Articles | Volume 37, issue 1
https://doi.org/10.5194/ejm-37-63-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-63-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Andreybulakhite, Ni(C2O4) ⋅ 2H2O, the first natural nickel oxalate
Oleg S. Vereshchagin
CORRESPONDING AUTHOR
Saint Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg, 199034, Russia
Sergey N. Britvin
Saint Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg, 199034, Russia
Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, Apatity, 184200, Russia
Dmitrii V. Pankin
Saint Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg, 199034, Russia
Marina S. Zelenskaya
Saint Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg, 199034, Russia
Maria G. Krzhizhanovskaya
Saint Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg, 199034, Russia
Maria A. Kuz'mina
Saint Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg, 199034, Russia
Natalia S. Vlasenko
Saint Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg, 199034, Russia
Olga V. Frank-Kamenetskaya
Saint Petersburg State University, Universitetskaya Emb. 7/9, Saint Petersburg, 199034, Russia
Related authors
Oleg S. Vereshchagin, Sergey N. Britvin, Aleksey I. Brusnitsyn, Anastasiia K. Shagova, Elena N. Perova, Igor V. Pekov, Vladimir V. Shilovskikh, Natalia S. Vlasenko, Evgeniya Y. Avdontseva, Natalia V. Platonova, and Vladimir N. Bocharov
Eur. J. Mineral., 37, 829–840, https://doi.org/10.5194/ejm-37-829-2025, https://doi.org/10.5194/ejm-37-829-2025, 2025
Short summary
Short summary
Kayupovaite is a new mineral named in honor of Maria Mikhailovna Kayupova (1921–1980), the mineralogist who studied the Ushkatyn-III deposit (Kazakhstan), the type of locality of the described mineral. Kayupovaite is monoclinic and of space group C2/c. The mineral belongs to the group of modulated manganese phyllosilicates and is structurally related to stilpnomelane. The absence of iron in the mineral is a result of oxidative Mn–Fe fractionation during the formation of braunite-rich Mn ores.
Sergey N. Britvin, Mikhail N. Murashko, Maria G. Krzhizhanovskaya, Yevgeny Vapnik, Natalia S. Vlasenko, Oleg S. Vereshchagin, Dmitrii V. Pankin, and Evgeny A. Vasiliev
Eur. J. Mineral., 37, 353–363, https://doi.org/10.5194/ejm-37-353-2025, https://doi.org/10.5194/ejm-37-353-2025, 2025
Short summary
Short summary
This paper reports a new natural oxyphosphate, the first mineral that crystallizes in the α-Fe2PO5 structure type. It is isotypic to a series of synthetic oxyphosphates with promising magnetic and electrochemical properties.
Mikhail Rogov, Victoria Ershova, Oleg Vereshchagin, Kseniia Vasileva, Kseniia Mikhailova, and Aleksei Krylov
Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, https://doi.org/10.5194/essd-13-343-2021, 2021
Short summary
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
Oleg S. Vereshchagin, Sergey N. Britvin, Aleksey I. Brusnitsyn, Anastasiia K. Shagova, Elena N. Perova, Igor V. Pekov, Vladimir V. Shilovskikh, Natalia S. Vlasenko, Evgeniya Y. Avdontseva, Natalia V. Platonova, and Vladimir N. Bocharov
Eur. J. Mineral., 37, 829–840, https://doi.org/10.5194/ejm-37-829-2025, https://doi.org/10.5194/ejm-37-829-2025, 2025
Short summary
Short summary
Kayupovaite is a new mineral named in honor of Maria Mikhailovna Kayupova (1921–1980), the mineralogist who studied the Ushkatyn-III deposit (Kazakhstan), the type of locality of the described mineral. Kayupovaite is monoclinic and of space group C2/c. The mineral belongs to the group of modulated manganese phyllosilicates and is structurally related to stilpnomelane. The absence of iron in the mineral is a result of oxidative Mn–Fe fractionation during the formation of braunite-rich Mn ores.
Sergey N. Britvin, Mikhail N. Murashko, Maria G. Krzhizhanovskaya, Yevgeny Vapnik, Natalia S. Vlasenko, Oleg S. Vereshchagin, Dmitrii V. Pankin, and Evgeny A. Vasiliev
Eur. J. Mineral., 37, 353–363, https://doi.org/10.5194/ejm-37-353-2025, https://doi.org/10.5194/ejm-37-353-2025, 2025
Short summary
Short summary
This paper reports a new natural oxyphosphate, the first mineral that crystallizes in the α-Fe2PO5 structure type. It is isotypic to a series of synthetic oxyphosphates with promising magnetic and electrochemical properties.
Victor V. Sharygin, Sergey N. Britvin, Felix V. Kaminsky, Richard Wirth, Elena N. Nigmatulina, Grigory A. Yakovlev, Konstantin A. Novoselov, and Mikhail N. Murashko
Eur. J. Mineral., 33, 727–742, https://doi.org/10.5194/ejm-33-727-2021, https://doi.org/10.5194/ejm-33-727-2021, 2021
Short summary
Short summary
Ellinaite, a natural analog of β-CaCr2O4, was discovered at Hatrurim Basin, Israel, and in an inclusion within the super-deep diamond from the Sorriso Creek placer, Brazil. Chemical composition, structural data and physical properties are given for this mineral. It is related to multiple oxides AB2O4 with tunnel structure. This group now includes eight minerals. The overview of ellinaite from all localities suggests different PT–X–fO2 conditions for the mineral and its host rocks.
Evgeniy Nikolaevich Kozlov, Ekaterina Nikolaevna Fomina, Vladimir Nikolaevich Bocharov, Mikhail Yurievich Sidorov, Natalia Sergeevna Vlasenko, and Vladimir Vladimirovich Shilovskikh
Eur. J. Mineral., 33, 283–297, https://doi.org/10.5194/ejm-33-283-2021, https://doi.org/10.5194/ejm-33-283-2021, 2021
Short summary
Short summary
Carbonophosphates (sidorenkite, bonshtedtite, and bradleyite) with the general formula Na3MCO3PO4 (M is Mn, Fe, and Mg) are often found in inclusions of carbonatite and kimberlite minerals. This article presents the results of Raman spectroscopic study and a simple algorithm for diagnosing mineral phases of the carbonophosphate group. This work may be of interest both to researchers of carbonatites and/or kimberlites and to a wide range of specialists in the field of Raman spectroscopy.
Mikhail Rogov, Victoria Ershova, Oleg Vereshchagin, Kseniia Vasileva, Kseniia Mikhailova, and Aleksei Krylov
Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, https://doi.org/10.5194/essd-13-343-2021, 2021
Short summary
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
Cited articles
Adamo, P. and Violante, P.: Weathering of rocks and neogenesis of minerals associated with lichen activity, Appl. Clay Sci., 16, 229–256, https://doi.org/10.1016/S0169-1317(99)00056-3, 2000.
Atencio, D., Coutinho, J. M. V., Graeser, S., Matioli, P. A., and Filho, L. A. D. M.: Lindbergite, a new Mn oxalate dihydrate from Boca Rica mine, Galiléia, Minas Gerais, Brazil, and other occurrences, Am. Mineral., 89, 1087–1091, https://doi.org/10.2138/am-2004-0721, 2004.
Bickley, R. I., Edwards, H. G. M., and Rose, S. J.: A Raman spectroscopic study of nickel(II) oxalate dihydrate, NiC2O4⋅ 2H2O and dipotassium bisoxalatonickel(II) hexahydrate, K2Ni(C2O4)2⋅ 6H2O, J. Mol. Struct., 243, 341–350, https://doi.org/10.1016/0022-2860(91)87048-M, 1991.
Breithaupt, A.: Kurze Charakteristik des Mineral-System's, 8, Freiberg, 75 pp., 1820.
Bulakh, A., Harma, P., Panova, E., and Selonen, O.: Rapakivi granite in the architecture of St Petersburg: A potential global heritage stone from Finland and Russia, in: Geological Society Special Publication, vol. 486, Geological Society of London, 67–76, https://doi.org/10.1144/SP486-2018-5, 2020.
Bulakh, A. G. and Ivanikov, V. V: Carbonatites of the Turi Peninsula, Kola; role of magmatism and of metasomatism, Can. Mineral., 34, 403–409, 1996.
Bulakh, A. G., Nesterov, A. R., Williams, C. T., and Anisimov, I. S.: Zirkelite from the Sebl'yavr carbonatite complex, Kola Peninsula, Russia: an X-ray and electron microprobe study of a partially metamict mineral, Mineral. Mag., 62, 837–846, https://doi.org/10.1180/002646198548205, 1998.
Burford, E. P., Fomina, M., and Gadd, G. M.: Fungal involvement in bioweathering and biotransformation of rocks and minerals, Mineral. Mag., 67, 1127–1155, https://doi.org/10.1180/0026461036760154, 2003.
Caric, S.: Amélioration de la structure de la humboldtine FeC2O4. 2 H2O, B. Soc. Fr. Mineral. Cr., 82, 50–55, https://doi.org/10.3406/bulmi.1959.5304, 1959.
Chashchin, V. V. and Ivanchenko, V. N.: Sulfide PGE–Cu–Ni and Low-Sulfide Pt–Pd Ores of the Monchegorsk Ore District (Arctic Western Sector): Geology, Mineralogy, Geochemistry, and Genesis, Russ. Geol. Geophys., 63, 519–542, https://doi.org/10.2113/RGG20214410, 2022.
Chashchin, V. V., Savchenko, Y. E., Petrov, S. V., and Kiseleva, D. V.: Platinum content and formation conditions of the sulfide PGE–Cu–Ni Nyud-II deposit of the Monchegorsk pluton, Kola peninsula, Russia, Geol. Ore Deposit., 2, 87–117, 2021.
Chashchin, V. V., Karinen, T., and Savchenko, Y. E.: Location, chemical content, and origin of Loveringite from Paleoproterozoic layered intrusions of the Fennoscandian Shield: The Syöte block of the Koillismaa, Finland, and the Nyud of the Monchegorsk pluton, Russia, Lithos, 442–443, 107073, https://doi.org/10.1016/j.lithos.2023.107073, 2023.
Chen, T. H., Liu, Z. S., Fan, H. L., Guo, L. T., and Tao, X.: Optimization design of orthorhombic-monoclinic Co1-xNixC2O4⋅ 2H2O solid solutions for high-performance pseudocapacitors, J. Alloy. Compd., 808, 151722, https://doi.org/10.1016/j.jallcom.2019.151722, 2019.
Chukanov, N. V., Pekov, I. V., Olysych, L. V., Massa, W., Yakubovich, O. V., Zadov, A. E., Rastsvetaeva, R. K., and Vigasina, M. F.: Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola Peninsula, Geol. Ore Deposit., 52, 778–790, https://doi.org/10.1134/S107570151008009X, 2010.
Clarke, R. M. and Williams, I. R.: Moolooite, a naturally occurring hydrated copper oxalate from Western Australia, Mineral. Mag., 50, 295–298, https://doi.org/10.1180/minmag.1986.050.356.15, 1986.
Deyrieux, R., Berro, C., and Peneloux, A.: Studies on oxalates of some bivalent metals .3. Crystal-structure of dihydrated manganese, cobalt, nickel and zinc oxalates - -polymorphism of dihydrated cobalt and nickel oxalates, Bull. la Société Chim. Paris, 6, 25–34, 1973.
Drouet, C., Alphonse, P., and Rousset, A.: Synthesis and characterization of non-stoichiometric nickel-copper manganites, Solid State Ionics, 123, 25–37, https://doi.org/10.1016/S0167-2738(99)00106-X, 1999.
Dubernat, J. and Pezerat, H.: Fautes d'Empilement dans les Oxalates Dihydratés des métaux divalents de la série magnésienne (Mg,Fe,Co,Ni,Zn,Mn), J. Appl. Crystallogr., 7, 387–393, https://doi.org/10.1107/S0021889874009861, 1974.
Echigo, T. and Kimata, M.: Single-crystal X-ray diffraction and spectroscopic studies on humboldtine and lindbergite: weak Jahn-Teller effect of Fe2+ ion, Phys. Chem. Miner., 35, 467–475, https://doi.org/10.1007/s00269-008-0241-7, 2008.
Echigo, T. and Kimata, M.: Crystal chemistry and genesis of organic minerals: A review of oxalate and polycyclic aromatic hydrocarbon minerals, Can. Mineral., 48, 1329–1358, https://doi.org/10.3749/canmin.48.5.1329, December 2010.
Estroff, L. A.: Introduction: Biomineralization, Chem. Rev., 108, 4329–4331, https://doi.org/10.1021/cr8004789, 2008.
Ferrier, J., Csetenyi, L., and Gadd, G. M.: Selective fungal bioprecipitation of cobalt and nickel for multiple-product metal recovery, Microb. Biotechnol., 14, 1747–1756, https://doi.org/10.1111/1751-7915.13843, 2021.
Fersman, A. E.: Mineral resources of the Kola Peninsula: Current status, analysis, forecast, Publisher of the USSR Academy of Sciences, Moscow-Leningrad, 345 pp., 1941.
Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J., and Gadd, G. M.: Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica, Appl. Environ. Microb., 71, 371–381, https://doi.org/10.1128/AEM.71.1.371-381.2005, 2005.
Frank-Kamenetskaya, O. V, Ivanyuk, G. Y., Zelenskaya, M. S., Izatulina, A. R., Kalashnikov, A. O., Vlasov, D. Y., and Polyanskaya, E. I.: Calcium oxalates in lichens on surface of apatite-nepheline ore (Kola Peninsula, Russia), Minerals, 9, 1–13, https://doi.org/10.3390/min9110656, 2019.
Frank-Kamenetskaya, O. V., Zelenskaya, M. S., Izatulina, A. R., Vereshchagin, O. S., Vlasov, D. Y., Himelbrant, D. E., and Pankin, D. V.: Copper oxalate formation by lichens and fungi, Sci. Rep., 11, 24239, https://doi.org/10.1038/s41598-021-03600-5, 2021.
Frost, R. L.: Raman spectroscopy of natural oxalates, Anal. Chim. Ac., 517, 207–214, https://doi.org/10.1016/j.aca.2004.04.036, 2004.
Gadd, G. M., Bahri-Esfahani, J., Li, Q., Rhee, Y. J., Wei, Z., Fomina, M., and Liang, X.: Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation, Fungal Biol. Rev., 28, 36–55, https://doi.org/10.1016/j.fbr.2014.05.001, 2014.
Genkin, A. D., Zhuravlev, N. N., and Smirnova, E. M.: Moncheite and kotulskite – new minerals – and the composition of michenerite, Zap. Vsesoyuznogo Mineral. Obs., 92, 33–50, 1963.
Giester, G., Rieck, B., Lengauer, C. L., Kolitsch, U., and Nasdala, L.: Katsarosite Zn(C2O4)⋅ 2H2O, a new humboldtine-group mineral from the Lavrion Mining District, Greece, Mineral. Petrol., 117, 259–267, https://doi.org/10.1007/s00710-023-00810-9, 2023.
Gorbunov, G. E., Bel'kov, E. V., Makievsky, S. E., and Goryainov, P. M.: Mineral deposits of the Kola Peninsula, Nauka, Leningrad, 272 pp., 1981.
Grokhovskaya, T. L., Karimova, O. V., Vymazalová, A., Laufek, F., Chareev, D. A., Kovalchuk, E. V., Magazina, L. O., and Rassulov, V. A.: Nipalarsite, Ni8Pd3As4, a new platinum-group mineral from the Monchetundra Intrusion, Kola Peninsula, Russia, Mineral. Mag., 83, 837–845, https://doi.org/10.1180/mgm.2019.70, 2019.
Huang, Y., Zhang, L., Yuan, S., Liu, W., Zhang, C., Tian, D., and Ye, X.: The Production of Oxalate by Aspergillus niger under Different Lead Concentrations, Agronomy, 13, 1182, https://doi.org/10.3390/agronomy13041182, 2023.
Jarosz-Wilkolazka, A. and Gadd, G. M.: Oxalate production by wood-rotting fungi growing in toxic metal-amended medium, Chemosphere, 52, 541–547, https://doi.org/10.1016/S0045-6535(03)00235-2, 2003.
Karykowski, T., Maier, W. D., Mcdonald, I., Groshev, N. Y., Pripachkin, P. V., Barnes, S. J., and Savard, D.: Critical controls on the formation of contact-style PGE-Ni-Cu mineralization: Evidence from the Paleoproterozoic Monchegorsk Complex, Kola Region, Russia, Econ. Geol. Bull. Soc., 113, 911–935, https://doi.org/10.5382/econgeo.2018.4576, 2018.
Khomyakov, A. P.: Natroxalate Na2C2O4 – a new mineral, Zap. Vseross. Mineral. Obs., 125, 126–132, 1996.
Korneev, A. V., Izatulina, A. R., Kuz'mina, M. A., and Frank-Kamenetskaya, O. V.: Solid Solutions of Lindbergite–Glushinskite Series: Synthesis, Ionic Substitutions, Phase Transformation and Crystal Morphology, Int. J. Mol. Sci., 23, 14734, https://doi.org/10.3390/ijms232314734, 2022.
Krivovichev, V. G.: Mineral species, St. Petersburg State University press, 600 pp., ISBN 978-5-288-06121-9, 2021 (in Russian).
Magyarosy, A., Laidlaw, R., Kilaas, R., Echer, C., Clark, D., and Keasling, J.: Nickel accumulation and nickel oxalate precipitation by Aspergillus niger, Appl. Microbiol. Biot., 59, 382–388, https://doi.org/10.1007/s00253-002-1020-x, 2002.
Purvis, O. W.: The Occurrence of Copper Oxalate in Lichens Growing on Copper Sulphide-Bearing Rocks In Scandinavia, Lichenologist, 16, 197–204, https://doi.org/10.1017/S0024282984000347, 1984.
Purvis, O. W.: Adaptation and interaction of saxicolous crustose lichens with metals, Bot. Stud., 55, 23, https://doi.org/10.1186/1999-3110-55-23, 2014.
Puzan, A. N., Baumer, V. N., Lisovytskiy, D. V., and Mateychenko, P. V.: Structure transformations in nickel oxalate dihydrate NiC2O4⋅ 2H2O and nickel formate dihydrate Ni(HCO2)2⋅ 2H2O during thermal decomposition, J. Solid State Chem., 266, 133–142, https://doi.org/10.1016/j.jssc.2018.07.005, 2018.
Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S.M., Li, W., Chen, W., and Ma, X.: Mindat.org – the open access mineralogy database to accelerate data-intensive geoscience research, Am. Mineral., https://doi.org/10.2138/am-2024-9486, 2024.
van Zuijlen, K., Roos, R. E., Klanderud, K., Lang, S. I., and Asplund, J.: Mat-forming lichens affect microclimate and litter decomposition by different mechanisms, Fungal Ecol., 44, 100905, https://doi.org/10.1016/j.funeco.2019.100905, 2020.
Vereshchagin, O. S., Frank-kamenetskaya, O. V, Yu, D., Zelenskaya, M. S., Rodina, O. A., Chernyshova, I. A., Himelbrant, D. E., Stepanchikova, I. S., and Britvin, S. N.: Microbial biomineralization under extreme conditions: case study of basaltic rocks, Tolbachik Volcano, Kamchatka, Russia, Catena, 226, 107048, https://doi.org/10.1016/j.catena.2023.107048, 2023.
Vlasov, D. Y., Frank-Kamenetskaya, O. V., Zelenskaya, M. S., Sazanova (nee Barinova), K. V., Rusakov, A. V., and Izatulina, A. R.: The use of Aspergillus niger in modeling of modern mineral formation in lithobiotic systems, in: Aspergillus niger, Pathogenicity, cultivation and uses, edited by: Baughan, E., Nova Publisher, New York, 1–123, ISBN 978-1-53618-080-0, 2020.
Vymazalová, A., Laufek, F., Grokhovskaya, T. L., and Stanley, C. J.: Monchetundraite, Pd2NiTe2, a new mineral from the Monchetundra layered intrusion, Kola Peninsula, Russia, Mineral. Petrol., 114, 263–271, https://doi.org/10.1007/s00710-020-00698-9, 2020.
Wenk, H.-R. and Bulakh, A. G.: Minerals. Their constitution and origin, Cambridge University Press, 621 pp., ISBN 978-0-521-82238-1, 2016.
Wilson, M. J. and Jones, D.: The occurrence and significance of manganese oxalate in Pertusaria coralline (Lichenes), Pedobiologia, 26, 373–279, 1984.
Wilson, M. J., Jones, D., and Russell, J. D.: Glushinskite, a naturally occurring magnesium oxalate, Mineral. Mag., 43, 837–840, https://doi.org/10.1180/minmag.1980.043.331.02, 1980.
Short summary
Andreybulakhite, ideally Ni(C2O4) · 2H2O, is a new oxalate mineral, which was discovered on the Kola Peninsula, Russia. Andreybulakhite forms segregations of crystals up to 2 × 1 × 1 mm in size disseminated within the fruiting bodies of Lecanora cf. polytropa lichen, whose colonies overgrow the oxidized surfaces of pyrrhotite–pentlandite–chalcopyrite ore. Andreybulakhite is named in honour of Andrey Glebovich Bulakh of Saint Petersburg State University.
Andreybulakhite, ideally Ni(C2O4) · 2H2O, is a new oxalate mineral, which was discovered on the...