Articles | Volume 32, issue 3
https://doi.org/10.5194/ejm-32-325-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-325-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rhönite in Cenozoic alkali basalt from Changle, Shandong Province, China, and its significance
Fan-Mei Kong
CORRESPONDING AUTHOR
Shandong Provincial Key Laboratory of Depositional Mineralization
& Sedimentary Minerals, College of Earth Science and Engineering,
Shandong University of Science and Technology, Qingdao 266590, China
Hans-Peter Schertl
Faculty of Geosciences, Institute of
Geology, Mineralogy and Geophysics, Ruhr University Bochum, 44780 Bochum, Germany
College of Earth Science and Engineering, Shandong University of
Science and Technology, Qingdao 266590, China
Ling-Quan Zhao
Faculty of Geosciences, Institute of
Geology, Mineralogy and Geophysics, Ruhr University Bochum, 44780 Bochum, Germany
Xu-Ping Li
Shandong Provincial Key Laboratory of Depositional Mineralization
& Sedimentary Minerals, College of Earth Science and Engineering,
Shandong University of Science and Technology, Qingdao 266590, China
Xiao-Han Liu
Shandong Provincial Key Laboratory of Depositional Mineralization
& Sedimentary Minerals, College of Earth Science and Engineering,
Shandong University of Science and Technology, Qingdao 266590, China
Cited articles
Anan'ev, V. V. and Selyangin, O. B.: Rhonite in molten inclusions from the
olivine of Allivalite Nodules from Malyi Semyachik volcano and basalts of
Klyuchevskoi volcano, Kamchatka, J. Volcanol. Seismol., 5, 335–340, https://doi.org/10.1134/S0742046311050022, 2011.
Boivin, P.: Données expérimentales préliminaires sur la
stabilité de la rhönite é 1 atmosphére. Application aux
gisements naturels, Bull. Minér., 103, 491–502, https://doi.org/10.3406/bulmi.1980.7411, 1980.
Bonaccorsi, E., Merlino, S., and Pasero, M.: Rhönite: structural and
microstructural features, crystal chemistry and polysomatic relationships, Eur.
J. Mineral., 2, 203–218, https://doi.org/10.1127/ejm/2/2/0203, 1990.
Brögger, W. C.: Mineralien der südnorweg. Augitsyenite. 50.
Aenigmatit, Breithaupt (Kölbingit, Breithaupt), Z. Krystallogr.
Mineral., 16, 423–433, 1890.
Chen, L., Zheng, T., and Xu, W.: A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration, J. Geophys. Res., 111, B09312, https://doi.org/10.1029/2005JB003974, 2006.
Chen, L.-H., Zeng, G., Jiang, S.-Y., Hofmann, A. W., Xu, X.-S., and Pan, M.-B.:
Sources of Anfengshan basalts: subducted lower crust in the Sulu UHP belt,
China, Earth Planet. Sci. Lett., 286, 426–435, https://doi.org/10.1016/j.epsl.2009.07.006, 2009.
Coltorti, M., Beccaluva, L., Bonadiman, C., Faccini, B., Ntaflos, T., and Siena,
F.: Amphibole genesis via metasomatic reaction with clinopyroxene in mantle
xenoliths from Victoria Land, Antarctica, Lithos, 75, 115–139, https://doi.org/10.1016/j.lithos.2003.12.021, 2004.
Coltorti, M., Bonadiman, C., Faccini, B., Ntaflos, T., and Siena, F.: Slab melt
and intraplate metasomatism in Kapfenstein mantle xenoliths (Styria Basin,
Austria, in: Melting,
Metasomatism and Metamorphic Evolution in the Lithospheric Mantel, edited by: Coltorti, M., Downes, H., and Piccardo, G. B., Lithos.
Special Issue, 94, 66–89, https://doi.org/10.1016/j.lithos.2006.07.003, 2007a.
Coltorti, M., Bonadiman, C., Faccini, B., Gregoire, M., O'Reilly, S. Y., and
Powell, W.: Amphiboles from suprasubduction and intraplate lithospheric
mantle, Lithos, 99, 68–84, https://doi.org/10.1016/j.lithos.2007.05.009, 2007b.
Coltorti, M., Bonadiman, C., O'Reilly, S. Y., Griffin, W. L., and Pearson, N. J.:
Buoyant ancient continental mantle embedded in oceanic lithosphere (Sal
Island, Cape Verde Archipelago), Lithos., 120, 223–233, https://doi.org/10.1016/j.lithos.2009.11.005, 2010.
Dai, L.-Q., Zheng, Y.-F., and Zhao, Z.-F.: Termination time of peak
decratonization in North China: geochemical evidence from mafic igneous
rocks, Lithos., 240–243, 327–336, https://doi.org/10.1016/j.lithos.2015.11.014,
2016.
Dasgupta, R., Jackson, M. G., and Lee, C. T.: Major element chemistry of ocean
island basalts–conditions of mantle melting and heterogeneity of mantle
source, Earth Planet. Sci. Lett., 289, 377–392, https://doi.org/10.1016/j.epsl.2009.11.027, 2010.
Deer, W. A., Howie, R. A., and Zussman, J. (Eds.): Rock–Forming Minerals, Vol. 2a,
Single Chain Silicates, Wiley, New York, Americian, 1978.
Doroozi, R., Vaccaro, C., and Masoudi, F.: Rhönite in undersaturated
alkaline gabbroic rocks, Central Alborz, North Iran: petrography and mineral
chemistry, Arab. J. Geosc., 9, 665,
https://doi.org/10.1007/s12517-016-2684-3, 2016.
Fan, W. M., Zhang, H. F., Baker, J., Jarvis, K. E., Mason, P. R. D., and Menzies,
M. A.: On and off the North China Craton: where is the Archaean keel?, J.
Petrol, 41, 933–950, https://doi.org/10.1093/petrology/41.7.933, 2000.
Galuskina, I. O., Galuskin, E. V., Pakhomova, A. S., Widmer, R., Armbruster,
T., Krüger, B., Grew, E. S., Vapnik, Y., Dzierażanowski, P., and Murshko,
M.: Khesinite,
[ ],
a new rhönite-group (sapphirine supergroup) mineral from the Negev
Desert, Israel – natural analogue of the SFCA phase, Eur. J. Mineral., 29,
101–116, https://doi.org/10.1127/ejm/2017/0029-2589, 2017.
Grapes, R. and Keller, J.: Fe2+–dominant rhönite in
undersaturated alkaline basaltic rocks, Kaiserstuhl volcanic complex, Upper
Rhine Graben, SW Germany, Eur. J. Mineral., 22, 285–292, https://doi.org/10.1007/s12517-016-2684-3, 2010.
Grapes, R. H., Wysoczanski, R. J., and Hoskin, P. W. O.: Rhönite paragenesis in
pyroxenite xenoliths, Mount Sidley volcano, Marie Byrd Land, West
Antarctica, Mineral. Mag., 67, 639–651, https://doi.org/10.1180/0026461036740123,
2003.
Grew, E. S., Hålenius, U., Pasero, M., and Barbier, J.: Recommended
nomenclature for the sapphrine and surinamite groups (sapphirine
supergroup), Mineral. Mag., 72, 839–876, https://doi.org/10.1180/minmag.2008.072.4.839, 2008.
Grützner, T., Prelević, D., and Akal, C.: Geochemistry and origin of
ultramafic enclaves and their basanitic host rock from Kula Volcano, Turkey,
Lithos, 180–181, 58–73, https://doi.org/10.1016/j.lithos.2013.08.001, 2013.
He, H.-Y., Deng, C.-L., Pan Y.-X., Deng, T., Luo Z.-H., Sun, J.-M., and Zhu,
R-X.: New 40Ar/39Ar dating results from the Shanwang Basin,
eastern China: Constraints on the age of the Shanwang Formation and
associated biota, Phys. Earth Planet. In., 187, 66–75, https://doi.org/10.1016/j.pepi.2011.05.002, 2011a.
He, H.-Y., Zhu, R.-X., and Saxton, J.: Noble gas isotopes in corundum and
peridotite xenoliths from the eastern North China Craton: Implication for
comprehensive refertilization of lithospheric mantle, Phys. Earth Planet.
In., 189, 185–191, https://doi.org/10.1016/j.pepi.2011.09.001, 2011b.
Hofmann, A. W. and White, W. M.: Mantle plumes from ancient oceanic crust,
Earth Planet. Sci. Lett., 57, 421–436, https://doi.org/10.1016/0012-821X(82)90161-3,
1982.
Hu, W.-X., Song, Y.-C., Chen, X.-M., Tao, M.-X., and Zhang, L.-P.: Noble gases
in corundum megacrysts from the basalts in Changle, Shandong Province,
eastern China, Chinese Sci. Bull., 52, 380–387, https://doi.org/10.1007/s11434-007-0044-0, 2007.
Huckenholz, H., Kunzmann, T., and Spicker, C.: Stability of titanian
magnesio–hastingsite and its breakdown to rhönite bearing assemblages,
Terra Cognita., 8, p. 11, 1988.
Ionov, D. A. and Hofmann, A. W.: Nb–Ta–rich mantle amphiboles and
micas: implications for subduction–related metasomatic trace element
fractionations, Earth Planet. Sci. Lett., 131, 341–356, https://doi.org/10.1016/0012-821X(95)00037-D, 1995.
Irving, A. J. and Frey, F. A.: Trace element abundances in megacrysts and
their host basalts: constraints on partition coefficients and megacryst
genesis, Geochim. Cosmochim. Acta, 48, 1201–1221, https://doi.org/10.1016/0016-7037(84)90056-5, 1984.
Johnston, A. D. and Stout, J. H.: A highly oxidized ferrian salite–,
kennedyite–, forsterite–, and rhönite–bearing alkali gabbro from
Kauai, Hawaii and its mantle xenoliths, Am. Mineral., 69, 57–68, 1984.
Johnston, A. D. and Stout, J. H.: Compositional variation of naturally
occurring rhoenite, Am. Mineral, 70, 1211–1216, 1985.
Kogarko, L. N., Hellebrand, E., and Ryabchikov, I. D.: Trace Element Partitioning
between Rhönite and Silicate Melt in Cape Verde Volcanics, Geochem.
Int., 43, 3–9, 2005.
Kong, F. M., Li, X. P., Wu, S., Li, S. J., and Xu, Y. M.: Petrography, mineralogy
and the evolution of peridotites from the Dongdegou, southwestern Tianshan
and its geological significance, Acta Petrotol. Sin. (in chinese with
English abstract), 29, 723–738, 2013.
Kong, F. M., Liu, X., Li, X. P., Guo, J. H., and Zhao, G. C.: Mineralogical and
petrogeochemical characteristics of ultramafic rocks from the metamorphic
basement of the Jiaobei terrane, Acta Petrotol. Sin. (in Chinese with
English abstract), 31, 1549–1563,
2015.
Kong, F. M., Li, X. P., Zhao, L. Q., and Chen, S.: Petrography and Mineral
Chemistry of Corundum and Spinel Menocryst in the Cenozoic Basalt at
Changle, Shandong Prinvice, Geol. Rev. (in Chinese with English abstract),
63, 441–457, 2017.
Kóthay, K., Peto, M., Sharygin, V. V., Torok, K., and Szabo, C.: Silicate
melt inclusions in olivine phenocrysts from Hegyestu (Bakony–Balaton
Highland) and Pecsko alkaline basalts (Nograd–Gomor), Hungary, in: EGS –
AGU – EUG Joint Assembly, Nice, France, 6–11 April 2003, abstract id. 748,
2003.
Kretz, R.: Symbols for rock–forming minerals, Am. Mineral., 68, 277–279,
https://doi.org/10.1016/0040-1951(84)90122-7, 1983.
Kunzmann, T.: Rhönit: Mineralchemie, Paragenese und Stabilität in
alkalibasaltischen Vulkaniten, Ein Beitrag zur Minerogenese der
Rhönit–Änigmatit–Mischkristallgruppe, PhD thesis,
Ludwig-Maximillians University, Munich, p. 151, 1989.
Kunzmann, T.: The aenigmatite–rhönite mineral group, Eur. J. Mineral., 11,
743–756, https://doi.org/10.1127/ejm/11/4/0743, 1999.
Li, S. G. and Wang, Y.: Formation time of the big mantle wedge beneath
eastern China and a new lithospheric thinning mechanism of the North China
craton–Geodynamic effects of deep recycled carbon, Sci. China Earth Sci., 61,
853–868, https://doi.org/10.1007/s11430-017-9217-7, 2018.
Li, S.-G., Yang, W., Ke, S., Meng, X., Tian, H., Xu, L., He, Y., Huang, J.,
Wang, X.-Z., Xia, Q.-K., Sun, W., Yang, X., Ren, Z.-Y., Wei, H., Liu, Y.,
Meng, F., and Yan, J.: Deep carbon cycles constrained by a large–scale mantle
Mg isotope anomaly in eastern China, Natl. Sci. Rev., 4, 111–120, https://doi.org/10.1093/nsr/nww070, 2017.
Liu, D.-Y., Nutman, A. P., Compston, W., Wu, J.-S., and Shen, Q.-H.: Remnants of
3800Ma crust in the Chinese part of the Sino–Korean Craton, Geology, 20, 1–20, https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2, 1992.
Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., and Wang, D.: Continental and
oceanic crust recycling–induced melt–peridotite interactions in the
Trans–North China Orogen: U–Pb dating, Hf isotopes and trace elements in
zircons from mantle xenoliths, J. Petrol., 51, 537–571,
https://doi.org/10.1093/petrology/egp082, 2010.
Liu, Y.-S., Gao, S., Kelemen, P. B., and Xu, W.-L.: Recycled crust controls
contrasting source compositions of Mesozoic and Cenozoic basalts in the
North China Craton, Geochim. Cosmochim. Acta, 72, 2349–2376, https://doi.org/10.1016/j.gca.2008.02.018, 2008a.
Liu, Y.-S., Hu, Z.-C., Gao, S., Günther, D., Xu, J., Gao, C.-G., and Chen,
H.-H.: In situ analysis of major and trace elements of anhydrous minerals by
LA–ICP–MS without applying an internal standard, Chem. Geol., 257, 34–43, https://doi.org/10.1016/j.chemgeo.2008.08.004, 2008b.
Luo, D., Chen, L.-H., and Zeng, G.: Gensis of intra–continental strongly
alkaline volcanic rocks: a case study of Dashan nephelinites in Wudi,
Shandong Province, North China, Acta Petrol. Sin. (in Chinese with English
abstract), 25, 311–319, https://doi.org/10.2307/2202054, 2009.
McDonough, W. F. and Sun, S. S.: The composition of Earth, Chem. Geol., 120, 223–253, https://doi.org/10.1016/0009-2541(94)00140-4, 1995.
Meng, F.-C., Safonova, I., Chen, S.-S., Liu, J.-Q., and Rioual, P.: Late
Cenozoic intra–plate basalts of the Greater Khingan Range in NE China and
Khangai Province in Central Mongolia, Gondwana Res., 63, 65–84, https://doi.org/10.1016/j.gr.2018.05.009, 2018.
Nédli, Z. and Tóth, T. M.: Petrography and mineral chemistry of
Rhönite in ocelli of alkali basalt from villany mts, SW Hungary, Acta
Mineral.-Petrogr., 44, 51–56, 2003.
Niu, Y.-L. and O'Hara, M. J.: Origin of ocean island basalts: a new
perspective from petrology, geochemistry, and mineral physics
considerations, J. Geophys. Res.-Planet., 108, 2209–2228,
https://doi.org/10.1029/2002JB002048, 2003.
Palache, C.: Crystallographic notes on anapaite, ainigmatite and eudidymite,
Z. Kristallogr.-Cryst. Mater., 86, 280–291, https://doi.org/10.1524/zkri.1933.86.1.280, 1933.
Peretyazhko, I. S., Savina, E. A., and Khrîmova, E. A.: Minerals of the
rhönite-kuratite series in paralavas from a new combustion metamorphic
complex in the choir–Nyalga basin (Central Mongolia): composition, mineral
assemblages and formation conditions, Mineral. Mag., 81, 949–974, https://doi.org/10.1180/minmag.2016.080.144, 2017.
Pilet, S., Baker, M. B., and Stolper, E. M.: Metasomatized lithosphere and the
origin of alkaline lavas, Science, 320, 916–919, https://doi.org/10.1126/science.1156563, 2008.
Ramalho, R., Helffrich, G., Schmidt, D. N., and Vance, D.: Tracers of
uplift and subsidence in the Cape Verde archipelago, J. Geol. Soc., London,
167, 519–538, https://doi.org/10.1144/0016-76492009-056, 2010.
Sharygin, V. V., Kóthay, K., Szabó, C. S., Timina, T. J.,
Török, K., Vapnik, Y., and Kuzmin, D. V.: Rhönite in alkali basalts:
silicate melt inclusions in olivine phenocrysts, Russ. Geol. Geophys., 52, 1334–1352,
https://doi.org/10.1016/j.rgg.2011.10.006, 2011.
Shchipalkina, N. V., Pekov, V., Chukanov, N. V., Koshlyakova, N. N., Ternes,
B., and Schuller, W.: Crystal chemistry of dorrite from the Eifel volcanic
region, Germany, and chemical variations in the
khesinite-dorrite-rhönite-kuratite solid-solution system, Miner.
Petrol., 113, 249–259, https://doi.org/10.1007/s00710-018-0645-0, 2019.
Su, F., Xiao, Y., He, H.-Y., Su, B.-X., Wang, Y., and Zhu, R.-X.: He and Ar
isotope geochemistry of pyroxene megacrysts and mantle xenoliths in Cenozoic
basalt from the Changle–Linqu area in western Shandong, Chinese Sci. Bull.,
59, 396–411, https://doi.org/10.1007/s11434-013-0027-2, 2014.
Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematic of oceanic
basalt: implication for mantle composition and process, in: Magmatism in
Oceanic Basins, edited by: Saunders, A. D. and Norry, M. J., Geol. Soc. Spec.
Publ. Lond., London, 42, 313–345, 1989.
Tang, Y.-J., Zhang, H.-F., and Ying, J.-F.: Asthenosphere–lithospheric mantle
interaction in an extensional regime: implication from the geochemistry of
Cenozoic basalts from Taihang Mountains, North China Craton, Chem. Geol., 233,
309–327, https://doi.org/10.1016/j.chemgeo.2006.03.013, 2006.
Treiman, A. H.: Rhönite in Luna 24 pyroxenes: First find from the Moon,
and implications for volatiles in planetary magmas, Am. Mineral., 93, 488–491, https://doi.org/10.2138/am.2008.2781, 2008.
Vogelsang, K.: Beitráge zur Kenntnis der Trachyt– und Basaltgesteine
der Hohen Eifel, Z. dt. Geol. Ges., 42, 1–57, 1890.
Walenta, K.: Zur Kristallographie des Rhönits, Z. Kristallogr., 130S, 14–230, https://doi.org/10.1524/zkri.1969.130.16.214, 1969.
White, R. W.: Ultramafic inclusions in basaltic rocks from Hawaii, Contrib.
Mineral. Petrol., 12, 245–314, https://doi.org/10.1007/BF00518082, 1966.
Wilshire, H. G., Calk L. C., and Schwarzman, E. C.: Kaersutite – a product
of reaction between pargasite and basanite at Dish Hill, California, Earth.
Planet. Sci. Lett., 10, 281–284,
https://doi.org/10.1016/0012-821X(71)90019-7, 1971.
Xiao, Y., Zhang, H.-F., Fan, W., Ying, J.-F., Zhang, J., Zhao, X.-M., and Su,
B.-X.: Evolution of lithospheric mantle beneath the Tan–Lu fault zone,
eastern North China Craton: evidence from petrology and geochemistry of
peridotite xenoliths, Lithos, 117, 229–246,
https://doi.org/10.1016/j.lithos.2010.02.017, 2010.
Xiao, Y., Teng, F.-Z., Zhang, H.-F., and Yang, W.: Large magnesium isotope
fractionation in peridotite xenoliths from eastern North China craton:
Product of melt–rock interaction, Geochim. Cosmochim. Acta, 115, 241–261, https://doi.org/10.1016/j.gca.2013.04.011, 2013.
Xu, Y.-G., Chung, S.-L., Ma, J., and Shi, L.-B.: Contrasting Cenozoic
lithospheric evolutionand architecture in the eastern and western
Sino–Korean craton: Constraints from geochemistry of basalts and mantle
xenoliths, J. Geol., 112, 593–605, https://doi.org/10.1086/422668, 2004.
Xu, Y.-G., Ma, J.-L, Frey, F. A., Feigenson, M. D., and Liu, J.-F.: Role of
lithosphere–asthenosphere interaction in the genesis of Quaternary alkali
and tholeiitic basalts from Datong, western North China Craton, Chem. Geol.,
224, 247–271, https://doi.org/10.1016/j.chemgeo.2005.08.004, 2005.
Xu, Y.-G., Zhang, H.-H., Qiu, H.-N., Ge, W.-C., and Wu, F.-Y.: Oceanic crust
components in continental basalts from Shuangliao, Northeastern China:
derived from the mantle transition zone? Chem. Geol., 328, 168–184, https://doi.org/10.1016/j.chemgeo.2012.01.027, 2012.
Xu, Y. G., Li, H. Y., Hong, L., Ma, L., Ma, Q., and Sun, M.: Generation of
Cenozoic intraplate basalts in the big mantle wedge under eastern Asia, Sci.
China Earth Sci., 61, 869–886, https://doi.org/10.1007/s11430-017-9192-y, 2018.
Xu, Z., Zheng, Y.-F., and Zhao, Z.-F.,: The origin of Cenozoic continental
basalts in east–central China: Constrained by linking Pb isotopes to other
geochemical variables, Lithos, 268–271, 302–319,
https://doi.org/10.1016/j.lithos.2016.11.006, 2017.
Yan, J., Li, X., Zhao, L., and Yan, Q.: Geochemistry of kaersutites in Cenozoic
alkali basalts from the South China Sea, Geol. Rev. (in Chinese with English
abstract), 61, 1034–1446, 2015.
Yu, S-Y., Xu, Y.-G., Zhou, S.-H., Lan, J.-B., Chen, L.-M., Shen, N.-P.,
Zhao, J.-X., and Feng, Y.-X.: Late Cenozoic basaltic lavas from the
Changbaishan–Baoqing Volcanic Belt, NE China: Products of
lithosphere–asthenosphere interaction induced by subduction of the Pacific
plate, J. Asian Earth Sci., 164, 260–273,
https://doi.org/10.1016/j.jseaes.2018.06.031, 2018
Yu, Y., Xu, X. S., and Chen, X. M.: Genesis of zircon megacrysts in Cenozoic
alkali basalts and the heterogeneity of subcontinental lithospheric mantle,
eastern China, Miner. Petrol., 100, 75–94, https://doi.org/10.1007/s00710-010-0120-z,
2010.
Zeng, G., Chen, L.-H., Xu, X.-S., Jiang, S.-Y., and Hofmann, A. W.: Carbonated
mantle sources for Cenozoic intra–plate alkaline basalts in Shandong, North
China, Chem. Geol., 273, 35–45, https://doi.org/10.1016/j.chemgeo.2010.02.009, 2010.
Zhang, J.-J., Zheng, Y.-F., and Zhao, Z.-F.: Geochemical evidence for
interaction between oceanic crust and lithospheric mantle in the origin of
Cenozoic continental basalts in east–central China, Lithos, 110, 305–326,
https://doi.org/10.1016/j.lithos.2009.01.006, 2009.
Zhao, L., Kong, F., Li X., Chen, S., and Wang, W.: Metallogenic mechanism of
corundum megacrysts in cenozoic alkaline basalt – a case investigation of
changle,Western Shandong, Journal of Shandong University of Science and
Technology (Natural Science) (in Chinese with English abstract), 34, 7–27, 2015.
Zheng, J., O'Reilly, S., Griffin, W., Lu, F., and Zhang, M.: Nature and
evolution of Cenozoic lithospheric mantle beneath Shandong peninsula,
Sino–Korean craton, Int. Geol. Rev., 40, 471–499, https://doi.org/10.1080/00206819809465220, 1998.
Zou, H.-B., Zindler, A., Xu, X.-S., and Qi, Q.: Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources,
regional variations, and tectonic significance, Chem. Geol., 171, 33–47,
https://doi.org/10.1016/S0009-2541(00)00243-6, 2000.
Short summary
Rhönite in the Cenozoic alkali basalts of the Changle area occurs as a reaction product; the host basalts are generated in an extensional setting of intracontinent and are tectonically located above the old subduction zone. Rare-earth-element patterns of rhönite resemble those of kaersutitic amphibole and kaersutite. Compositions of Changle rhönites covering the two types of metasomatic mantle amphiboles further suggest that rhönite could be seen as the role of petrogenetic indicator mineral.
Rhönite in the Cenozoic alkali basalts of the Changle area occurs as a reaction product; the...