Articles | Volume 33, issue 6
https://doi.org/10.5194/ejm-33-659-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-659-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Zinkgruvanite, Ba4Mn2+4Fe3+2(Si2O7)2(SO4)2O2(OH)2, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
Fernando Cámara
Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Via Luigi Mangiagalli 34, 20133, Milan, Italy
Department of Geosciences, Swedish Museum of Natural History, Box
50007, 104 05 Stockholm, Sweden
Nils Jansson
Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
Erik Jonsson
Department of Mineral Resources, Geological Survey of Sweden,
Villavägen 18, 752 36 Uppsala, Sweden
Department of Earth Sciences, Uppsala University, Villavägen 16,
752 36 Uppsala, Sweden
Andreas Karlsson
Department of Geosciences, Swedish Museum of Natural History, Box
50007, 104 05 Stockholm, Sweden
Jörgen Langhof
Department of Geosciences, Swedish Museum of Natural History, Box
50007, 104 05 Stockholm, Sweden
Jaroslaw Majka
Department of Earth Sciences, Uppsala University, Villavägen 16,
752 36 Uppsala, Sweden
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Anders Zetterqvist
Zetterqvist Geokonsult AB, Kvarnbacksvägen 74, 168 74 Bromma,
Sweden
Related authors
Marco E. Ciriotti, Uwe Kolitsch, Fernando Cámara, Pietro Vignola, Frédéric Hatert, Erica Bittarello, Roberto Bracco, and Giorgio Maria Bortolozzi
Eur. J. Mineral., 36, 863–872, https://doi.org/10.5194/ejm-36-863-2024, https://doi.org/10.5194/ejm-36-863-2024, 2024
Short summary
Short summary
The article provides the standard description of bonacinaite, Sc3+(AsO4)·2H2O, the first natural scandium arsenate. The new mineral species was found in a few specimens in the dumps of the old Varenche Mine, Valle d'Aosta, Italy, which is therefore the type locality and the only locality in the world. Bonacinaite forms colourless (with faint to distinct violet tints), pseudohexagonal, thick tabular crystals, up to 0.25 mm in size, or as small, faintly violet lath-shaped crystals.
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022, https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
Cristiano Ferraris, Isabella Pignatelli, Fernando Cámara, Giancarlo Parodi, Sylvain Pont, Martin Schreyer, and Fengxia Wei
Eur. J. Mineral., 32, 355–365, https://doi.org/10.5194/ejm-32-355-2020, https://doi.org/10.5194/ejm-32-355-2020, 2020
Short summary
Short summary
Laurentthomasite is a new mineral from Madagascar showing a very strong dichroism going from deep blue to yellow-green colours. The physical and chemical characteristics of this gem quality mineral bring it to the attention of the jewel industry as well as collectors of cut stones.
Dirk Spengler, Monika Koch-Müller, Adam Włodek, Simon J. Cuthbert, and Jarosław Majka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2734, https://doi.org/10.5194/egusphere-2024-2734, 2024
Short summary
Short summary
West Norwegian 'diamond facies' eclogite contains tiny mineral inclusions of quartz and amphibole lamellae that are not stable in the diamond field. Low trace amounts of water in the lamellae-bearing host minerals suggest that the inclusion microstructure was not formed by fluid infiltration but by dehydration during early exhumation of these rocks. Some samples with higher water content argue that a late fluid overprint was spatially restricted and obliterated evidence of extreme metamorphism.
Marco E. Ciriotti, Uwe Kolitsch, Fernando Cámara, Pietro Vignola, Frédéric Hatert, Erica Bittarello, Roberto Bracco, and Giorgio Maria Bortolozzi
Eur. J. Mineral., 36, 863–872, https://doi.org/10.5194/ejm-36-863-2024, https://doi.org/10.5194/ejm-36-863-2024, 2024
Short summary
Short summary
The article provides the standard description of bonacinaite, Sc3+(AsO4)·2H2O, the first natural scandium arsenate. The new mineral species was found in a few specimens in the dumps of the old Varenche Mine, Valle d'Aosta, Italy, which is therefore the type locality and the only locality in the world. Bonacinaite forms colourless (with faint to distinct violet tints), pseudohexagonal, thick tabular crystals, up to 0.25 mm in size, or as small, faintly violet lath-shaped crystals.
Daniel Müller, Thomas R. Walter, Valentin R. Troll, Jessica Stammeier, Andreas Karlsson, Erica de Paolo, Antonino Fabio Pisciotta, Martin Zimmer, and Benjamin De Jarnatt
Solid Earth, 15, 1155–1184, https://doi.org/10.5194/se-15-1155-2024, https://doi.org/10.5194/se-15-1155-2024, 2024
Short summary
Short summary
We use uncrewed-aerial-system-derived optical and infrared data, mineralogical and geochemical analyses of rock samples, and surface degassing measurements to analyze degassing and hydrothermal alteration at the fumaroles of the La Fossa cone, Vulcano island, Italy. We give a detailed view of associated structures and dynamics, such as local alteration gradients, diffuse active units that significantly contribute to the total activity, or effects of permeability reduction and surface sealing.
Dan Holtstam and Ataollah Hassani
Hist. Geo Space. Sci. Discuss., https://doi.org/10.5194/hgss-2024-8, https://doi.org/10.5194/hgss-2024-8, 2024
Preprint under review for HGSS
Short summary
Short summary
The meteorite "Veramin" fell in Persia ca. 1880. In the records, there are ambiguities about the event and we therefore scrutinized the available sources. The current official name, coined by meteoricist A. Brezina, is not supported by Iranian documents. A key document is a rediscovered label with the main mass of the meteorite. The indicated place of the event, probably occurring in February–April 1880, is Booghin of in the historical Zarand district, 100 km NW from Veramin (Varamin).
Dan Holtstam, Jörgen Langhof, Henrik Friis, Andreas Karlsson, and Muriel Erambert
Eur. J. Mineral., 36, 311–322, https://doi.org/10.5194/ejm-36-311-2024, https://doi.org/10.5194/ejm-36-311-2024, 2024
Short summary
Short summary
We described two new minerals, igelströmite and manganoschafarzikite, from the Långban manganese–iron deposit in Värmland, Sweden. The chemical formulae are Fe3+(Sb3+Pb2+)O4 and Mn2+Sb3+2O4, respectively. They belong to a new mineral group, where all members have the same crystal structure. It is called the minium group, after the lead-oxide mineral that is the oldest known substance of this kind.
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022, https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
Cristiano Ferraris, Isabella Pignatelli, Fernando Cámara, Giancarlo Parodi, Sylvain Pont, Martin Schreyer, and Fengxia Wei
Eur. J. Mineral., 32, 355–365, https://doi.org/10.5194/ejm-32-355-2020, https://doi.org/10.5194/ejm-32-355-2020, 2020
Short summary
Short summary
Laurentthomasite is a new mineral from Madagascar showing a very strong dichroism going from deep blue to yellow-green colours. The physical and chemical characteristics of this gem quality mineral bring it to the attention of the jewel industry as well as collectors of cut stones.
Andreas Karlsson, Dan Holtstam, Luca Bindi, Paola Bonazzi, and Matthias Konrad-Schmolke
Eur. J. Mineral., 32, 77–87, https://doi.org/10.5194/ejm-32-77-2020, https://doi.org/10.5194/ejm-32-77-2020, 2020
Related subject area
New minerals and systematic mineralogy
Nannoniite, Al2(OH)5F, a new mineral from the Cetine di Cotorniano mine (Tuscany, Italy)
Karlseifertite, Pb(Ga2Ge)(AsO4)2(OH)6, a new dussertite-group mineral, from Tsumeb, Namibia
Bonacinaite, Sc(AsO4) ⋅ 2H2O, the first scandium arsenate
Lazerckerite, Ag3.75Pb4.5(Sb7.75Bi4)S24, from Kutná Hora, Czech Republic: a new Sb–Bi member of the andorite branch of the lillianite homologous series
Rotherkopfite, KNa2(Fe2+2.5Ti4+1.5)Fe2+(Si4O12)2, a new neptunite-group mineral without essential lithium, from Rother Kopf, Eifel volcanic fields, Germany
Zvěstovite-(Fe), Ag6(Ag4Fe2)As4S13, a new member of the tetrahedrite group from the Ulatayskoe Ag–Cu–Co occurrence, eastern Siberia, Russia
Fluor-rewitzerite, [(H2O)K]Mn2(Al2Ti)(PO4)4(OF)(H2O)10 ⋅ 4H2O, a new paulkerrite-group mineral, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany
Kenoargentotetrahedrite-(Zn), [Ag6]4+(Cu4Zn2)Sb4S12□, a new member of the tetrahedrite group from the Yindongpo Au deposit, China
Igelströmite, Fe3+(Sb3+Pb2+)O4, and manganoschafarzikite, Mn2+Sb3+2O4, two new members of the newly established minium group, from the Långban Mn–Fe deposit, Värmland, Sweden
Mckelveyite group minerals – Part 4: Alicewilsonite-(YLa), Na2Sr2YLa(CO3)6 ⋅ 3H2O, a new lanthanum-dominant species from the Paratoo mine, Australia
Macraeite, [(H2O)K]Mn2(Fe2Ti)(PO4)4[O(OH)](H2O)10 ⋅ 4H2O, a new monoclinic paulkerrite-group mineral, from the Cubos–Mesquitela–Mangualde pegmatite, Portugal
Mckelveyite group minerals – Part 3: Bainbridgeite-(YCe), Na2Ba2YCe(CO3)6 ⋅ 3H2O, a new species from Mont Saint-Hilaire, Canada
Heimite, PbCu2(AsO4)(OH)3 ⋅ 2H2O, a new mineral from the Grosses Chalttal deposit, Switzerland
OxyEMG: an application for determination of the oxyspinel group end-members based on electron microprobe analyses
Changes to the cerite group nomenclature
Tetrahedrite-(Cd), Cu6(Cu4Cd2)Sb4S13, from Radětice near Příbram, Czech Republic: the new Cd member of the tetrahedrite group
Crystal chemistry of type paulkerrite and establishment of the paulkerrite group nomenclature
Regerite, KFe6(PO4)4(OH)7(H2O)6 ⋅ 4H2O, the first new mineral species from the Kreuzberg pegmatite, Pleystein, Oberpfalz, Bavaria, Germany
Batoniite, [Al8(OH)14(H2O)18](SO4)5 ⋅ 5H2O, a new mineral with the [Al8(OH)14(H2O)18]10+ polyoxocation from the Cetine di Cotorniano Mine, Tuscany, Italy
Hochleitnerite, [K(H2O)]Mn2(Ti2Fe)(PO4)4O2(H2O)10 ⋅ 4H2O, a new paulkerrite-group mineral, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany
Nomenclature of the triphylite group of minerals
Pseudo-cubic trigonal pyrite from the Madan Pb–Zn ore field (Rhodope Massif, Bulgaria): morphology and twinning
Manganrockbridgeite, Mn2+2Fe3+3(PO4)3(OH)4(H2O), a new member of the rockbridgeite group, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria
Pleysteinite, [(H2O)0.5K0.5]2Mn2Al3(PO4)4F2(H2O)10 ⋅ 4H2O, the Al analogue of benyacarite, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany
Mckelveyite group minerals – Part 1: Nomenclature and new data on donnayite-(Y)
Mckelveyite group minerals – Part 2: Alicewilsonite-(YCe), Na2Sr2YCe(CO3)6 ⋅ 3H2O, a new species
Whiteite-(CaMnFe), a new jahnsite-group mineral from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria
Dutrowite, Na(Fe2+2.5Ti0.5)Al6(Si6O18)(BO3)3(OH)3O, a new mineral from the Apuan Alps (Tuscany, Italy): the first member of the tourmaline supergroup with Ti as a species-forming chemical constituent
Corresponding relationship between characteristic birefringence, strain, and impurities in Zimbabwean mixed-habit diamonds revealed by mapping techniques
TotBlocks: exploring the relationships between modular rock-forming minerals with 3D-printed interlocking brick modules
Ferri-taramite, a new member of the amphibole supergroup, from the Jakobsberg Mn–Fe deposit, Värmland, Sweden
Ferro-ferri-holmquistite, □Li2(Fe2+3Fe3+2)Si8O22(OH)2, Fe2+Fe3+ analogue of holmquistite, from the Iwagi islet, Ehime, Japan
Tomsquarryite, NaMgAl3(PO4)2(OH)6 ● 8H2O, a new crandallite-derivative mineral from Tom's phosphate quarry, Kapunda, South Australia
Graulichite-(La), LaFe3+3(AsO4)2(OH)6, a new addition to the alunite supergroup from the Patte d'Oie mine, Bou Skour mining district, Morocco
Arrojadite-group nomenclature: sigismundite reinstated
Redefinition of beraunite, Fe3+6(PO4)4O(OH)4 ⋅ 6H2O, and discreditation of the name eleonorite: a re-investigation of type material from the Hrbek Mine (Czech Republic)
Redefinition of angastonite, CaMgAl2(PO4)2(OH)4 ⋅ 7H2O, as an amorphous mineral
Liguowuite, WO3, a new member of the A-site vacant perovskite type minerals from the Panzhihua–Xichang region, China
Kahlenbergite KAl11O17, a new β-alumina mineral and Fe-rich hibonite from the Hatrurim Basin, the Negev desert, Israel
Occurrence of silesiaite, a new calcium–iron–tin sorosilicate in the calcic skarn of El Valle-Boinás, Asturias, Spain
Grimmite, NiCo2S4, a new thiospinel from Příbram, Czech Republic
Freitalite, C14H10, a new aromatic hydrocarbon mineral from Freital, Saxony, Germany
Gobelinite, the Co analogue of ktenasite from Cap Garonne, France, and Eisenzecher Zug, Germany
Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids?
Wumuite (KAl0.33W2.67O9) – a new mineral with an HTB-type structure from the Panzhihua–Xichang region in China
Luxembourgite, AgCuPbBi4Se8, a new mineral species from Bivels, Grand Duchy of Luxembourg
Niasite and johanngeorgenstadtite, Ni2+4.5(AsO4)3 dimorphs from Johanngeorgenstadt, Germany
Laurentthomasite, Mg2K(Be2Al)Si12O30: a new milarite-group-type member from the Ihorombe region, Fianarantsoa Province, Madagascar
Tancaite-(Ce), ideally FeCe(MoO4)3 ● 3H2O: description and average crystal structure
Heliophyllite: a discredited mineral species identical to ecdemite
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Anthony R. Kampf, Joy Désor, and Chi Ma
Eur. J. Mineral., 36, 873–878, https://doi.org/10.5194/ejm-36-873-2024, https://doi.org/10.5194/ejm-36-873-2024, 2024
Short summary
Short summary
Karlseifertite is a new member of the dussertite group of the alunite supergroup from Tsumeb, Namibia. It is the first member of the dussertite group to be described based upon valency-imposed double site occupancy in the octahedrally coordinated cation site. It is also the first member of the alunite supergroup containing essential Ge.
Marco E. Ciriotti, Uwe Kolitsch, Fernando Cámara, Pietro Vignola, Frédéric Hatert, Erica Bittarello, Roberto Bracco, and Giorgio Maria Bortolozzi
Eur. J. Mineral., 36, 863–872, https://doi.org/10.5194/ejm-36-863-2024, https://doi.org/10.5194/ejm-36-863-2024, 2024
Short summary
Short summary
The article provides the standard description of bonacinaite, Sc3+(AsO4)·2H2O, the first natural scandium arsenate. The new mineral species was found in a few specimens in the dumps of the old Varenche Mine, Valle d'Aosta, Italy, which is therefore the type locality and the only locality in the world. Bonacinaite forms colourless (with faint to distinct violet tints), pseudohexagonal, thick tabular crystals, up to 0.25 mm in size, or as small, faintly violet lath-shaped crystals.
Richard Pažout, Michal Dušek, Jiří Sejkora, Jakub Plášil, Gheorghe Ilinca, and Zdeněk Dolníček
Eur. J. Mineral., 36, 641–656, https://doi.org/10.5194/ejm-36-641-2024, https://doi.org/10.5194/ejm-36-641-2024, 2024
Short summary
Short summary
A new sulfosalt mineral species, lazerckerite, Ag3.7Pb4.6(Sb7.9Bi3.8)Σ11.7S24, has been found, identified, structurally solved, and approved by the IMA. The mineral belongs to the Sb–Bi mixed members of the andorite branch of the lillianite homologous series. The description and characterization of the mineral are presented, and the ways of distinguishing the mineral from other similar members of the group on the basis of chemical results are explained.
Anthony R. Kampf, Gerhard Möhn, Chi Ma, George R. Rossman, Joy Désor, and Yunbin Guan
Eur. J. Mineral., 36, 605–614, https://doi.org/10.5194/ejm-36-605-2024, https://doi.org/10.5194/ejm-36-605-2024, 2024
Short summary
Short summary
Rotherkopfite is the first member of the neptunite group that does not contain lithium in its chemical formula. It was found at Rother Kopf, Eifel volcanic fields, Germany, where in occurs in cavities in a quartz–sanidine fragment embedded in a volcanic rock. Rotherkopfite occurs as dark brownish-red crystals, up to about 0.2 mm across. The intriguing crystal structure is based on two interwoven three-dimensional frameworks.
Cristian Biagioni, Anatoly V. Kasatkin, Fabrizio Nestola, Radek Škoda, Vladislav V. Gurzhiy, Atali A. Agakhanov, and Natalia N. Koshlyakova
Eur. J. Mineral., 36, 529–540, https://doi.org/10.5194/ejm-36-529-2024, https://doi.org/10.5194/ejm-36-529-2024, 2024
Short summary
Short summary
Zvěstovite-(Fe) is a new, Ag-rich, member of the tetrahedrite group, the most widespread sulfosalts in ore deposits. Its discovery stresses the chemical variability of this mineral group, allowing for a better understanding of the structural plasticity of these compounds, which are able to host a plethora of different elements typical of hydrothermal environments.
Rupert Hochleitner, Ian E. Grey, Anthony R. Kampf, Stephanie Boer, Colin M. MacRae, William G. Mumme, and Nicholas C. Wilson
Eur. J. Mineral., 36, 541–554, https://doi.org/10.5194/ejm-36-541-2024, https://doi.org/10.5194/ejm-36-541-2024, 2024
Short summary
Short summary
The paper describes the characterisation of fluor-rewitzerite, a new mineral species belonging to the paulkerrite group. The crystal structure of fluor-rewitzerite has been refined using microfocus synchrotron diffraction data, which allowed 25 of the possible 30 H atoms to be located, thus establishing key features of the H bonding. Crystallochemical trends are reviewed for seven recently characterised monoclinic paulkerrite-group minerals.
Kai Qu, Xianzhang Sima, Xiangping Gu, Weizhi Sun, Guang Fan, Zeqiang Yang, and Yanjuan Wang
Eur. J. Mineral., 36, 397–409, https://doi.org/10.5194/ejm-36-397-2024, https://doi.org/10.5194/ejm-36-397-2024, 2024
Short summary
Short summary
In this paper, the full description of the extremely rare [Ag6]4+-cluster-containing new tetrahedrite-group mineral kenoargentotetrahedrite-(Zn) is reported. The structure refinement result confirms the coupling between the site occupancy factor of subvalent hexasilver clusters at the M(2) site and that of the vacancy at the S(2) site. This relationship further substantiates the charge balance substitution mechanism of S-deficiency tetrahedrites: 6M(2)Ag+ + S(2)S2– = M(2)[Ag6]4+ + S(2)□.
Dan Holtstam, Jörgen Langhof, Henrik Friis, Andreas Karlsson, and Muriel Erambert
Eur. J. Mineral., 36, 311–322, https://doi.org/10.5194/ejm-36-311-2024, https://doi.org/10.5194/ejm-36-311-2024, 2024
Short summary
Short summary
We described two new minerals, igelströmite and manganoschafarzikite, from the Långban manganese–iron deposit in Värmland, Sweden. The chemical formulae are Fe3+(Sb3+Pb2+)O4 and Mn2+Sb3+2O4, respectively. They belong to a new mineral group, where all members have the same crystal structure. It is called the minium group, after the lead-oxide mineral that is the oldest known substance of this kind.
Inna Lykova, Ralph Rowe, Glenn Poirier, Henrik Friis, and Kate Helwig
Eur. J. Mineral., 36, 301–310, https://doi.org/10.5194/ejm-36-301-2024, https://doi.org/10.5194/ejm-36-301-2024, 2024
Short summary
Short summary
The first lanthanum-dominant mckelveyite group mineral, alicewilsonite-(YLa), Na2Sr2YLa(CO3)6∙3H2O, was found at the Paratoo copper mine, South Australia, Australia.
Ian E. Grey, Christian Rewitzer, Rupert Hochleitner, Anthony R. Kampf, Stephanie Boer, William G. Mumme, and Nicholas C. Wilson
Eur. J. Mineral., 36, 267–278, https://doi.org/10.5194/ejm-36-267-2024, https://doi.org/10.5194/ejm-36-267-2024, 2024
Short summary
Short summary
Macraeite is the fourth type mineral to be described from the Mangualde pegmatite, Portugal, and is the first paulkerrite-group mineral to be characterised from the locality. Its crystal structure has been refined using synchrotron diffraction data, and its chemical analysis, Raman spectrum, and optical properties are reported.
Inna Lykova, Ralph Rowe, Glenn Poirier, Henrik Friis, and Kate Helwig
Eur. J. Mineral., 36, 183–194, https://doi.org/10.5194/ejm-36-183-2024, https://doi.org/10.5194/ejm-36-183-2024, 2024
Short summary
Short summary
The new mckelveyite group mineral bainbridgeite-(YCe) was found at Mont Saint-Hilaire, Quebec, Canada.
Thomas Malcherek, Boriana Mihailova, Jochen Schlüter, Philippe Roth, and Nicolas Meisser
Eur. J. Mineral., 36, 153–164, https://doi.org/10.5194/ejm-36-153-2024, https://doi.org/10.5194/ejm-36-153-2024, 2024
Short summary
Short summary
The new mineral heimite was originally discovered on the mine dumps of the Grosses Chalttal deposit, Mürtschenalp district, Glarus, Switzerland. Its relatively simple chemistry is formed by water and ions of lead, copper, arsenic, hydrogen and oxygen. The mineral's crystal structure is related to the well-known duftite, which is also observed to grow on crystals of heimite. While heimite has so far only been found in the central Alps, it is expected to occur in other copper deposits worldwide.
Gabriela R. Ferracutti, Lucía M. Asiain, Antonella S. Antonini, Juan E. Tanzola, and M. Luján Ganuza
Eur. J. Mineral., 36, 87–98, https://doi.org/10.5194/ejm-36-87-2024, https://doi.org/10.5194/ejm-36-87-2024, 2024
Short summary
Short summary
The paper proposes an application called OxyEMG (Oxyspinel group End-Member Generator), which is an improved version of EMG. This tool allows for calculating the portions of 31 end-members of the oxyspinel group from data obtained with an electron microprobe. This is fundamental since this group of minerals is considered to be tectonic tracers; their integral composition should be taken into account and not only those end-members that make up the magnetite or ulvöspinel prisms.
Daniel Atencio, Andrezza A. Azzi, Kai Qu, Ritsuro Miyawaki, Ferdinando Bosi, and Koichi Momma
Eur. J. Mineral., 35, 1027–1030, https://doi.org/10.5194/ejm-35-1027-2023, https://doi.org/10.5194/ejm-35-1027-2023, 2023
Short summary
Short summary
This article introduces a new nomenclature system for the cerite group minerals. This system was necessary to allow the nomenclature of new species of minerals that are currently being described.
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Ian E. Grey, Stephanie Boer, Colin M. MacRae, Nicholas C. Wilson, William G. Mumme, and Ferdinando Bosi
Eur. J. Mineral., 35, 909–919, https://doi.org/10.5194/ejm-35-909-2023, https://doi.org/10.5194/ejm-35-909-2023, 2023
Short summary
Short summary
The paper describes the formal establishment of the paulkerrite group of minerals and its nomenclature. It includes the application of a site-merging procedure, coupled with a site-total-charge analysis, to obtain unambiguous end-member formulae. Application of the procedure has resulted in the revision of the end-member formulae for several of the group members.
Christian Rewitzer, Rupert Hochleitner, Ian E. Grey, Anthony R. Kampf, Stephanie Boer, and Colin M. MacRae
Eur. J. Mineral., 35, 805–812, https://doi.org/10.5194/ejm-35-805-2023, https://doi.org/10.5194/ejm-35-805-2023, 2023
Short summary
Short summary
Regerite is the first new mineral species to be described from the Kreuzberg pegmatite, Pleystein, in the Oberpfalz, Bavaria. It has been characterised using electron microprobe analysis, Raman spectroscopy, optical measurements and a synchrotron-based single-crystal structure refinement. The structure type for regerite has not been previously reported.
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Ian E. Grey, Erich Keck, Anthony R. Kampf, Colin M. MacRae, Robert W. Gable, William G. Mumme, Nicholas C. Wilson, Alexander M. Glenn, and Cameron Davidson
Eur. J. Mineral., 35, 635–643, https://doi.org/10.5194/ejm-35-635-2023, https://doi.org/10.5194/ejm-35-635-2023, 2023
Short summary
Short summary
Hochleitnerite is a new member of the paulkerrite group of minerals. Its crystal structure, chemical analyses and Raman spectroscopy are reported, and its crystallochemical properties are discussed in relation to other group members.
Lyudmila M. Lyalina, Ekaterina A. Selivanova, and Frédéric Hatert
Eur. J. Mineral., 35, 427–437, https://doi.org/10.5194/ejm-35-427-2023, https://doi.org/10.5194/ejm-35-427-2023, 2023
Short summary
Short summary
There are unresolved problems related to the nomenclature and identification of mineral species belonging to the triphylite group of minerals. They can be solved by discarding the traditional views on succession of mineral species during oxidation. In other words, it is necessary to separate the concepts of the origin of the mineral and the boundaries of the species.
Yves Moëlo
Eur. J. Mineral., 35, 333–346, https://doi.org/10.5194/ejm-35-333-2023, https://doi.org/10.5194/ejm-35-333-2023, 2023
Short summary
Short summary
Pyrite crystals with rhombohedral morphology have been known for a long time and were considered up to now as curiosities. The morphological study of well-crystallized, centimeter-sized crystals, often twinned, from the Madan Pb–Zn ore field permitted us to define such a pyrite variety as a pseudo-cubic trigonal derivative of pyrite.
Ian E. Grey, Rupert Hochleitner, Anthony R. Kampf, Stephanie Boer, Colin M. MacRae, John D. Cashion, Christian Rewitzer, and William G. Mumme
Eur. J. Mineral., 35, 295–304, https://doi.org/10.5194/ejm-35-295-2023, https://doi.org/10.5194/ejm-35-295-2023, 2023
Short summary
Short summary
Manganrockbridgeite, Mn2+2Fe3+3(PO4)3(OH)4(H2O), a new member of the rockbridgeite group, has been characterised using electron microprobe analyses, Mössbauer spectroscopy, optical properties and single-crystal X-ray diffraction. Whereas other rockbridgeite-group minerals have orthorhombic symmetry with a statistical distribution of 50%Fe3+/50% vacancies in M3-site octahedra, monoclinic manganrockbridgeite has full ordering of Fe3+ and vacancies in alternate M3 sites along the 5.2 Å axis.
Ian E. Grey, Rupert Hochleitner, Christian Rewitzer, Anthony R. Kampf, Colin M. MacRae, Robert W. Gable, William G. Mumme, Erich Keck, and Cameron Davidson
Eur. J. Mineral., 35, 189–197, https://doi.org/10.5194/ejm-35-189-2023, https://doi.org/10.5194/ejm-35-189-2023, 2023
Short summary
Short summary
Pleysteinite has been approved as a new mineral species, and we describe here the characterisation of the mineral and its relationship to related minerals benyacarite, paulkerrite and mantienneite. The characterisation includes the determination and refinement of the crystal structure, electron microprobe analyses, optical properties and interpretation of its Raman spectrum.
Inna Lykova, Ralph Rowe, Glenn Poirier, Gerald Giester, Kelsie Ojaste, and Henrik Friis
Eur. J. Mineral., 35, 133–142, https://doi.org/10.5194/ejm-35-133-2023, https://doi.org/10.5194/ejm-35-133-2023, 2023
Short summary
Short summary
A new mineral group – the mckelveyite group – consisting of seven carbonate minerals was established. One of the seven members, donnayite-(Y), was re-investigated and its belonging to the mckelveyite group was confirmed.
Inna Lykova, Ralph Rowe, Glenn Poirier, Henrik Friis, and Kate Helwig
Eur. J. Mineral., 35, 143–155, https://doi.org/10.5194/ejm-35-143-2023, https://doi.org/10.5194/ejm-35-143-2023, 2023
Short summary
Short summary
Alicewilsonite-(YCe), a new mckelveyite group, was found at Mont Saint-Hilaire, Quebec, Canada, and subsequently at the Saint-Amable sill, Quebec, Canada, and the Khibiny Massif, Kola Peninsula, Russia.
Rupert Hochleitner, Christian Rewitzer, Ian E. Grey, William G. Mumme, Colin M. MacRae, Anthony R. Kampf, Erich Keck, Robert W. Gable, and Alexander M. Glenn
Eur. J. Mineral., 35, 95–103, https://doi.org/10.5194/ejm-35-95-2023, https://doi.org/10.5194/ejm-35-95-2023, 2023
Short summary
Short summary
The paper gives a characterisation of the new mineral species, whiteite-(CaMnFe), which has recently been approved as a new mineral (proposal IMA2022-077). The study included a single-crystal structure refinement that, when combined with electron microprobe analyses, confirmed that the mineral was a new member of the whiteite subgroup of the jahnsite group of minerals. Relationships between the crystal structure and the unit-cell parameters for the whiteite-subgroup minerals are discussed.
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Chengyang Sun, Taijin Lu, Mingyue He, Zhonghua Song, and Yi Deng
Eur. J. Mineral., 34, 539–547, https://doi.org/10.5194/ejm-34-539-2022, https://doi.org/10.5194/ejm-34-539-2022, 2022
Short summary
Short summary
It was determined that growth bands showing the straight birefringence in octahedral sectors and the enrichment of graphite inclusions in cuboid sectors of Zimbabwean mixed-habit diamonds may both be due to the fluctuation of temperature during crystallization, and they displayed positive anomalies of plastic deformation, residual stress, nitrogen concentration, and VN3H defects. This conclusion clearly revealed the correlation between birefringence and spectroscopic properties of diamonds.
Derek D. V. Leung and Paige E. dePolo
Eur. J. Mineral., 34, 523–538, https://doi.org/10.5194/ejm-34-523-2022, https://doi.org/10.5194/ejm-34-523-2022, 2022
Short summary
Short summary
Minerals have complex crystal structures, but many common minerals are built from the same chemical building blocks. TotBlocks is a novel, open-source tool for investigating these structures. It consists of 3D-printed modules representing the silica tetrahedra and metal–oxygen octahedra that form the shared chemical building blocks of rock-forming minerals. TotBlocks is a low-cost visualization tool that relates mineral properties (habit, cleavage, and symmetry) to crystal structures.
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022, https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
Mariko Nagashima, Teruyoshi Imaoka, Takashi Kano, Jun-ichi Kimura, Qing Chang, and Takashi Matsumoto
Eur. J. Mineral., 34, 425–438, https://doi.org/10.5194/ejm-34-425-2022, https://doi.org/10.5194/ejm-34-425-2022, 2022
Short summary
Short summary
Ferro-ferri-holmquistite (IMA2022-020), ideal formula ☐Li2(Fe32+Fe23+)Si8O22(OH)2, was found in albitized granite from the Iwagi islet, Ehime, Japan. It is a Fe2+Fe3+ analogue of holmquistite and belongs to the lithium subgroup amphiboles. Ferro-ferri-holmquistite occurs as blue acicular crystals typically replacing the biotite and is the product of metasomatic mineral replacement reactions by dissolution–reprecipitation processes associated with Na- and Li-rich hydrothermal fluids.
Peter Elliott, Ian E. Grey, William G. Mumme, Colin M. MacRae, and Anthony R. Kampf
Eur. J. Mineral., 34, 375–383, https://doi.org/10.5194/ejm-34-375-2022, https://doi.org/10.5194/ejm-34-375-2022, 2022
Short summary
Short summary
This paper describes the characterisation of a new mineral from a South Australian phosphate quarry. The characterisation included chemical analyses, infrared spectroscopy, and a determination and refinement of the crystal structure. The results showed that the mineral has a unique crystal chemistry, but it is closely related to the well-known phosphate mineral crandallite.
Cristian Biagioni, Marco E. Ciriotti, Georges Favreau, Daniela Mauro, and Federica Zaccarini
Eur. J. Mineral., 34, 365–374, https://doi.org/10.5194/ejm-34-365-2022, https://doi.org/10.5194/ejm-34-365-2022, 2022
Short summary
Short summary
The paper reports the type description of the new mineral species graulichite-(La). This is a new addition to the dussertite group within the alunite supergroup, and its discovery improves our knowledge on the crystal chemistry of this important supergroup of minerals, having both technological and environmental applications.
Frank de Wit and Stuart J. Mills
Eur. J. Mineral., 34, 321–324, https://doi.org/10.5194/ejm-34-321-2022, https://doi.org/10.5194/ejm-34-321-2022, 2022
Short summary
Short summary
The name sigismundite has been reinstated for what was previously arrojadite-(BaFe). Sigismundite honours Pietro Sigismund (1874–1962), and this paper outlines his significant contributions to Italian mineralogy.
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Ian Edward Grey, Peter Elliott, William Gus Mumme, Colin M. MacRae, Anthony R. Kampf, and Stuart J. Mills
Eur. J. Mineral., 34, 215–221, https://doi.org/10.5194/ejm-34-215-2022, https://doi.org/10.5194/ejm-34-215-2022, 2022
Short summary
Short summary
A reinvestigation of angastonite from the type locality has shown that it is a mixture of crystalline phases and an amorphous phase, with the published formula corresponding to the amorphous phase. A redefinition proposal for angastonite as an amorphous mineral was approved by the IMA CNMNC. Our study showed how the amorphous phase formed and how it progressively recrystallises as new crandallite-related minerals.
Yuan Xue, Ningyue Sun, Hongping He, Aiqing Chen, and Yiping Yang
Eur. J. Mineral., 34, 95–108, https://doi.org/10.5194/ejm-34-95-2022, https://doi.org/10.5194/ejm-34-95-2022, 2022
Short summary
Short summary
Liguowuite, a new member of the non-stoichiometric perovskite group minerals, ideally WO3, has been found in the Panzhihua–Xichang region, China. Liguowuite is monoclinic and is in space group P21 / n, with a = 7.32582(18) Å, b = 7.54767(18) Å, c = 7.71128(18) Å, β = 90.678(3)°, V = 426.348(19) Å3, and Z = 8. According to the hierarchical scheme for perovskite supergroup minerals, liguowuite is the first reported example of A-site vacant single oxide, i.e., a new perovskite subgroup.
Biljana Krüger, Evgeny V. Galuskin, Irina O. Galuskina, Hannes Krüger, and Yevgeny Vapnik
Eur. J. Mineral., 33, 341–355, https://doi.org/10.5194/ejm-33-341-2021, https://doi.org/10.5194/ejm-33-341-2021, 2021
Short summary
Short summary
This is the first description of the new mineral kahlenbergite, found in the Hatrurim Basin, Israel, which is a region with unusual pyrometamorphic rocks. Kahlenbergite is chemically and structurally characterized. It is very similar to β-alumina compounds, which are synthetic materials known for their properties as fast ion conductors. Research in the Hatrurim Basin is needed to understand the complex mechanisms that created this mineralogically diverse
hotspotof new minerals.
Antonia Cepedal, Mercedes Fuertes-Fuente, and Agustín Martin-Izard
Eur. J. Mineral., 33, 165–174, https://doi.org/10.5194/ejm-33-165-2021, https://doi.org/10.5194/ejm-33-165-2021, 2021
Pavel Škácha, Jiří Sejkora, Jakub Plášil, Zdeněk Dolníček, and Jana Ulmanová
Eur. J. Mineral., 33, 175–187, https://doi.org/10.5194/ejm-33-175-2021, https://doi.org/10.5194/ejm-33-175-2021, 2021
Short summary
Short summary
Grimmite, sulfide of cobalt and nickel, is the new mineral for the mineralogical system.
Thomas Witzke, Martin Schreyer, Benjamin Brandes, René Csuk, and Herbert Pöllmann
Eur. J. Mineral., 33, 1–8, https://doi.org/10.5194/ejm-33-1-2021, https://doi.org/10.5194/ejm-33-1-2021, 2021
Short summary
Short summary
The new mineral species freitalite, C14H10, corresponding to the aromatic hydrocarbon anthracene, has been discovered on the mine dump of the Königin Carola shaft (Paul Berndt Mine), Freital, near Dresden, Saxony, Germany. Freitalite is a product of pyrolysis of coal and was formed by sublimation from a gas phase. The mineral was identified by several analytical methods.
Stuart J. Mills, Uwe Kolitsch, Georges Favreau, William D. Birch, Valérie Galea-Clolus, and Johannes Markus Henrich
Eur. J. Mineral., 32, 637–644, https://doi.org/10.5194/ejm-32-637-2020, https://doi.org/10.5194/ejm-32-637-2020, 2020
Fahui Xiong, Xiangzhen Xu, Enrico Mugnaioli, Mauro Gemmi, Richard Wirth, Edward S. Grew, Paul T. Robinson, and Jingsui Yang
Eur. J. Mineral., 32, 557–574, https://doi.org/10.5194/ejm-32-557-2020, https://doi.org/10.5194/ejm-32-557-2020, 2020
Short summary
Short summary
Two new nanominerals: titanium monophosphide and titanium disilicide, formed at pressures of Earth’s upper mantle by the action of methane and hydrogen from the mantle on basaltic melts in the Luobusa ophiolite (Tibet). The minerals were characterized by 3D electron diffraction, which can solve the crystal structures of phases less than a micrometer in size. The results contribute to our understanding of deeply subducted crustal rocks and their exhumation back to the Earth's surface.
Yuan Xue, Guowu Li, and Yingmei Xie
Eur. J. Mineral., 32, 483–494, https://doi.org/10.5194/ejm-32-483-2020, https://doi.org/10.5194/ejm-32-483-2020, 2020
Short summary
Short summary
Wumuite, ideally KAl0.33W2.67O9 with a hexagonal tungsten bronze (HTB)-type structure, is another new mineral containing potassium and tungsten found in the Pan–Xi region in China after tewite was discovered. In this study, artificial synthetic experiments have been conducted to explore the formation process of wumuite and tewite. Wumuite was speculated to be formed by a metasomatic reaction between W-rich hydrothermal fluids and the potassium feldspar in the monzonite.
Simon Philippo, Frédéric Hatert, Yannick Bruni, Pietro Vignola, and Jiří Sejkora
Eur. J. Mineral., 32, 449–455, https://doi.org/10.5194/ejm-32-449-2020, https://doi.org/10.5194/ejm-32-449-2020, 2020
Short summary
Short summary
Luxembourgite, ideally AgCuPbBi4Se8, is a new selenide discovered at Bivels, Grand Duchy of Luxembourg. The mineral forms tiny fibres deposited on dolomite crystals. Its crystal structure is similar to those of litochlebite and watkinsonite, and can be described as an alternation of two types of anionic layers: a pseudotetragonal layer four atoms thick and a pseudohexagonal layer one atom thick. The species named for the city of Luxembourg, close to its locality of discovery.
Anthony R. Kampf, Barbara P. Nash, Jakub Plášil, Jason B. Smith, and Mark N. Feinglos
Eur. J. Mineral., 32, 373–385, https://doi.org/10.5194/ejm-32-373-2020, https://doi.org/10.5194/ejm-32-373-2020, 2020
Cristiano Ferraris, Isabella Pignatelli, Fernando Cámara, Giancarlo Parodi, Sylvain Pont, Martin Schreyer, and Fengxia Wei
Eur. J. Mineral., 32, 355–365, https://doi.org/10.5194/ejm-32-355-2020, https://doi.org/10.5194/ejm-32-355-2020, 2020
Short summary
Short summary
Laurentthomasite is a new mineral from Madagascar showing a very strong dichroism going from deep blue to yellow-green colours. The physical and chemical characteristics of this gem quality mineral bring it to the attention of the jewel industry as well as collectors of cut stones.
Elena Bonaccorsi and Paolo Orlandi
Eur. J. Mineral., 32, 347–354, https://doi.org/10.5194/ejm-32-347-2020, https://doi.org/10.5194/ejm-32-347-2020, 2020
Short summary
Short summary
Molybdates are of a great interest due to their ionic conductivity, negative thermal expansion, and immobilization of radionuclides. The new mineral tancaite-(Ce), FeCe(MoO4)3•3H2O, shows a new structure type never observed in natural and synthetic molybdates. Its cubic average structure may be described as a derivative of the perovskite structure, in which Fe-centred octahedra are linked through MoO4 groups. The ordering of Mo and O atoms results in one or more complex superstructures.
Natale Perchiazzi, Ulf Hålenius, Nicola Demitri, and Pietro Vignola
Eur. J. Mineral., 32, 265–273, https://doi.org/10.5194/ejm-32-265-2020, https://doi.org/10.5194/ejm-32-265-2020, 2020
Short summary
Short summary
Type material for heliophyllite, preserved in the Swedish Museum of Natural History in Stockholm, was re-investigated through a combined EPMA (electron probe X-ray microanalysis), Raman, and X-ray powder diffraction (XRPD) and single-crystal study. EPMA chemical data, together with Raman and single-crystal structural studies, point to heliophyllite being identical to ecdemite. XRPD synchrotron data highlight the presence of a minor quantity of finely admixed finnemanite in the analyzed material.
Cited articles
Allen, R. L., Lundström, I., Ripa, M., and Christofferson, H.: Facies
analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province
with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen
region, Sweden, Econ. Geol., 91, 979–1008,
https://doi.org/10.2113/gsecongeo.91.6.979, 1996.
Andersson, U. B., Larsson, L., and Wikström, A.: Charnockites, pyroxene
granulites, and garnet-cordierite gneisses at a boundary between Early
Svecofennian rocks and Småland-Värmland granitoids, Karlskoga,
southern Sweden, Geol. Fören. Stockh. För., 114, 1–15,
https://doi.org/10.1080/11035899209453457, 1992.
Brown, I. D. and Altermatt, D.: Bond-valence parameters obtained from a
systematic analysis of the Inorganic Crystal Structure Database, Acta
Crystallogr., B41, 244–247, https://doi.org/10.1107/S0108768185002063,
1985.
Chukanov, N. V. and Chervonnyi, A. D.: Infrared spectroscopy of minerals and
related compounds, Springer, Dordrecht, 1047 pp., 2016.
Dunning, G. E., Walstrom, R. E., and Lechner, W.: Barium silicate mineralogy
of the western margin, North American Continent, Part 1: Geology, origin,
paragenesis and mineral distribution from Baja California Norte, Mexico,
western Canada and Alaska, USA, Baymin J., 19, 1–70, 2018.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of
bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr.,
B71, 562–578, https://doi.org/10.1107/S2052520615016297, 2015.
Gunn, V. K.: Characterisation of the metamorphic, fluid and mineralisation
history of the Zinkgruvan Zn-Pb-Ag deposit, Sweden, unpublished PhD thesis,
University of Southampton, 275 pp., 2002.
Hålenius, U.: Mössbauer study of pentacoordinated ferric iron in
orthoericssonite, Mineral. J., 17,
363–371, https://doi.org/10.2465/minerj.17.363, 1995.
Haugard, J.: En belgisk gruva vid norra Vättern, A-B, Seelig and C:o,
Stockholm, 149 pp., 1944.
Hedström, P., Simeonov, A., and Malmström, L.: The Zinkgruvan ore
deposit, south-central Sweden – a Proterozoic, proximal Zn-Pb-Ag deposit in
distal volcanic facies, Econ. Geol., 84, 1235–1261,
https://doi.org/10.2113/gsecongeo.84.5.1235, 1989.
Holtstam, D.: Jinshajiangite from the Norra Kärr alkaline intrusion,
Jönköping, Sweden, GFF, 120, 373–374,
https://doi.org/10.1080/11035899801204373, 1998.
Jacobsen, S. D., Smyth, J. R., Swope, R. J., and Downs, R. T.: Rigid-body
character of the SO4 groups in celestine, anglesite and barite, Can.
Mineral., 36, 1053–1060, 1998.
Jansson, N. F., Zetterqvist, A., Allen, R. L., Billström, K., and
Malmström, L.: Genesis of the Zinkgruvan stratiform Zn-Pb-Ag deposit and
associated dolomite-hosted Cu ore, Bergslagen, Sweden, Ore Geol. Rev., 82,
285–308, https://doi.org/10.1016/j.oregeorev.2016.12.004, 2017.
Jansson, N. F., Zetterqvist, A., Allen, R. L., and Malmström, L.:
Geochemical vectors for stratiform Zn-Pb-Ag sulfide and associated
dolomite-hosted Cu mineralization at Zinkgruvan, Bergslagen, Sweden, J.
Geochem. Explor., 190, 207–228,
https://doi.org/10.1016/j.gexplo.2018.03.015, 2018.
Kampf, A. R., Roberts, A. C., Venance, K. E., Dunning, G. E., and Walstrom,
R. E.: Ferroericssonite, the Fe2+ analogue of ericssonite, from Eastern
Fresno County, California, USA, Can. Mineral., 49, 587–594,
https://doi.org/10.3749/canmin.49.2.587, 2011.
Kampf, A. R., Roberts, A. C., Venance, K. E., Carbone, C., Belmonte, D.,
Dunning, G. E., and Walstrom, R. E.: Cerchiaraite-(Fe) and cerchiaraite-(Al),
two new barium cyclosilicate chlorides from Italy and California, USA,
Mineral. Mag., 77, 69–80, https://doi.org/10.1180/minmag.2013.077.1.07,
2013.
Mandarino, J. A.: The Gladstone-Dale relationship. IV. The compatibility
concept and its application, Can. Mineral., 19, 441–450, 1981.
Matsubara, S. and Nagashima, K.: Orthoericssonite from the Hijikuzu mine,
Iwate Prefecture, Japan, Mineral. J., 7, 513–525,
https://doi.org/10.2465/minerj1953.7.513, 1975.
McDonald, A. M., Grice, J. D., and Chao, G. Y.: The crystal structure of
yoshimuraite, a layered Ba-Mn-Ti silicophosphate, with comments of
five-coordinated Ti4+, Can. Mineral., 38, 649–656,
https://doi.org/10.2113/gscanmin.38.3.649, 2000.
Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of
crystal, volumetric and morphology data, J. Appl. Crystallogr., 44,
1272–1276, https://doi.org/10.1107/S0021889811038970, 2011.
Moore, P. B.: Ericssonite and orthoericssonite. Two new members of the
lamprophyllite group, from Långban, Sweden, Lithos, 4, 137–145,
https://doi.org/10.1016/0024-4937(71)90105-8, 1971.
Oberti, R., Ungaretti, L., Cannillo, E., and Hawthorne, F. C.: The mechanism
of Cl incorporation in amphibole, Am. Mineral., 78, 746–752, 1993.
Pouchou, J. L. and Pichoir, F.: A new model for quantitative X-ray
microanalysis. I. Application to the analysis of homogeneous samples,
Réch. Aérospatiale, 3, 13–36, 1984.
Prescher, C., McCammon, C., and Dubrovinsky, L.: MossA: a program for
analyzing energy-domain Mössbauer spectra from conventional and
synchrotron sources, J. Appl. Crystallogr., 45, 329–331,
https://doi.org/10.1107/S0021889812004979, 2012.
Robinson, K., Gibbs, G. V., and Ribbe, P. H.: Quadratic elongation: a
quantitative measure of distortion in coordination polyhedra, Science, 172,
567–70, 1971.
Sheldrick, G. M.: Crystal Structure refinement with SHELX. Acta Crystallogr.,
C71, 3–8, https://doi.org/10.1107/S2053229614024218, 2015.
Sokolova, E.: From structure topology to chemical composition. I. Structural
hierarchy and stereochemistry in titanium disilicate minerals, Can.
Mineral., 44, 1273–1330, https://doi.org/10.2113/gscanmin.44.6.1273, 2006.
Sokolova, E. and Cámara, F.: From structure topology to chemical
composition. XVII. Fe3+ versus Ti4+: The topology of the HOH layer
in ericssonite-2O, Ba2Fe Mn4(Si2O7)2 O2(OH)2, ferroericssonite,
Ba2Fe Fe (Si2O7)2O2(OH)2,
and yoshimuraite,
Ba4Ti Mn4(Si2O7)2(PO4)2O2(OH)2,
Can. Mineral., 52, 569–576, https://doi.org/10.3749/canmin.52.3.569, 2014.
Sokolova, E. and Cámara, F.: The seidozerite supergroup of TS-block
minerals: nomenclature and classification, with change of the following
names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to
hainite-(Y) and innelite-1T to innelite-1A, Mineral. Mag., 81, 1457–1484,
https://doi.org/10.1180/minmag.2017.081.010, 2017.
Sokolova, E., Abdu, Y., Hawthorne, F. C., Stepanov, A. V., Bekenova, G. K., and
Kotel'nikov, P. E.: Cámaraite,
Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,
F)7. I. A new Ti-silicate mineral from the Verkhnee Espe Deposit,
Akjailyautas Mountains, Kazakhstan, Mineral. Mag., 73, 847–854,
https://doi.org/10.1180/minmag.2009.073.5.847, 2009.
Sokolova, E., Cámara, F., and Hawthorne, F .C.: From structure topology
to chemical composition. XI.
Titanium silicates: crystal structures of innelite-1T and innelite-2M from the
Inagli massif, Yakutia, Russia,
and the crystal chemistry of innelite, Mineral. Mag., 75, 2495–2518,
https://doi.org/10.1180/minmag.2011.075.4.2495, 2011.
Sokolova, E., Hawthorne, F. C., Cámara, F., and Back, M. E.: The
ericssonite group of Fe3+ disilicates minerals, Can. Mineral., 56,
95–99, https://doi.org/10.3749/canmin.1700064, 2018.
Stephens, M. B., Ripa, M., Lundström, I., Persson, L., Bergman, T., Ahl,
M., Wahlgren, C. H., Persson, P. H., and Wickström, L.: Synthesis of the
bedrock geology in the Bergslagen region, Fennoscandian Shield,
south-central Sweden, Geological Survey of Sweden, BA58, 259 pp., 2009.
Stephens, M. B. and Jansson, N. F.: Paleoproterozoic (1.9–1.8 Ga)
syn-orogenic magmatism, sedimentation and mineralization in the Bergslagen
lithotectonic unit, Svecokarelian orogen, Geol. Soc. Mem., 50, 155–206,
https://doi.org/10.1144/M50-2017-40, 2020.
Strunz, H. and Nickel, E.: Strunz Mineralogical Tables, Chemical-Structural
Mineral Classification system, 9th Edn., E. Schweizerbart'sche
Verlagsbuchhandlung, Stuttgart, Germany, 870 pp., 2001.
Tegengren, F.: Sveriges ädlare malmer och bergver, Sveriges geologiska
undersökning Ca, 17, 654 pp., 1924.
Waldén, B.: Vieille Montagne, Hundra år i Sverige 1857–1957, AB
Littorin Rydén Boktryckeri, Örebro, 236 pp., 1957.
Watanabe, T., Takéuchi, Y., and Ito, J.: The minerals of the
Noda-Tamagawa mine, Iwate Prefecture, Japan. III. Yoshimuraite, a new
barium-titanium-manganese silicate mineral, Mineral. Journ., 3, 156–167,
https://doi.org/10.2465/minerj1953.3.156, 1961.
Wilson, A. J. C. (Ed.): International Tables for Crystallography, Volume C:
Mathematical, physical and chemical tables, Kluwer Academic, Dordrecht, NL,
883 pp., 1992.
Young, B. B. and Millman, A. P.: Microhardness and deformation
characteristics of ore minerals, T. I. Min. Metal., 73, 437–466, 1964.
Zhitova, E. S., Zolotarev, A. A., Krivovichev, S. V., Goncharov, A. G.,
Gabdrakhmanova, F. A., Vladykin, N. V., Krzhizhanovskaya, M. G., Shilovskikh,
V. V., Vlasenko, N. S., and Zolotarev, A. A.: Temperature-induced iron oxidation in
bafertisite
Ba2Fe Ti2(Si2O7)2O2(OH)2F2:
X-ray diffraction and Mössbauer spectroscopy study, Hyperfine Interact.,
238, 1–12, https://doi.org/10.1007/s10751-017-1468-9, 2017.
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill...