Baumgartner, R. J., Van Kranendonk, M. J., Wacey, D., Fiorentini, M. L.,
Saunders, M., Caruso, S., Pages, A., Homann, M., and Guagliardo, P.:
Nanoporous pyrite and organic matter in 3.5-billion-year-old stromatolites
record primordial life, Geology, 47, 1039–1043,
https://doi.org/10.1130/G46365.1, 2019.
Bout-Roumazeilles, V., Cortijo, E., Labeyrie, L., and Debrabant, P.:
Clay-mineral evidence of nepheloid layer contribution to the Heinrich layers
in the Northwest Atlantic, Palaeogeogr. Palaeocl., 146, 211–228, 1999.
Braissant, O., Cailleau, G., Dupraz, C., and Verrecchia, E. P.: Bacterially
induced mineralization of calcium carbonate in terrestrial environments: the
role of exopolysaccharides and amino acids, J. Sediment. Res.,
73, 485–490, 2003.
Burdige, D. J.: Geochemistry of Marine Sediments, Princeton University Press,
Princeton, USA, ISBN 0-691-09506-X, 2006.
Butler, I. B.: Framboid formation, PhD thesis, University of Wales,
Cardiff, UK, 434 pp., 1994.
Castanier, S., Le Métayer-Levrel, G., and Perthuisot, J.-P.:
Ca-carbonates precipitation and limestone genesis – the microbiogeologist
point of view, Sediment. Geol., 126, 9–23, 1999a.
Castanier, S., Le Métayer-Levrel, G., and Perthuisot, J.-P.: Bacterial
roles in the precipitation of carbonate minerals, in: Microbial Sediments,
edited by: Riding, R., and Awramik, S., Springer, Berlin, Heidelberg,
Germany, ISBN 978-3-540-61828-7, 1999b.
Cevales, G.: Erzuntersuchungen im Emissionsmikroskop, Zeitschrift für
Erzbergbau und Metallhüttenwesen, 14, 159–210, 1961.
Duverger, A., Berg, J. S., Busigny, V., Guyot, F., Bernard, S., and Miot, J.:
Mechanisms of pyrite formation promoted b
y sulfate-reducing bacteria in pure
culture, Front. Earth Sci., 8, 588310, https://doi.org/10.3389/feart.2020.588310, 2020.
Gregory, D. D., Mukherjee, I., Olson, S. L., Large, R. R., Danyushevsky, L. V.,
Stepanov, A. S., and Avila, J. N.: The formation mechanisms of sedimentary
pyrite nodules determined by trace element and sulfur isotope microanalysis,
Geochim. Cosmochim. Ac., 259, 53–68, 2019.
Gregory, D. D., Kovarik, L., Taylor, S. D., Perea, D. E., Owens, J. D., Atienza,
N., and Lyons, T. W.: Nano-scale trace element zoning in pyrite framboids
and implications for paleoproxy applications Geology, in press, 2022.
Han, G. Wen, S. Wang, H., and Feng, Q.: Interaction mechanism of tannic acid
with pyrite surfaces and its response to flotation separation of
chalcopyrite from pyrite in a low-alkaline medium, Journal of Materials
Research and Technology, 9, 4421–4430, 2020.
Himmel H.-J., Kaschke, M. I., Harder, P., and Wöll, C.: Adsorption of
organic monolayers on pyrite (FeS2)(100), Thin Solid Films, 284–285,
275–280, 1996.
Hinrichs, K.-U., Hayes, J., Sylva, S., Brewer, P., and DeLong, E.:
Methane-consuming archaebacteria in marine sediments, Nature, 398, 802–805,
1999.
Jørgensen, B. B.: Mineralization of organic matter in the sea bed – the
role of sulphate reduction, Nature, 296, 643–645, 1982.
Large, D. J., Fortey, N. J., Milodowski, A. E., Christy, A. G., and Dodd, J.: Petrographic observations of iron, copper, and zinc sulfides in freshwater canal sediment, J. Sediment. Res., 71, 61–69, 2001.
Love, L. G. and Amstutz, G. C.: Review of microscopic pyrite from the
Devonian Chattanooga Shale and Rammelsberg Banderz, Fortschritte des
Mineralogie, 43, 277–309, 1966.
McLean, L. C. W., Tyliszczak, T., Gilbert, P. U. P. A., Zhou, D., Pray,
T. J., Onstott, T. C., and Southam, G.: A high-resolution chemical and
structural study of framboidal pyrite formed within a low-temperature
bacterial biofilm, Geobiology, 6, 471–480, 2008.
Megonigal, J. P., Hines, M. E., and Visscher, P. T.: Anaerobic metabolism:
linkages to trace gases and aerobic processes, in:
Biogeochemistry, edited by: Schlessinger, W. H., Treatise on
Geochemistry, edited by: Holland, H. D., Turekian, K. K., vol. 8, Elsevier, Pergamon, Oxford, pp. 317–424, ISBN 978-0-08-098300-4, 2003.
Ohfuji, H.: Framboids, PhD Thesis, University of Wales, Cardiff, UK,
246 pp., 2004.
Picard, A., Gartman, A., Clarke, D. R., and Girguis, P. R.: Sulfate-reducing
bacteria influence the nucleation and growth of mackinawite and greigite,
Geochim. Cosmochim. Ac., 220, 367–384, 2018.
Picard, A., Gartman, A., Cosmidis, J., Obst, M., Vidoudez, C., Clarke, D. R.,
and Girguis, P. R.: Authigenic metastable iron sulfide minerals preserve
microbial organic carbon in anoxic environments, Chem. Geol., 530,
119343, https://doi.org/10.1016/j.chemgeo.2019.119343, 2019.
Rickard, D.: Sulfidic Sediments and Sedimentary Rocks, Developments in Sedimentology – Tome, 65, Elsevier, ISBN 978-0-444-52989-3, 2012.
Rickard, D.: Framboids, Oxford University Press, Oxford, UK, https://doi.org/10.1093/oso/9780190080112.001.0001, 2021.
Schieber, J.: Sedimentary pyrite: A window into the microbial past, Geology,
30, 531–534, 2002.
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., and
Greenwood, J.: The effect of biogeochemical processes on pH, Mar.
Chem., 105, 30–51, 2007.
Tribovillard, N., Lyons, T. W., Riboulleau, A., and Bout-Roumazeilles, V.: A
possible capture of molybdenum during early diagenesis of dysoxic sediments,
B. Soc. Géol. Fr., 179, 3–12, 2008.
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. B., Kong C., Liu, A. G.,
Matthews, J. J., and Brasier, M. D.: Uncovering framboidal pyrite biogenicity
using nano-scale CN
org mapping, Geology, 43, 27–31, 2015.