Articles | Volume 33, issue 6
https://doi.org/10.5194/ejm-33-659-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-659-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Zinkgruvanite, Ba4Mn2+4Fe3+2(Si2O7)2(SO4)2O2(OH)2, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
Fernando Cámara
Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Via Luigi Mangiagalli 34, 20133, Milan, Italy
Department of Geosciences, Swedish Museum of Natural History, Box
50007, 104 05 Stockholm, Sweden
Nils Jansson
Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
Erik Jonsson
Department of Mineral Resources, Geological Survey of Sweden,
Villavägen 18, 752 36 Uppsala, Sweden
Department of Earth Sciences, Uppsala University, Villavägen 16,
752 36 Uppsala, Sweden
Andreas Karlsson
Department of Geosciences, Swedish Museum of Natural History, Box
50007, 104 05 Stockholm, Sweden
Jörgen Langhof
Department of Geosciences, Swedish Museum of Natural History, Box
50007, 104 05 Stockholm, Sweden
Jaroslaw Majka
Department of Earth Sciences, Uppsala University, Villavägen 16,
752 36 Uppsala, Sweden
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Anders Zetterqvist
Zetterqvist Geokonsult AB, Kvarnbacksvägen 74, 168 74 Bromma,
Sweden
Related authors
Dan Holtstam, Fernando Cámara, Henrik Skogby, Andreas Karlsson, and Alessandro De Leo
Eur. J. Mineral., 37, 221–231, https://doi.org/10.5194/ejm-37-221-2025, https://doi.org/10.5194/ejm-37-221-2025, 2025
Short summary
Short summary
The mineral clino-ferro-suenoite, with the chemical formula ◻Mn2Fe2+5Si8O22(OH)2, was historically named “dannemorite” or “manganogrunerite” and is a member of the amphibole supergroup. It is now formally approved by the International Mineralogical Association. It occurs in iron–manganese-bearing rock from the Hilläng mines, Dalarna, Sweden, and is associated with the minerals fayalite, spessartine, ferro-actinolite, calcite, magnetite and pyrite. It formed by replacement of Mn-bearing fayalite.
Marco E. Ciriotti, Uwe Kolitsch, Fernando Cámara, Pietro Vignola, Frédéric Hatert, Erica Bittarello, Roberto Bracco, and Giorgio Maria Bortolozzi
Eur. J. Mineral., 36, 863–872, https://doi.org/10.5194/ejm-36-863-2024, https://doi.org/10.5194/ejm-36-863-2024, 2024
Short summary
Short summary
The article provides the standard description of bonacinaite, Sc3+(AsO4)·2H2O, the first natural scandium arsenate. The new mineral species was found in a few specimens in the dumps of the old Varenche Mine, Valle d'Aosta, Italy, which is therefore the type locality and the only locality in the world. Bonacinaite forms colourless (with faint to distinct violet tints), pseudohexagonal, thick tabular crystals, up to 0.25 mm in size, or as small, faintly violet lath-shaped crystals.
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022, https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
Erik Jonsson, Ulf Hålenius, Jaroslaw Majka, and Ferdinando Bosi
Eur. J. Mineral., 37, 269–277, https://doi.org/10.5194/ejm-37-269-2025, https://doi.org/10.5194/ejm-37-269-2025, 2025
Short summary
Short summary
Skogbyite, with the chemical formula Zr(Mg2+2Mn3+4)SiO12, is a new species in the braunite group of minerals. It was discovered in a complex mineral assemblage, essentially a very poor manganese ore, from the Långban Fe–Mn oxide deposit, Värmland County, Bergslagen ore province, Sweden. It is named after the Swedish mineralogist Henrik Skogby (b. 1956). It is a new mineral attesting to the localised mobility and reactivity of zirconium under very special geological conditions.
Dan Holtstam, Fernando Cámara, Henrik Skogby, Andreas Karlsson, and Alessandro De Leo
Eur. J. Mineral., 37, 221–231, https://doi.org/10.5194/ejm-37-221-2025, https://doi.org/10.5194/ejm-37-221-2025, 2025
Short summary
Short summary
The mineral clino-ferro-suenoite, with the chemical formula ◻Mn2Fe2+5Si8O22(OH)2, was historically named “dannemorite” or “manganogrunerite” and is a member of the amphibole supergroup. It is now formally approved by the International Mineralogical Association. It occurs in iron–manganese-bearing rock from the Hilläng mines, Dalarna, Sweden, and is associated with the minerals fayalite, spessartine, ferro-actinolite, calcite, magnetite and pyrite. It formed by replacement of Mn-bearing fayalite.
Dirk Spengler, Monika Koch-Müller, Adam Włodek, Simon J. Cuthbert, and Jarosław Majka
Solid Earth, 16, 233–250, https://doi.org/10.5194/se-16-233-2025, https://doi.org/10.5194/se-16-233-2025, 2025
Short summary
Short summary
Western Norwegian “diamond facies” eclogite contains tiny mineral inclusions of quartz and amphibole lamellae that are not stable in the diamond field. Low trace amounts of water in the lamellae-bearing host minerals suggest that the inclusion microstructure was not formed by fluid infiltration but by dehydration during early exhumation of these rocks. Some samples with higher water content argue that a late fluid overprint was spatially restricted and erased evidence of extreme metamorphism.
Marco E. Ciriotti, Uwe Kolitsch, Fernando Cámara, Pietro Vignola, Frédéric Hatert, Erica Bittarello, Roberto Bracco, and Giorgio Maria Bortolozzi
Eur. J. Mineral., 36, 863–872, https://doi.org/10.5194/ejm-36-863-2024, https://doi.org/10.5194/ejm-36-863-2024, 2024
Short summary
Short summary
The article provides the standard description of bonacinaite, Sc3+(AsO4)·2H2O, the first natural scandium arsenate. The new mineral species was found in a few specimens in the dumps of the old Varenche Mine, Valle d'Aosta, Italy, which is therefore the type locality and the only locality in the world. Bonacinaite forms colourless (with faint to distinct violet tints), pseudohexagonal, thick tabular crystals, up to 0.25 mm in size, or as small, faintly violet lath-shaped crystals.
Daniel Müller, Thomas R. Walter, Valentin R. Troll, Jessica Stammeier, Andreas Karlsson, Erica de Paolo, Antonino Fabio Pisciotta, Martin Zimmer, and Benjamin De Jarnatt
Solid Earth, 15, 1155–1184, https://doi.org/10.5194/se-15-1155-2024, https://doi.org/10.5194/se-15-1155-2024, 2024
Short summary
Short summary
We use uncrewed-aerial-system-derived optical and infrared data, mineralogical and geochemical analyses of rock samples, and surface degassing measurements to analyze degassing and hydrothermal alteration at the fumaroles of the La Fossa cone, Vulcano island, Italy. We give a detailed view of associated structures and dynamics, such as local alteration gradients, diffuse active units that significantly contribute to the total activity, or effects of permeability reduction and surface sealing.
Dan Holtstam and Ataollah Hassani
Hist. Geo Space. Sci. Discuss., https://doi.org/10.5194/hgss-2024-8, https://doi.org/10.5194/hgss-2024-8, 2024
Revised manuscript accepted for HGSS
Short summary
Short summary
The meteorite "Veramin" fell in Persia ca. 1880. In the records, there are ambiguities about the event and we therefore scrutinized the available sources. The current official name, coined by meteoricist A. Brezina, is not supported by Iranian documents. A key document is a rediscovered label with the main mass of the meteorite. The indicated place of the event, probably occurring in February–April 1880, is Booghin of in the historical Zarand district, 100 km NW from Veramin (Varamin).
Dan Holtstam, Jörgen Langhof, Henrik Friis, Andreas Karlsson, and Muriel Erambert
Eur. J. Mineral., 36, 311–322, https://doi.org/10.5194/ejm-36-311-2024, https://doi.org/10.5194/ejm-36-311-2024, 2024
Short summary
Short summary
We described two new minerals, igelströmite and manganoschafarzikite, from the Långban manganese–iron deposit in Värmland, Sweden. The chemical formulae are Fe3+(Sb3+Pb2+)O4 and Mn2+Sb3+2O4, respectively. They belong to a new mineral group, where all members have the same crystal structure. It is called the minium group, after the lead-oxide mineral that is the oldest known substance of this kind.
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022, https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
Cited articles
Allen, R. L., Lundström, I., Ripa, M., and Christofferson, H.: Facies
analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province
with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen
region, Sweden, Econ. Geol., 91, 979–1008,
https://doi.org/10.2113/gsecongeo.91.6.979, 1996.
Andersson, U. B., Larsson, L., and Wikström, A.: Charnockites, pyroxene
granulites, and garnet-cordierite gneisses at a boundary between Early
Svecofennian rocks and Småland-Värmland granitoids, Karlskoga,
southern Sweden, Geol. Fören. Stockh. För., 114, 1–15,
https://doi.org/10.1080/11035899209453457, 1992.
Brown, I. D. and Altermatt, D.: Bond-valence parameters obtained from a
systematic analysis of the Inorganic Crystal Structure Database, Acta
Crystallogr., B41, 244–247, https://doi.org/10.1107/S0108768185002063,
1985.
Chukanov, N. V. and Chervonnyi, A. D.: Infrared spectroscopy of minerals and
related compounds, Springer, Dordrecht, 1047 pp., 2016.
Dunning, G. E., Walstrom, R. E., and Lechner, W.: Barium silicate mineralogy
of the western margin, North American Continent, Part 1: Geology, origin,
paragenesis and mineral distribution from Baja California Norte, Mexico,
western Canada and Alaska, USA, Baymin J., 19, 1–70, 2018.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of
bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr.,
B71, 562–578, https://doi.org/10.1107/S2052520615016297, 2015.
Gunn, V. K.: Characterisation of the metamorphic, fluid and mineralisation
history of the Zinkgruvan Zn-Pb-Ag deposit, Sweden, unpublished PhD thesis,
University of Southampton, 275 pp., 2002.
Hålenius, U.: Mössbauer study of pentacoordinated ferric iron in
orthoericssonite, Mineral. J., 17,
363–371, https://doi.org/10.2465/minerj.17.363, 1995.
Haugard, J.: En belgisk gruva vid norra Vättern, A-B, Seelig and C:o,
Stockholm, 149 pp., 1944.
Hedström, P., Simeonov, A., and Malmström, L.: The Zinkgruvan ore
deposit, south-central Sweden – a Proterozoic, proximal Zn-Pb-Ag deposit in
distal volcanic facies, Econ. Geol., 84, 1235–1261,
https://doi.org/10.2113/gsecongeo.84.5.1235, 1989.
Holtstam, D.: Jinshajiangite from the Norra Kärr alkaline intrusion,
Jönköping, Sweden, GFF, 120, 373–374,
https://doi.org/10.1080/11035899801204373, 1998.
Jacobsen, S. D., Smyth, J. R., Swope, R. J., and Downs, R. T.: Rigid-body
character of the SO4 groups in celestine, anglesite and barite, Can.
Mineral., 36, 1053–1060, 1998.
Jansson, N. F., Zetterqvist, A., Allen, R. L., Billström, K., and
Malmström, L.: Genesis of the Zinkgruvan stratiform Zn-Pb-Ag deposit and
associated dolomite-hosted Cu ore, Bergslagen, Sweden, Ore Geol. Rev., 82,
285–308, https://doi.org/10.1016/j.oregeorev.2016.12.004, 2017.
Jansson, N. F., Zetterqvist, A., Allen, R. L., and Malmström, L.:
Geochemical vectors for stratiform Zn-Pb-Ag sulfide and associated
dolomite-hosted Cu mineralization at Zinkgruvan, Bergslagen, Sweden, J.
Geochem. Explor., 190, 207–228,
https://doi.org/10.1016/j.gexplo.2018.03.015, 2018.
Kampf, A. R., Roberts, A. C., Venance, K. E., Dunning, G. E., and Walstrom,
R. E.: Ferroericssonite, the Fe2+ analogue of ericssonite, from Eastern
Fresno County, California, USA, Can. Mineral., 49, 587–594,
https://doi.org/10.3749/canmin.49.2.587, 2011.
Kampf, A. R., Roberts, A. C., Venance, K. E., Carbone, C., Belmonte, D.,
Dunning, G. E., and Walstrom, R. E.: Cerchiaraite-(Fe) and cerchiaraite-(Al),
two new barium cyclosilicate chlorides from Italy and California, USA,
Mineral. Mag., 77, 69–80, https://doi.org/10.1180/minmag.2013.077.1.07,
2013.
Mandarino, J. A.: The Gladstone-Dale relationship. IV. The compatibility
concept and its application, Can. Mineral., 19, 441–450, 1981.
Matsubara, S. and Nagashima, K.: Orthoericssonite from the Hijikuzu mine,
Iwate Prefecture, Japan, Mineral. J., 7, 513–525,
https://doi.org/10.2465/minerj1953.7.513, 1975.
McDonald, A. M., Grice, J. D., and Chao, G. Y.: The crystal structure of
yoshimuraite, a layered Ba-Mn-Ti silicophosphate, with comments of
five-coordinated Ti4+, Can. Mineral., 38, 649–656,
https://doi.org/10.2113/gscanmin.38.3.649, 2000.
Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of
crystal, volumetric and morphology data, J. Appl. Crystallogr., 44,
1272–1276, https://doi.org/10.1107/S0021889811038970, 2011.
Moore, P. B.: Ericssonite and orthoericssonite. Two new members of the
lamprophyllite group, from Långban, Sweden, Lithos, 4, 137–145,
https://doi.org/10.1016/0024-4937(71)90105-8, 1971.
Oberti, R., Ungaretti, L., Cannillo, E., and Hawthorne, F. C.: The mechanism
of Cl incorporation in amphibole, Am. Mineral., 78, 746–752, 1993.
Pouchou, J. L. and Pichoir, F.: A new model for quantitative X-ray
microanalysis. I. Application to the analysis of homogeneous samples,
Réch. Aérospatiale, 3, 13–36, 1984.
Prescher, C., McCammon, C., and Dubrovinsky, L.: MossA: a program for
analyzing energy-domain Mössbauer spectra from conventional and
synchrotron sources, J. Appl. Crystallogr., 45, 329–331,
https://doi.org/10.1107/S0021889812004979, 2012.
Robinson, K., Gibbs, G. V., and Ribbe, P. H.: Quadratic elongation: a
quantitative measure of distortion in coordination polyhedra, Science, 172,
567–70, 1971.
Sheldrick, G. M.: Crystal Structure refinement with SHELX. Acta Crystallogr.,
C71, 3–8, https://doi.org/10.1107/S2053229614024218, 2015.
Sokolova, E.: From structure topology to chemical composition. I. Structural
hierarchy and stereochemistry in titanium disilicate minerals, Can.
Mineral., 44, 1273–1330, https://doi.org/10.2113/gscanmin.44.6.1273, 2006.
Sokolova, E. and Cámara, F.: From structure topology to chemical
composition. XVII. Fe3+ versus Ti4+: The topology of the HOH layer
in ericssonite-2O, Ba2Fe Mn4(Si2O7)2 O2(OH)2, ferroericssonite,
Ba2Fe Fe (Si2O7)2O2(OH)2,
and yoshimuraite,
Ba4Ti Mn4(Si2O7)2(PO4)2O2(OH)2,
Can. Mineral., 52, 569–576, https://doi.org/10.3749/canmin.52.3.569, 2014.
Sokolova, E. and Cámara, F.: The seidozerite supergroup of TS-block
minerals: nomenclature and classification, with change of the following
names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to
hainite-(Y) and innelite-1T to innelite-1A, Mineral. Mag., 81, 1457–1484,
https://doi.org/10.1180/minmag.2017.081.010, 2017.
Sokolova, E., Abdu, Y., Hawthorne, F. C., Stepanov, A. V., Bekenova, G. K., and
Kotel'nikov, P. E.: Cámaraite,
Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,
F)7. I. A new Ti-silicate mineral from the Verkhnee Espe Deposit,
Akjailyautas Mountains, Kazakhstan, Mineral. Mag., 73, 847–854,
https://doi.org/10.1180/minmag.2009.073.5.847, 2009.
Sokolova, E., Cámara, F., and Hawthorne, F .C.: From structure topology
to chemical composition. XI.
Titanium silicates: crystal structures of innelite-1T and innelite-2M from the
Inagli massif, Yakutia, Russia,
and the crystal chemistry of innelite, Mineral. Mag., 75, 2495–2518,
https://doi.org/10.1180/minmag.2011.075.4.2495, 2011.
Sokolova, E., Hawthorne, F. C., Cámara, F., and Back, M. E.: The
ericssonite group of Fe3+ disilicates minerals, Can. Mineral., 56,
95–99, https://doi.org/10.3749/canmin.1700064, 2018.
Stephens, M. B., Ripa, M., Lundström, I., Persson, L., Bergman, T., Ahl,
M., Wahlgren, C. H., Persson, P. H., and Wickström, L.: Synthesis of the
bedrock geology in the Bergslagen region, Fennoscandian Shield,
south-central Sweden, Geological Survey of Sweden, BA58, 259 pp., 2009.
Stephens, M. B. and Jansson, N. F.: Paleoproterozoic (1.9–1.8 Ga)
syn-orogenic magmatism, sedimentation and mineralization in the Bergslagen
lithotectonic unit, Svecokarelian orogen, Geol. Soc. Mem., 50, 155–206,
https://doi.org/10.1144/M50-2017-40, 2020.
Strunz, H. and Nickel, E.: Strunz Mineralogical Tables, Chemical-Structural
Mineral Classification system, 9th Edn., E. Schweizerbart'sche
Verlagsbuchhandlung, Stuttgart, Germany, 870 pp., 2001.
Tegengren, F.: Sveriges ädlare malmer och bergver, Sveriges geologiska
undersökning Ca, 17, 654 pp., 1924.
Waldén, B.: Vieille Montagne, Hundra år i Sverige 1857–1957, AB
Littorin Rydén Boktryckeri, Örebro, 236 pp., 1957.
Watanabe, T., Takéuchi, Y., and Ito, J.: The minerals of the
Noda-Tamagawa mine, Iwate Prefecture, Japan. III. Yoshimuraite, a new
barium-titanium-manganese silicate mineral, Mineral. Journ., 3, 156–167,
https://doi.org/10.2465/minerj1953.3.156, 1961.
Wilson, A. J. C. (Ed.): International Tables for Crystallography, Volume C:
Mathematical, physical and chemical tables, Kluwer Academic, Dordrecht, NL,
883 pp., 1992.
Young, B. B. and Millman, A. P.: Microhardness and deformation
characteristics of ore minerals, T. I. Min. Metal., 73, 437–466, 1964.
Zhitova, E. S., Zolotarev, A. A., Krivovichev, S. V., Goncharov, A. G.,
Gabdrakhmanova, F. A., Vladykin, N. V., Krzhizhanovskaya, M. G., Shilovskikh,
V. V., Vlasenko, N. S., and Zolotarev, A. A.: Temperature-induced iron oxidation in
bafertisite
Ba2Fe Ti2(Si2O7)2O2(OH)2F2:
X-ray diffraction and Mössbauer spectroscopy study, Hyperfine Interact.,
238, 1–12, https://doi.org/10.1007/s10751-017-1468-9, 2017.
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill...