric diamonds from the Juina-5
kimberlite (Brazil): constraints from carbon isotopes and inclusion
compositions, Contrib. Mineral. Petrol., 168, 1081,
https://doi.org/10.1007/s00410-014-1081-8, 2014.
Tolansky, S.: Synthetic diamonds: growth and etch phenomena, Proc. R. Soc.
London, 270, 443–451, https://doi.org/10.1098/rspa.1962.0236, 1962.
Tomilenko, A. A., Chepurov, A. I., Sonin, V. M., Bul`bak, T. A., Zhimulev, E.I.,
Chepurov, A. A., Timina, T. Yu., and Pokhilenko, N. P.: The synthesis of methane
and heavier hydrocarbons in the system graphite-iron-serpentine at 2 and 4
GPa and 1200 ∘C, High Temp.-High Press., 44, 451–465, 2015.
Tonkov, E. Yu. and Ponyatovsky, E. G. (Eds.): Phase transformation of elements
under high pressure, CRC Press, 2004.
Turkin, A. I.: Lead selenide as a continuous internal indicator of pressure
in solid-media cells of high-pressure apparatus in the range of 4–6.8 GPa,
High Temp.-High Press., 35/36, 371–376, 2003/2004.
Van Enckevort, W. J. P.: Phase shifting interferometry of growth patterns on
the octahedral faces of natural diamond, J. Cryst. Growth, 119, 177–194,
https://doi.org/10.1016/0022-0248(92)90670-E, 1992.
Vinokurov, S. F., Gorshkov, A. I., Bao, Y. N., Ryabchikov, I. D., Bershov, L. V.,
and Lapina, M.: Diamonds from Kimberlite Diatreme 50, Liaoning Province,
China: Microtextural, Mineralogical, Geochemical, and Genetic
Characteristics, Geochem. Int., 36, 676–683, 1998 (in Russian with English
abstract).
Walte, J., Rubie, D. C., Bons, P. D., and Frost, D. J.: Deformation of a
crystalline aggregate with a small percentage of high-dihedral-angle liquid:
Implications for core-mantle differentiation during planetary formation,
Earth Planet. Sci. Lett., 305, 124–134,
https://doi.org/10.1016/j.epsl.2011.02.049, 2011.
Win, T. T., Davies, R. M., Griffin, W. L., Wathanakhul, P., and Frenc, D. H.:
Distribution and characteristics of diamonds from Myanmar, J. Asian Earth
Sci., 19, 563–577, https://doi.org/10.1016/S1367-9120(00)00055-9, 2001.
Yoshino, T., Walter, M. J., and Katsura, T.: Connectivity of molten Fe alloy
in peridotite based on in situ electrical conductivity measurements:
implications for core formation in terrestrial planets, Earth Planet. Sci.
Lett., 222, 625–643, https://doi.org/10.1016/j.epsl.2004.03.010, 2004.
Zedgenizov, D. A., Ragozin, A., Kalinina, V. V., and Kagi, H.: The mineralogy
of Ca-rich inclusions in sublithospheric diamonds, Geochem. Int., 54,
890–900, https://doi.org/10.1134/S0016702916100116, 2016.
Zhimulev, E. I., Chepurov, A. I., Sinyakova, E. F., Sonin, V. M., Chepurov, A. A.,
and Pokhilenko, N. P.: Diamond crystallization in the Fe-Co-S-C and Fe-Ni-S-C
systems and the role of sulfide-metal melts in the genesis of diamond,
Geochem. Int., 50,
205–216, https://doi.org/10.1134/S0016702912030111, 2012.
Zhimulev, E. I., Sonin, V. M., Bul`bak, T. A., Chepurov, A. I., Tomilenko, A. A.,
and Pokhilenko, N. P.: Volatile compounds of sulfur in the Fe-S-C system at
5.3 GPa and 1300 ∘C, Dokl. Earth Sci., 462, 527–532,
https://doi.org/10.1134/S1028334X15050219, 2015.
Zhimulev, E. I., Chepurov, A. I., Sonin, V. M., Litasov, K. D., and Chepurov,
A. A.: Experimental modeling of percolation of molten iron through
polycrystalline olivine matrix at 2.0–5.5 GPa and 1600 ∘C, High
Pressure Res., 38, 153–164, https://doi.org/10.1080/08957959.2018.1458847,
2018.
Short summary
The paper presents experimental results on the growth of diamonds in Fe–Ni melt together with silicate minerals at high P–T. The morphology of the grown diamonds was studied, as well as the chemical composition of the synthetic silicates. This work builds on our preliminary experimental work presented in Zhimulev et al. (2012), which was an experimental evidence to confirm the hypothesis of crystallization of diamonds from metallic liquids explained in a pioneer paper by Smith et al. (2016).
The paper presents experimental results on the growth of diamonds in Fe–Ni melt together with...