Articles | Volume 35, issue 6
https://doi.org/10.5194/ejm-35-987-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-987-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contact metamorphic reactions and fluid–rock interactions related to magmatic sill intrusion in the Guaymas Basin
Alban Cheviet
CORRESPONDING AUTHOR
Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2–4, 28359 Bremen, Germany
Laboratoire Chrono-Environnement, UMR 6249, Université Franche-Comté, 16 route de Gray, 25000 Besançon, France
Martine Buatier
Laboratoire Chrono-Environnement, UMR 6249, Université Franche-Comté, 16 route de Gray, 25000 Besançon, France
Flavien Choulet
Laboratoire Chrono-Environnement, UMR 6249, Université Franche-Comté, 16 route de Gray, 25000 Besançon, France
Christophe Galerne
Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2–4, 28359 Bremen, Germany
Armelle Riboulleau
Laboratoire d'Océanologie et de Géosciences, UMR 8187, Université de Lille, CNRS, Université du Littoral Côte d'Opale, 59655 Villeneuve d'Ascq, France
Ivano Aiello
Moss Landing Marine Laboratory, 8272 Moss Landing Road, Moss Landing, CA 95039-9647, USA
Kathleen M. Marsaglia
Dept. of Geological Sciences, California State University Northridge, 18111 Nordhoff St., Northridge, CA 91330-8266, USA
Tobias W. Höfig
International Ocean Discovery Program, Texas A&M University, 1000 Discovery Drive, College Station, TX 77845, USA
current address: Project Management Jülich, Jülich Research Centre GmbH, Forschungszentrum Jülich, Schweriner Str. 44, 18055 Rostock, Germany
Related authors
No articles found.
Delphine Charpentier, Gaétan Milesi, Pierre Labaume, Ahmed Abd Elmola, Martine Buatier, Pierre Lanari, and Manuel Muñoz
Solid Earth, 15, 1065–1086, https://doi.org/10.5194/se-15-1065-2024, https://doi.org/10.5194/se-15-1065-2024, 2024
Short summary
Short summary
Understanding the fluid circulation in fault zones is essential to characterize the thermochemical evolution of hydrothermal systems in mountain ranges. The study focused on a paleo-system of the Pyrenees. Phyllosilicates permit us to constrain the evolution of temperature and redox of fluids at the scale of the fault system. A scenario is proposed and involves the circulation of a single highly reducing hydrothermal fluid (~300 °C) that evolves due to redox reactions.
Ole Rabbel, Jörg Hasenclever, Christophe Y. Galerne, Olivier Galland, Karen Mair, and Octavio Palma
Solid Earth, 14, 625–646, https://doi.org/10.5194/se-14-625-2023, https://doi.org/10.5194/se-14-625-2023, 2023
Short summary
Short summary
This work investigates the interaction between magma in the subsurface and the rocks and fluids that surround it. The study investigates how fluids containing hydrocarbons like methane are moving in the rocks surrounding the magma. We show that the generation of fractures in the cooling magma has a significant impact on the flow paths of the fluid and that some of the hydrocabons may be converted to graphite and stored in the fractures within the intrusions.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Related subject area
Fluid-rock interaction
Multiple growth of zirconolite in marble (Mogok metamorphic belt, Myanmar): evidence for episodes of fluid metasomatism and Zr–Ti–U mineralization in metacarbonate systems
Pervasive carbonation of peridotite to listvenite (Semail Ophiolite, Sultanate of Oman): clues from iron partitioning and chemical zoning
Qian Guo, Shun Guo, Yueheng Yang, Qian Mao, Jiangyan Yuan, Shitou Wu, Xiaochi Liu, and Kyaing Sein
Eur. J. Mineral., 36, 11–29, https://doi.org/10.5194/ejm-36-11-2024, https://doi.org/10.5194/ejm-36-11-2024, 2024
Short summary
Short summary
We investigate the occurrence, texture, composition, and chronology of three types of zirconolite in dolomite marbles from the Mogok metamorphic belt, Myanmar. These zirconolites, which were formed by multiple episodes of fluid–marble interaction, record the time-resolved fluid infiltration history in metacarbonates and reactive fluid compositions from ~35 to ~19 Ma. Zirconolite is expected to play a more important role in orogenic CO2 release and the transfer and deposition of rare metals.
Thierry Decrausaz, Marguerite Godard, Manuel D. Menzel, Fleurice Parat, Emilien Oliot, Romain Lafay, and Fabrice Barou
Eur. J. Mineral., 35, 171–187, https://doi.org/10.5194/ejm-35-171-2023, https://doi.org/10.5194/ejm-35-171-2023, 2023
Short summary
Short summary
The carbonation of peridotites occurs during the fluxing of reactive CO2-bearing fluids, ultimately producing listvenites (magnesite and quartz assemblage). We studied the most extended outcrops of listvenites worldwide, found at the base of the Semail Ophiolite (Oman). Our study highlights the partitioning of iron during early pervasive carbonation revealed by chemical zoning in matrix magnesites, and we discuss the conditions favoring the formation of Fe-rich magnesite.
Cited articles
Aarnes, I., Svensen, H., Connolly, J. A. D., and Podladchikov, Y. Y.: How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins, Geochim. Cosmochim. Ac., 74, 7179–7195, https://doi.org/10.1016/j.gca.2010.09.011, 2010.
Aarnes, I., Svensen, H., Polteau, S., and Planke, S.: Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions, Chem. Geol., 281, 181–194, https://doi.org/10.1016/j.chemgeo.2010.12.007, 2011a.
Aarnes, I., Svensen, H., Polteau, S., and Planke, S.: Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions, Chem. Geol., 281, 181–194, https://doi.org/10.1016/j.chemgeo.2010.12.007, 2011b.
Arndt, N. T. and Jenner, G. A.: Crustally contaminated komatiites and basalts from Kambalda, Western Australia, Chem. Geol., 56, 229–255, https://doi.org/10.1016/0009-2541(86)90006-9, 1986.
Aubourg, C., Techer, I., Geoffroy, L., Clauer, N., and Baudin, F.: Detecting the thermal aureole of a magmatic intrusion in immature to mature sediments: a case study in the East Greenland Basin (73∘ N), Geophys. J. Int., 196, 160–174, https://doi.org/10.1093/gji/ggt396, 2014.
Berndt, C., Hensen, C., Mortera-Gutierrez, C., Sarkar, S., Geilert, S., Schmidt, M., Liebetrau, V., Kipfer, R., Scholz, F., Doll, M., Muff, S., Karstens, J., Planke, S., Petersen, S., Böttner, C., Chi, W.-C., Moser, M., Behrendt, R., Fiskal, A., Lever, M. A., Su, C.-C., Deng, L., Brennwald, M. S., and Lizarralde, D.: Rifting under steam – How rift magmatism triggers methane venting from sedimentary basins, Geology, 44, 767–770, https://doi.org/10.1130/G38049.1, 2016.
Blum, A. E.: Feldspars in Weathering, in: Feldspars and their Reactions, edited by: Parsons, I., Springer Netherlands, Dordrecht, 595–630, https://doi.org/10.1007/978-94-011-1106-5_15, 1994.
Brimhall, G. H., Christopher J., L., Ford, C., Bratt, J., Taylor, G., and Warin, O.: Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in lateritization, Geoderma, 51, 51–91, https://doi.org/10.1016/0016-7061(91)90066-3, 1991.
Buatier, M. D., Früh-Green, G. L., and Karpoff, A. M.: Mechanisms of Mg-phyllosilicate formation in a hydrothermal system at a sedimented ridge (Middle Valley, Juan de Fuca, Contrib. Mineral. Petrol., 122, 134–151, https://doi.org/10.1007/s004100050117, 1995.
Crouzet, C., Rochette, P., and Ménard, G.: Experimental evaluation of thermal recording of successive polarities during uplift of metasediments, Geophys. J. Int., 145, 771–785, https://doi.org/10.1046/j.0956-540x.2001.01423.x, 2001.
Cui, X., Nabelek, P. I., and Liu, M.: Reactive flow of mixed CO2-H2O fluid and progress of calc-silicate reactions in contact metamorphic aureoles: insights from two-dimensional numerical modelling: CO2-H2O FLUID FLOW and CALC-SILICATE REACTIONS, J. Metamorph. Geol., 21, 663–684, https://doi.org/10.1046/j.1525-1314.2003.00475.x, 2003.
Einsele, G., Gieskes, J. M., Curray, J., Moore, D. M., Aguayo, E., Aubry, M.-P., Fornari, D., Guerrero, J., Kastner, M., Kelts, K., Lyle, M., Matoba, Y., Molina-Cruz, A., Niemitz, J., Rueda, J., Saunders, A., Schrader, H., Simoneit, B., and Vacquier, V.: Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity, Nature, 283, 441–445, https://doi.org/10.1038/283441a0, 1980.
Espitalie, J., Deroo, G., and Marquis, F.: La pyrolyse Rock-Eval et ses applications, Deuxième partie., Rev. Inst. Fr. Pét., 40, 755–784, https://doi.org/10.2516/ogst:1985045, 1985a.
Espitalie, J., Deroo, G., and Marquis, F.: La pyrolyse Rock-Eval et ses applications, Première partie., Rev. Inst. Fr. Pét., 40, 563–579, https://doi.org/10.2516/ogst:1985035, 1985b.
Espitalie, J., Deroo, G., and Marquis, F.: La pyrolyse Rock-Eval et ses applications, Troisième partie., Rev. Inst. Fr. Pét., 41, 73–89, https://doi.org/10.2516/ogst:1986003, 1986.
Fisher, A. T. and Narasimhan, T. N.: Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center, Earth Planet. Sc. Lett., 103, 100–115, https://doi.org/10.1016/0012-821X(91)90153-9, 1991.
Galerne, C., Caroff, M., Rolet, J., and Le Gall, B.: Magma–sediment mingling in an Ordovician rift basin: The Plouézec–Plourivo half-graben, Armorican Massif, France, J. Volcanol. Geotherm. Res., 155, 164–178, https://doi.org/10.1016/j.jvolgeores.2006.03.030 2006.
Galerne, C. Y. and Hasenclever, J.: Distinct Degassing Pulses During Magma Invasion in the Stratified Karoo Basin – New Insights From Hydrothermal Fluid Flow Modeling, Geochem. Geophy. Geosy., 20, 2955–2984, https://doi.org/10.1029/2018GC008120, 2019.
Gillett, S. L.: Paleomagnetism of the Notch Peak contact metamorphic aureole, revisited: Pyrrhotite from magnetite + pyrite under submetamorphic conditions: pyrrhotite from magnetite at notch peak, Utah, J. Geophys. Res., 108, B9, https://doi.org/10.1029/2002JB002386, 2003.
Goutorbe, B., Poort, J., Lucazeau, F., and Raillard, S.: Global heat flow trends resolved from multiple geological and geophysical proxies, Geophys. J. Int., 187, 1405–1419, https://doi.org/10.1111/j.1365-246X.2011.05228.x, 2011.
Hayba, D. O., Bethke, P. M., Heald, P., and Foley, N. K.: Geologic, Mineralogic, and Geochemical Characteristics of Volcanic-Hosted Epithermal Precious-Metal Deposits, in: Geology and Geochemistry of Epithermal Systems, Vol. 2, edited by: Berger, B. R. and Bethke, P. M., Soc. Econ. Geol., 2, 250–252, https://doi.org/10.5382/Rev.02.07, 1985.
Heimdal, T. H., Svensen, Henrik. H., Ramezani, J., Iyer, K., Pereira, E., Rodrigues, R., Jones, M. T., and Callegaro, S.: Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis, Sci. Rep., 8, 141, https://doi.org/10.1038/s41598-017-18629-8, 2018.
Iyer, K., Rüpke, L., and Galerne, C. Y.: Modeling fluid flow in sedimentary basins with sill intrusions: Implications for hydrothermal venting and climate change: Fluid Flow In Sedimentary Basins, Geochem. Geophy. Geosy., 14, 5244–5262, https://doi.org/10.1002/2013GC005012, 2013.
Jamieson, R. A. and O'Beirne-Ryan, A. M.: Decompression-induced growth of albite porphyroblasts, Fleur de Lys Supergroup, western Newfoundland, J. Metamorph. Geol., 9, 433–439, https://doi.org/10.1111/j.1525-1314.1991.tb00537.x, 1991.
Jamtveit, B., Svensen, H., Podladchikov, Y. Y., and Planke, S.: Hydrothermal vent complexes associated with sill intrusions in sedimentary basins, Geol. Soc. Lond. Spec. Publ., 234, 233–241, https://doi.org/10.1144/GSL.SP.2004.234.01.15, 2004.
Jiménez-Franco, A., Canet, C., Alfonso, P., González-Partida, E., Rajabi, A., and Escalante, E.: The Velardeña Zn–(Pb–Cu) skarn-epithermal deposits, central-northern Mexico: New physical-chemical constraints on ore-forming processes, Boletín de la Sociedad Geológica Mexicana, 72, A270719, https://doi.org/10.18268/BSGM2020v72n3a270719, 2020.
Large, R. R., Maslennikov, V. V., Robert, F., Danyushevsky, L. V., and Chang, Z.: Multistage Sedimentary and Metamorphic Origin of Pyrite and Gold in the Giant Sukhoi Log Deposit, Lena Gold Province, Russia, Econ. Geol., 102, 1233–1267, https://doi.org/10.2113/gsecongeo.102.7.1233, 2007.
Ledevin, M., Arndt, N., Cooper, M. R., Earls, G., Lyle, P., Aubourg, C., and Lewin, E.: Intrusion history of the Portrush Sill, County Antrim, Northern Ireland: evidence for rapid emplacement and high-temperature contact metamorphism, Geol. Mag., 149, 67–79, https://doi.org/10.1017/S0016756811000537, 2012.
Lesher, C. M.: Roles of xenomelts, xenoliths, xenocrysts, xenovolatiles, residues, and skarns in the genesis, transport, and localization of magmatic Fe-Ni-Cu-PGE sulfides and chromite, Ore Geol. Rev., 90, 465–484, https://doi.org/10.1016/j.oregeorev.2017.08.008, 2017.
Li, X., Wang, Q., Zhang, W., and Yin, H.: Contact metamorphism of shales intruded by a granite dike: Implications for shale gas preservation, Int. J. Coal Geol., 159, 96–106, https://doi.org/10.1016/j.coal.2016.03.016, 2016.
Lizarralde, D., Axen, G. J., Brown, H. E., Fletcher, J. M., González-Fernández, A., Harding, A. J., Holbrook, W. S., Kent, G. M., Paramo, P., Sutherland, F., and Umhoefer, P. J.: Variation in styles of rifting in the Gulf of California, Nature, 448, 466–469, https://doi.org/10.1038/nature06035, 2007.
Lizarralde, D., Soule, S. A., Seewald, J. S., and Proskurowski, G.: Carbon release by off-axis magmatism in a young sedimented spreading centre, Nat. Geosci., 4, 50–54, https://doi.org/10.1038/ngeo1006, 2011.
Lizarralde, D., Teske, A., Höfig, T. W., González-Fernández, A., and IODP Expedition 385 Scientists: Carbon released by sill intrusion into young sediments measured through scientific drilling, Geology, 51, 329–333, https://doi.org/10.1130/G50665.1, 2023.
Marincea, Ş., Dumitraş, D.-G., Sava, C., Hatert, F., and Dal Bo, F.: Mineralogy of a High-Temperature Skarn, in High CO2 Activity Conditions: The Occurrence from Măgureaua Vaţei (Metaliferi Massif, Apuseni Mountains, Romania), Minerals, 10, 677, https://doi.org/10.3390/min10080677, 2020.
Meinert, L. D., Dipple, G. M., and Nicolescu, S.: World Skarn Deposits, One Hundredth Anniversary Volume, Soc. Econ. Geol., 299–336, https://doi.org/10.5382/AV100.11, 2005.
Miller, N. C. and Lizarralde, D.: Thick evaporites and early rifting in the Guaymas Basin, Gulf of California, Geology, 41, 283–286, https://doi.org/10.1130/G33747.1, 2013.
Neumann, F., Negrete-Aranda, R., Harris, R. N., Contreras, J., Galerne, C. Y., Peña-Salinas, M. S., Spelz, R. M., Teske, A., Lizarralde, D., Höfig, T. W., and Expedition 385 Scientists: Heat flow and thermal regime in the Guaymas Basin, Gulf of California: Estimates of conductive and advective heat transport, Basin Res., 35, 12755, https://doi.org/10.1111/bre.12755, 2023.
Oh, N.-H. and Richter, D. D.: Elemental translocation and loss from three highly weathered soil–bedrock profiles in the southeastern United States, Geoderma, 126, 5–25, https://doi.org/10.1016/j.geoderma.2004.11.005, 2005.
Ostwald, J. and England, B. M.: The relationship between euhedral and framboidal pyrite in base-metal sulphide ores, Mineral. Mag., 43, 297–300, https://doi.org/10.1180/minmag.1979.043.326.13, 1979.
Peron-Pinvidic, G., Manatschal, G., and the “IMAGinING RIFTING” Workshop Participants: Rifted Margins: State of the Art and Future Challenges, Front. Earth Sci., 7, 218, https://doi.org/10.3389/feart.2019.00218, 2019.
Peters, K. E.: Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis, Bulletin, 70, 318–329, https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D, 1986.
Raymond, A. C. and Murchison, D. G.: Development of organic maturation in the thermal aureoles of sills and its relation to sediment compaction, Fuel, 67, 1599–1608, https://doi.org/10.1016/0016-2361(88)90202-5, 1988.
Rochette, P., Lorand, J.-P., Fillion, G., and Sautter, V.: Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism, Earth Planet. Sc. Lett., 190, 1–12, https://doi.org/10.1016/S0012-821X(01)00373-9, 2001.
Sapin, F., Ringenbach, J.-C., and Clerc, C.: Rifted margins classification and forcing parameters, Sci. Rep., 11, 8199, https://doi.org/10.1038/s41598-021-87648-3, 2021.
Saunders, A., Fornari, D., Joron, J. L., and Tarney, J.: Geochemistry of basic igneous rocks, Gulf of California, Deep-Sea Drill. Project Leg., 64, 595–642, 1982.
Sawlowicz, Z.: Pyrite framboids and their development: a new conceptual mechanism, Geol. Rundsch., 82, 148–156, https://doi.org/10.1007/BF00563277, 1993.
Saxby, J. D. and Stephenson, L. C.: Effect of anigneous intrusion on oil shale at Rundle (Australia), Chem. Geol., 63, 1–16, https://doi.org/10.1016/0009-2541(87)90068-4, 1987.
Simoneit, B. R. T. and Lonsdale, P. F.: Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin, Nature, 295, 198–202, https://doi.org/10.1038/295198a0, 1982.
Simoneit, B. R. T., Brenner, S., Peters, K. E., and Kaplan, I. R.: Thermal alteration of Cretaceous black shale by basaltic intrusions in the Eastern Atlantic, Nature, 273, 501–504, https://doi.org/10.1038/273501a0, 1978.
Skilling, I. P., White, J. D. L., and McPhie, J.: Peperite: a review of magma–sediment mingling, J. Volcanol. Geotherm. Res., 114, 1–17, https://doi.org/10.1016/S0377-0273(01)00278-5, 2002.
Soliman, M. F. and El Goresy, A.: Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina, Nile Valley, Egypt: Formation processes, oxidation products and genetic implications to the origin of framboidal pyrite, Geochim. Cosmochim. Ac., 90, 195–220, https://doi.org/10.1016/j.gca.2012.05.004, 2012.
Stock, J. M. and Lee, J.: Do microplates in subduction zones leave a geological record?, Tectonics, 13, 1472–1487, https://doi.org/10.1029/94TC01808, 1994.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., and Rey, S. S.: Release of methane from a volcanic basin as a mechanism for initial Eocene global warming, Nature, 429, 542–545, https://doi.org/10.1038/nature02566, 2004.
Svensen, H., Planke, S., Chevallier, L., Malthe-Sørenssen, A., Corfu, F., and Jamtveit, B.: Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming, Earth Planet. Sc. Lett., 256, 554–566, https://doi.org/10.1016/j.epsl.2007.02.013, 2007.
Svensen, H., Planke, S., Polozov, A. G., Schmidbauer, N., Corfu, F., Podladchikov, Y. Y., and Jamtveit, B.: Siberian gas venting and the end-Permian environmental crisis, Earth Planet. Sc. Lett., 277, 490–500, https://doi.org/10.1016/j.epsl.2008.11.015, 2009.
Svensen, H., Aarnes, I., Podladchikov, Y. Y., Jettestuen, E., Harstad, C. H., and Planke, S.: Sandstone dikes in dolerite sills: Evidence for high-pressure gradients and sediment mobilization during solidification of magmatic sheet intrusions in sedimentary basins, Geosphere, 6, 211–224, https://doi.org/10.1130/GES00506.1, 2010.
Svensen, H. H., Hammer, Ø., Chevallier, L., Jerram, D. A., Silkoset, P., Polteau, S., and Planke, S.: Understanding thermogenic degassing in large igneous provinces: Inferences from the geological and statistical characteristics of breccia pipes in the western parts of the Karoo Basin, in: Mass Extinctions, Volcanism, and Impacts: New Developments, Geol. Soc. Am., 544, 67–84, https://doi.org/10.1130/2020.2544(03), 2020.
Sweeney, J. J. and Burnha, A. K.: Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics, Bulletin, 74, 1559–1570, https://doi.org/10.1306/0C9B251F-1710-11D7-8645000102C1865D, 1990.
Teske, A., Lizarralde, D., and Höfig, T. W.: Expedition 385 Scientific Prospectus: Guaymas Basin Tectonics and Biosphere: feedbacks between continental rifting, magmatism, sedimentation, thermal alteration of organic matter, and microbial activity, International Ocean Discovery Program, https://doi.org/10.14379/iodp.sp.385.2018, 2018.
Teske, A., Lizarralde, D., Höfig, T. W., Aiello, I. W., Ash, J. L., Bojanova, D. P., Buatier, M. D., Edgcomb, V. P., Galerne, C. Y., Gontharet, S., Heuer, V. B., Jiang, S., Kars, M. A. C., Khogenkumar Singh, S., Kim, J.-H., Koornneef, L. M. T., Marsaglia, K. M., Meyer, N. R., Morono, Y., Negrete-Aranda, R., Neumann, F., Pastor, L. C., Peña-Salinas, M. E., Pérez Cruz, L. L., Ran, L., Riboulleau, A., Sarao, J. A., Schubert, F., Stock, J. M., Toffin, L. M. A. A., Xie, W., Yamanaka, T., and Zhuang, G.: Expedition 385 summary, in: Guaymas Basin Tectonics and Biosphere, edited by: Teske, A., Lizarralde, D., Höfig, T. W., and the Expedition 385 Scientists, Proceedings of the International Ocean Discovery Program, 385: College Station, TX, International Ocean Discovery Program, https://doi.org/10.14379/iodp.proc.385.101.2021, 2021a.
Teske, A., Lizarralde, D., Höfig, T. W., Aiello, I. W., Ash, J. L., Bojanova, D. P., Buatier, M. D., Edgcomb, V. P., Galerne, C. Y., Gontharet, S., Heuer, V. B., Jiang, S., Kars, M. A. C., Khogenkumar Singh, S., Kim, J.-H., Koornneef, L. M. T., Marsaglia, K. M., Meyer, N. R., Morono, Y., Negrete-Aranda, R., Neumann, F., Pastor, L. C., Peña-Salinas, M. E., Pérez Cruz, L. L., Ran, L., Riboulleau, A., Sarao, J. A., Schubert, F., Stock, J. M., Toffin, L. M. A. A., Xie, W., Yamanaka, T., and Zhuang, G.: Expedition 385 methods, in: Guaymas Basin Tectonics and Biosphere, edited by: Teske, A., Lizarralde, D., Höfig, T. W., and the Expedition 385 Scientists, Proceedings of the International Ocean Discovery Program, 385: College Station, TX, International Ocean Discovery Program, https://doi.org/10.14379/iodp.proc.385.102.2021, 2021b.
Teske, A., Lizarralde, D., Höfig, T. W., Aiello, I. W., Ash, J. L., Bojanova, D. P., Buatier, M. D., Edgcomb, V. P., Galerne, C. Y., Gontharet, S., Heuer, V. B., Jiang, S., Kars, M. A. C., Khogenkumar Singh, S., Kim, J.-H., Koornneef, L. M. T., Marsaglia, K. M., Meyer, N. R., Morono, Y., Negrete-Aranda, R., Neumann, F., Pastor, L. C., Peña-Salinas, M. E., Pérez Cruz, L. L., Ran, L., Riboulleau, A., Sarao, J. A., Schubert, F., Stock, J. M., Toffin, L. M. A. A., Xie, W., Yamanaka, T., and Zhuang, G.: Site U1545, in: Guaymas Basin Tectonics and Biosphere, edited by: Teske, A., Lizarralde, D., Höfig, T. W., and the Expedition 385 Scientists, Proceedings of the International Ocean Discovery Program, 385: College Station, TX (International Ocean Discovery Program), https://doi.org/10.14379/iodp.proc.385.103.2021, 2021c.
Tomkins, A. G.: Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis, Geochim. Cosmochim. Ac., 74, 3246–3259, https://doi.org/10.1016/j.gca.2010.03.003, 2010.
Toulmin, P. and Barton, P. B.: A thermodynamic study of pyrite and pyrrhotite, Geochim. Cosmochim. Ac., 28, 641–671, https://doi.org/10.1016/0016-7037(64)90083-3, 1964.
Wang, D., Lu, X., Zhang, X., Xu, S., Hu, W., and Wang, L.: Heat-model analysis of wall rocks below a diabase sill in Huimin Sag, China compared with thermal alteration of mudstone to carbargilite and hornfels and with increase of vitrinite reflectance: Heat-Model Analysis Of Wall Rocks, Geophys. Res. Lett., 34, 16, https://doi.org/10.1029/2007GL030314, 2007.
Wang, H. and Salveson, I.: A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe 1−xS ( ): polymorphs, phase relations and transitions, electronic and magnetic structures, Phase Trans., 78, 547–567, https://doi.org/10.1080/01411590500185542, 2005.
Wehland, F., Alt-Epping, U., Braun, S., and Appel, E.: Quality of pTRM acquisition in pyrrhotite bearing contact-metamorphic limestones: possibility of a continuous record of Earth magnetic field variations, Phys. Earth Planet. Int., 148, 157–173, https://doi.org/10.1016/j.pepi.2004.08.008, 2005.
Welton, J. E.: SEM petrology atlas, Tulsa, Oklahoma: American Association of Petroleum Geologists, Vol. 4, https://doi.org/10.1306/Mth4442, 1984.
White, J., McPHie, J., and Skilling, I.: Peperite: a usefull genetic term, J. Volcanol. Geotherm. Re., 114, 1–17, https://doi.org/10.1016/S0377-0273(01)00278-5, 2000.
Wilkin, R. T. and Barnes, H. L.: Formation processes of framboidal pyrite, Geochim. Cosmochim. Ac., 61, 323–339, https://doi.org/10.1016/S0016-7037(96)00320-1, 1997.
Winkler, H. G. F. and Winkler, H. G. F.: Metamorphism of Pelites. Petrogenesis of Metamorphic Rocks, 206–238, https://doi.org/10.1007/978-1-4757-4215-2_14, 1979.
Winter, J. D.: Metamorphic Grades, Zones, Facies and Facies Series, in: Encyclopedia of Geology, Elsevier, 439–444, https://doi.org/10.1016/B978-0-08-102908-4.00034-5, 2021.
Yallup, C., Edmonds, M., and Turchyn, A. V.: Sulfur degassing due to contact metamorphism during flood basalt eruptions, Geochim. Cosmochim. Ac., 120, 263–279, https://doi.org/10.1016/j.gca.2013.06.025, 2013.
Zhao, C., Hobbs, B. E., and Ord, A.: Convective and advective heat transfer in geological systems, Springer, Berlin Heidelberg, 229 pp., 2008.
Zucchi, M., Tursi, F., Brogi, A., Liotta, D., Spiess, R., Caggianelli, A., Ventruti, G., and Langone, A.: Syn-tectonic contact aureole and metasomatic reaction zones in carbonate and pelitic host rocks (Elba Island, Italy), Tectonophysics, 853, 229782, https://doi.org/10.1016/j.tecto.2023.229782, 2023.
Zürcher, L. and Kring, D. A.: Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico, Meteor. Planet. Sci., 39, 1199–1221, https://doi.org/10.1111/j.1945-5100.2004.tb01137.x, 2004.
Short summary
The present study is based on sample chemical and mineralogical analyses of oceanic sediment and rock that were collected in the Guaymas Basin during IODP Expedition 385. The contact aureoles are not only affected by maturation of organic matter and dehydration reaction, but mineralogical reactions concern all sediment components (silicates, sulfides, carbonates, organic matter) and can be the result of the combination of different stages of alteration during and after the sill emplacement.
The present study is based on sample chemical and mineralogical analyses of oceanic sediment and...