Articles | Volume 32, issue 1
https://doi.org/10.5194/ejm-32-219-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-219-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new method to quantitatively control oxygen fugacity in externally heated pressure vessel experiments
Alice Alex
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Toronto, Toronto, Canada
Zoltán Zajacz
Department of Earth Sciences, University of Geneva, Geneva, Switzerland
Cited articles
Alex, A. and Zajacz, Z.: “Alex_Zajacz_method”, Mendeley Data, V2, https://doi.org/10.17632/w4vpcbj7n3.2, 2020.
Arató, R. and Audétat, A.: Experimental calibration of a new
oxybarometer for silicic magmas based on vanadium partitioning between
magnetite and silicate melt, Geochim. Cosmochim. Ac., 209, 284–295,
https://doi.org/10.1016/j.gca.2017.04.020, 2017.
Bell, A. S., Simon, A., and Guillong, M.: Gold solubility in oxidized and
reduced, water-saturated mafic melt, Geochim. Cosmochim. Ac., 75,
1718–1732, https://doi.org/10.1016/j.gca.2010.12.022, 2011.
Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D.,
Hurkuck, W., and Koepke, J.: A combined rapid-quench and H2 membrane for
Internally Heated Pressure Vessel: Description and application for water
solubility in basaltic melts, Am. Mineral., 87, 1717–1726, 2002.
Berndt, J., Koepke, J., and Holtz, F.: An Experimental Investigation of the
Influence of Water and Oxygen Fugacity on Differentiation of MORB at 200
MPa, J. Petrol., 46, 135–167, https://doi.org/10.1093/petrology/egh066, 2005.
Botcharnikov, R. E., Koepke, J., Holtz, F., McCammon, C., and Wilke, M.: The
effect of water activity on the oxidation and structural state of Fe in a
ferro-basaltic melt, Geochim. Cosmochim. Ac., 69, 5071–5085,
https://doi.org/10.1016/j.gca.2005.04.023, 2005.
Botcharnikov, R. E., Almeev, R. R., Koepke, J., and Holtz, F.: Phase
relations and liquid lines of descent in hydrous ferrobasalt – Implications
for the skaergaard intrusion and Columbia river flood basalts, J. Petrol.,
49, 1687–1727, https://doi.org/10.1093/petrology/egn043, 2008.
Brenan, J. M., Bennett, N. R., and Zajacz, Z.: Experimental Results on
Fractionation of the Highly Siderophile Elements (HSE) at Variable Pressures
and Temperatures during Planetary and Magmatic Differentiation, Rev.
Mineral. Geochemistry, 81, 1–87, https://doi.org/10.2138/rmg.2016.81.1, 2016.
Brounce, M. N., Kelley, K. A., and Cottrell, E.: Variations in Fe3+/PFe
of Mariana Arc Basalts and MantleWedge fO2, J. Petrol., 55, 2514–2536, https://doi.org/10.1093/petrology/egu065, 2014.
Burnham, A. D. and Berry, A. J.: An experimental study of trace element
partitioning between zircon and melt as a function of oxygen fugacity,
Geochim. Cosmochim. Ac., 95, 196–212, https://doi.org/10.1016/j.gca.2012.07.034, 2012.
Canil, D. and O'Neill, H. S. C.: Distribution of ferric iron in some
upper-mantle assemblages, J. Petrol., 37, 609–635,
https://doi.org/10.1093/petrology/37.3.609, 1996.
Carmichael, I. S. E. and Nicholls, J.: Iron-titanium oxides and oxygen
fugacities in volcanic rocks, J. Geophys. Res., 72, 4665–4687,
https://doi.org/10.1029/JZ072i018p04665, 1967.
Chase, M. W.: NIST-JANAF thermochemical tables, 4th edn., Journal of Physical and Chemical Reference Data, National Institute of Standards and Technology, Washington, DC, 1998.
Chou, I. M.: Permeability of precious metals to hydrogen at 2kb total
pressure and elevated temperatures, Am. J. Sci., 286, 638–658, 1986.
Churakov, S. V and Gottschalk, M.: Perturbation theory based equation of
state for polar molecular fluids: I. Pure fluids, Geochim. Cosmochim. Ac.,
67, 2397–2414, https://doi.org/10.1016/S0016-7037(02)01347-9, 2003.
Cottrell, E. and Kelley, K. A.: The oxidation state of Fe in MORB glasses
and the oxygen fugacity of the upper mantle, Earth Planet. Sc. Lett., 305,
270–282, https://doi.org/10.1016/j.epsl.2011.03.014, 2011.
Cottrell, E., Gardner, J. E., and Rutherford, M. J.: Petrologic and
experimental evidence for the movement and heating of the pre-eruptive
Minoan rhyodacite (Santorini, Greece), Contrib. Mineral. Petrol., 135, 315–331, https://doi.org/10.1007/s004100050514, 1999.
Dann, J. C., Holzheid, A. H., Grove, T. L., and Mcsween, H. Y.: Phase
equilibria of the Shergotty meteorite: Constraints on pre-eruptive water
contents of martian magmas and fractional crystallization under hydrous
conditions, Meteorit. Planet. Sci., 36, 793–806,
https://doi.org/10.1111/j.1945-5100.2001.tb01917.x, 2001.
Di Carlo, I., Pichavant, M., Rotolo, S. G., and Scaillet, B.: Experimental
Crystallization of a High-K Arc Basalt: the Golden Pumice, Stromboli Volcano
(Italy), J. Petrol., 47, 1317–1343, https://doi.org/10.1093/petrology/egl011, 2006.
Eugster, H. P. and Wones, D. R.: Stability relations of the ferruginous
biotite, annite, J. Petrol., 3, 82–125, https://doi.org/10.1093/petrology/3.1.82,
1962.
Feig, S. T., Koepke, J., and Snow, J. E.: Effect of oxygen fugacity
and water on phase equilibria of a hydrous tholeiitic basalt, Contrib Miner.
Pet., 160, 551–568, https://doi.org/10.1007/s00410-010-0493-3, 2010.
Gaetani, G., Grove, T., and B. Bryan, W.: Experimental phase relation of
basaltic and andesite from Hole 839B under hydrous and anhydrous
conditions, Proc. Ocean Drill. Program, Sci. Results, 135, 557–563,
https://doi.org/10.2973/odp.proc.sr.135.133.1994, 1994.
Gaetani, G. A. and Grove, T. L.: Partitioning of moderately siderophile
elements among olivine, silicate melt, and sulfide melt: Constraints on core
formation in the Earth and Mars, Geochim. Cosmochim. Ac., 61,
1829–1846, https://doi.org/10.1016/S0016-7037(97)00033-1, 1997.
Gaillard, F., Scaillet, B., Pichavant, M., and Beny, J.-M.: The effect of
water and fO2 on the ferric-ferrous ratio of silicic melts, Chemical Geology, Elsevier, 174, 255-273, https://doi.org/10.1016/S0009-2541(00)00319-3, 2001.
Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., Muntener, O., and Gaetani,
G. A.: Fractional crystallization and mantle-melting controls on
calc-alkaline differentiation trends, Contrib Miner. Pet., 145, 515–533,
https://doi.org/10.1007/s00410-003-0448-z, 2003.
Gunter, W. D., Myers, J., and Wood, J. R.: The Shaw Bomb, an Ideal Hydrogen
Sensor, Contrib. Mineral. Petrol., 70, 23–27, 1979.
Guo, H., Audétat, A., and Dolejš, D.: Solubility of gold in oxidized,
sulfur-bearing fluids at 500–850 ∘C and 200–230 MPa: A
synthetic fluid inclusion study, Geochim. Cosmochim. Ac., 222, 655–670,
https://doi.org/10.1016/j.gca.2017.11.019, 2018.
Gupta, C. K.: Chemical metallurgy: principles and practice, John Wiley &
Sons., 2006.
Hammer, J. E.: Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization, Earth Planet. Sc. Lett., 248, 618–637, https://doi.org/10.1016/j.epsl.2006.04.022, 2006.
Hammer, J. E., Rutherford, M. J., and Hildreth, W.: Magma storage prior to
the 1912 eruption at Novarupta, Alaska, Contrib Miner. Pet., 144, 144–162,
https://doi.org/10.1007/s00410-002-0393-2, 2002.
Harvie, C., Weare, J. H., and O'keefe, M.: Permeation of hydrogen through
platinum: A re-evaluation of the data of Chou et al, Geochim. Cosmochim. Ac., 44, 899–900, https://doi.org/10.1016/0016-7037(80)90271-9, 1980.
Jégo, S., Pichavant, M., and Mavrogenes, J. A.: Controls on gold
solubility in arc magmas: An experimental study at 1000 ∘C and
4 kbar, Geochim. Cosmochim. Ac., 74, 2165–2189,
https://doi.org/10.1016/J.GCA.2010.01.012, 2010.
Jugo, P. J., Luth, R. W., and Richards, J. P.: Experimental data on the
speciation of sulfur as a function of oxygen fugacity in basaltic melts,
Geochim. Cosmochim. Ac., 69, 497–503, https://doi.org/10.1016/j.gca.2004.07.011,
2005.
Jugo, P. J., Wilke, M., and Botcharnikov, R. E.: Sulfur K-edge XANES analysis
of natural and synthetic basaltic glasses: Implications for S speciation and
S content as function of oxygen fugacity, Geochim. Cosmochim. Ac., 74,
5926–5938, https://doi.org/10.1016/j.gca.2010.07.022, 2010.
Kelley, K. A. and Cottrell, E.: Water and the oxidation state of subduction
zone magmas, Science, 325, 605–607, https://doi.org/10.1126/science.1174156, 2009.
Kilinc, A., Carmichael, I. S. E., Rivers, M. L., and Sack, R. O.: The
ferric-ferrous ratio of natural silicate liquids equilibrated in air,
Contrib. Mineral. Petrol., 83, 136–140, https://doi.org/10.1007/BF00373086, 1983.
Klemme, S., Prowatke, S., Hametner, K., and Günther, D.: Partitioning of
trace elements between rutile and silicate melts: Implications for
subduction zones, Geochim. Cosmochim. Ac. , 69, 2361–2371,
https://doi.org/10.1016/j.gca.2004.11.015, 2005.
Klimm, K., Kohn, S. C., O'Dell, L. A., Botcharnikov, R. E., and Smith, M. E.:
The dissolution mechanism of sulphur in hydrous silicate melts. I:
Assessment of analytical techniques in determining the sulphur speciation in
iron-free to iron-poor glasses, Chem. Geol., 322–323, 237–249,
https://doi.org/10.1016/j.chemgeo.2012.04.027, 2012a.
Klimm, K., Kohn, S. C., and Botcharnikov, R. E.: The dissolution mechanism of
sulphur in hydrous silicate melts. II: Solubility and speciation of sulphur
in hydrous silicate melts as a function of fO2, Chem. Geol., 322–323, 250–267, https://doi.org/10.1016/j.chemgeo.2012.04.028, 2012b.
Kress, V. C. and Carmichael, I. S. E.: The compressibility of silicate
liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states, Contrib. Mineral. Petrol., 108, 82–92, https://doi.org/10.1007/BF00307328, 1991.
Leachman, J. W., Jacobsen, R. T., Penoncello, S. G., and Lemmon, E. W.:
Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and
Orthohydrogen, J. Phys. Chem. Ref. Data, 38, 721–748, https://doi.org/10.1063/1.3160306,
2009.
Lee, C.-T. A., Leeman, W. P., Canil, D., Zheng-Xue, A., and Li, A.: Similar
V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen
Fugacities of their Mantle Source Regions, J. Petrol., 46, 2313–2336,
https://doi.org/10.1093/petrology/egi056, 2005.
Lee, C.-T. A., Luffi, P., Chin, E. J., Bouchet, R., Dasgupta, R., Morton, D.
M., Le Roux, V., Yin, Q., and Jin, D.: Copper systematics in arc magmas and
implications for crust-mantle differentiation, Science, 336, 64–68,
https://doi.org/10.1126/science.1217313, 2012.
Lee, C. T. A., Luffi, P., Le Roux, V., Dasgupta, R., Albaréde, F., and
Leeman, W. P.: The redox state of arc mantle using Zn/Fe systematics,
Nature, 468, 681–685, https://doi.org/10.1038/nature09617, 2010.
Leitner, K., Scheiber, D., Jakob, S., Primig, S., Clemens, H.,
Povoden-Karadeniz, E., and Romaner, L.: How grain boundary chemistry controls
the fracture mode of molybdenum, Mater. Des., 142, 36–43,
https://doi.org/10.1016/j.matdes.2018.01.012, 2018.
Lierenfeld, M. B., Zajacz, Z., Bachmann, O., and Ulmer, P.: Sulfur diffusion
in dacitic melt at various oxidation states: Implications for volcanic
degassing, Geochim. Cosmochim. Ac. , 226, 50–68,
https://doi.org/10.1016/j.gca.2018.01.026, 2018.
Luth, R. W. and Canil, D.: Ferric iron in mantle-derived pyroxenes and a new
oxybarometer for the mantle, Contrib. Mineral. Petrol., 113, 236–248,
https://doi.org/10.1007/BF00283231, 1993.
Luth, R. W., Virgo, D., Boyd, F. R., and Wood, B. J.: Ferric iron in
mantle-derived garnets – Implications for thermobarometry and for the
oxidation state of the mantle, Contrib. Mineral. Petrol., 104, 56–72,
https://doi.org/10.1007/BF00310646, 1990.
Martel, C., Pichavant, M., Holtz, F., Scaillet, B., Bourdier, J.-L., and
Traineau, H.: Effects of f O2 and H2O on andesite phase relations between 2 and 4 kbar, J. Geophys. Res.-Sol. Ea., 104, 29453–29470, https://doi.org/10.1029/1999JB900191, 1999.
Mavrogenes, J. A. and O'Neill, H. S. C.: The relative effects of pressure,
temperature and oxygen fugacity on the solubility of sulfide in mafic
magmas, Geochim. Cosmochim. Ac., 63, 1173–1180,
https://doi.org/10.1016/S0016-7037(98)00289-0, 1999.
McCanta, M. C., Dyar, M. D., Rutherford, M. J., and Delaney, J. S.: Iron
partitioning between basaltic melts and clinopyroxene as a function of
oxygen fugacity, Am. Mineral., 89, 1685–1693,
https://doi.org/10.2138/am-2004-11-1214, 2004.
Métrich, N., Berry, A. J., O'Neill, H. S. C., and Susini, J.: The
oxidation state of sulfur in synthetic and natural glasses determined by
X-ray absorption spectroscopy, Geochim. Cosmochim. Ac., 73, 2382–2399,
https://doi.org/10.1016/j.gca.2009.01.025, 2009.
Moore, G. and Carmichael, I. S. E.: The hydrous phase equilibira (to 3 kbar)
of an andesite and basaltic andesite from western Mexico: Constraints on
water content and conditions of phenocryst growth, Contrib. Mineral.
Petrol., 130, 304–319, https://doi.org/10.1007/s004100050367, 1998.
Muan, A.: Phase equilibria at high temperatures in oxide systems involving
changes in oxidation states, Am. J. Sci., 256, 171–207,
https://doi.org/10.2475/ajs.256.3.171, 1958.
Muan, A. and Osborn, E. F.: Phase Equilibria at Liquidus Temperatures in the
System MgO-FeO-Fe2O3-SiO2, J. Am. Ceram. Soc., 39, 121–140,
https://doi.org/10.1111/j.1151-2916.1956.tb14178.x, 1956.
Mysen, B. O.: Redox equilibria of iron and silicate melt structure:
Implications for olivine/melt element partitioning, Geochim. Cosmochim. Ac., 70, 3121–3138, https://doi.org/10.1016/j.gca.2006.03.014, 2006.
Osborn, E. F.: Role of oxygen pressure in the crystallization and
differentiation of basaltic magma, Am. J. Sci., 257, 609–647,
https://doi.org/10.2475/ajs.257.9.609, 1959.
Parman, S. W., Dann, J. C., Grove, T. L., and Wit, M. J. De: Emplacement
conditions of komatiite magmas from the 3.49 Ga, Earth Planet. Sc. Lett.,
150, 303–323, 1997.
Pichavant, M., Martel, C., Bourdier, J., and Scaillet, B.: Physical
conditions, structure, and dynamics of a zoned magma chamber: Mount
Pelée (Martinique, Lesser Antilles Arc), J. Geophys. Res., 107,
2093, https://doi.org/10.1029/2001JB000315, 2002.
Pichavant, M., Scaillet, B., Pommier, A., Iacono-Marziano, G., and Cioni, R.:
Nature and Evolution of Primitive Vesuvius Magmas: an Experimental Study, J.
Petrol., 55, 2281–2310, https://doi.org/10.1093/petrology/egu057, 2014.
Pichavant, M., Villaros, A., Deveaud, S., Scaillet, B., and Lahlafi, M.: The
influence of redox state on mica crystallization in leucogranitic and
pegmatitic liquids, Can. Mineral., 54, 559–581, https://doi.org/10.3749/canmin.1500079,
2016.
Pohl, C., Lang, D., Schatte, J., and Leitner, H.: Strain induced decomposition and precipitation of carbides in a molybdenum-hafnium-carbon alloy, J. Alloy Compd., 579, 422–431, https://doi.org/10.1016/j.jallcom.2013.06.086, 2013.
Raffo, P. L. : Exploratory study of mechanical properties and heat treatment of molybdenum-hafnium-carbide alloys, NASA TN D-5025, 1969.
Raffo, P. L. and Klopp, W. D.: Solid solution and carbide strengthened arc-melted tungsten alloys. Refractory metals and alloys IV – Reserarch and development, edited by: Jafee, R. I., Ault, G. M., Maltz, J., and Semchyshen, M., Gordon and Breach Science Publ., 1967
Richards, J. P.: The oxidation state, and sulfur and Cu contents of arc
magmas: Implications for metallogeny, Lithos, 233, 27–45,
https://doi.org/10.1016/j.lithos.2014.12.011, 2014.
Salters, V. J. M., Longhi, J. E., and Bizimis, M.: Near mantle solidus trace
element partitioning at pressures up to 3.4 GPa, Geochem. Geophys. Geosyst,
3, 1525–2027, https://doi.org/10.1029/2001GC000148, 2002.
Scaillet, B. and Evans, B. W.: The 15 June 1991 eruption of Mount Pinatubo.
I. Phase equilibria and pre-eruption P–T–fO2–fH2O conditions of the
dacite magma, J. Petrol., 40, 381–411, https://doi.org/10.1093/petroj/40.3.381,
1999.
Scaillet, B. and Macdonald, R.: Experimental and Thermodynamic Constraints
on the Sulphur Yield of Peralkaline and Metaluminous Silicic Flood
Eruptions, J. Petrol., 47, 1413–1437, https://doi.org/10.1093/petrology/egl016,
2006.
Scaillet, B. and Pichavant, M.: Role of fO2 on fluid saturation in
oceanic basalt, Nature, 430, 524,
https://doi.org/10.1038/nature02814, 2004.
Scaillet, B., Pichavant, M., Roux, J., Humbert, G., and Lefevre, A.:
Improvements of the Shaw membrane technique for measurement and control of
fH2 at high temperatures and pressures, Am. Mineral., 77, 647–655,
1992.
Schmidt, B. C., Scaillet, B., and Holtz, F.: Accurate control of fH2 in
cold-seal pressure vessels with the Shaw membrane technique, Eur. J.
Mineral., 7, 893–903, https://doi.org/10.1127/ejm/7/4/0893, 1995.
Schmidt, B. C., Holtz, F., Scaillet, B., and Pichavant, M.: The influence of
H2O-H2 fluids and redox conditions on melting temperatures in the
haplogranite system, Contrib. Mineral. Petrol., 126, 386–400,
https://doi.org/10.1007/s004100050258, 1997.
Shaw, H. R.: Hydrogen-Water Vapor Mixtures: Control of Hydrothermal
Atmospheres by Hydrogen Osmosis, Science, 139, 1220–1222,
https://doi.org/10.1126/science.139.3560.1220, 1963.
Shea, T. and Hammer, J. E.: Oxidation in CSPV experiments involving
H2O-bearing mafic magmas: Quantification and mitigation, Am. Mineral.,
98, 1285–1296, https://doi.org/10.2138/am.2013.4253, 2013.
Shishkina, T. A., Portnyagin, M. V, Botcharnikov, E., Almeev, R. R.,
Simonyan, A. V, Garbe-Schönberg, D., Schuth, S., Oeser, M., and Holtz,
F.: Experimental calibration and implications of olivine-melt vanadium
oxybarometry for hydrous basaltic arc magmas, Am. Mineral., 103, 369–383,
https://doi.org/10.2138/am-2018-6210, 2018.
Sieverts, A.: Absorption of gases by metals, Z. Meteorol., 21,
37–46, 1929.
Simon, A. C., Pettke, T., Candela, P. A., Piccoli, P. M., and Heinrich, C.
A.: Magnetite solubility and iron transport in magmatic-hydrothermal
environments, Geochim. Cosmochim. Ac., 68, 4905–4914,
https://doi.org/10.1016/j.gca.2004.05.033, 2004.
Sisson, T. W. and Grove, T. L.: Experimental investigations of the role of
H2O in calc-alkaline differentiation and subduction zone magmatism,
Contrib. Mineral. Petrol., 113, 143–166, https://doi.org/10.1007/BF00283225,
1993.
Sisson, T. W., Ratajeski, A. K., Hankins, A. W. B., and Glazner, A. F.:
Voluminous granitic magmas from common basaltic sources, Contrib Miner.
Pet., 148, 635–661, https://doi.org/10.1007/s00410-004-0632-9, 2005.
Skora, S., Blundy, J. D., Brooker, R. A., Green, E. C. R., De Hoog, J. C. M., and Connolly, J. A. D.: Hydrous Phase Relations and Trace Element
Partitioning Behaviour in Calcareous Sediments at Subduction-Zone
Conditions, J. Petrol., 56, 953–980, https://doi.org/10.1093/petrology/egv024, 2015.
Smythe, D. J. and Brenan, J. M.: Cerium oxidation state in silicate melts:
Combined fO2, temperature and compositional effects, Geochim. Cosmochim. Ac., 170, 173–187, https://doi.org/10.1016/j.gca.2015.07.016, 2015.
Snyder, D., Carmichael, I. S. E., and Wiebe, R. A.: Experimental study of
liquid evolution in an Fe-rich, layered mafic intrusion: constraints of
Fe-Ti oxide precipitation on the T-fO2 and T-ρ{variant} paths of tholeiitic magmas, Contrib. Mineral.
Petrol., 113, 73–86, https://doi.org/10.1007/BF00320832, 1993.
Snyder, D. A. and Carmichael, I. S. E.: Olivine-liquid equilibria and the
chemical activities of FeO, NiO, Fe2O3, and MgO in natural basic melts,
Geochim. Cosmochim. Ac., 56, 303–318, https://doi.org/10.1016/0016-7037(92)90135-6,
1992.
Steward, S. A.: Review of Hydrogen Isotope Permeability Through Materials. Lawrence Livermore National Laboratory, UCRL-53441, 1–28, 1983.
Sullivan, N. A., Zajacz, Z., and Brenan, J. M.: The solubility of Pd and Au
in hydrous intermediate silicate melts: The effect of oxygen fugacity and
the addition of Cl and S, Geochim. Cosmochim. Ac., 231, 15–29,
https://doi.org/10.1016/j.gca.2018.03.019, 2018.
Szramek, L., Gardner, J. E., and Larsen, J.: Degassing and microlite
crystallization of basaltic andesite magma erupting at Arenal Volcano, Costa
Rica, J. Volcanol. Geotherm. Res., 157, 182–201,
https://doi.org/10.1016/j.jvolgeores.2006.03.039, 2006.
Tatsumi, Y. and Suzuki, T.: Tholeiitic vs calc-alkalic differentiation and
evolution of arc crust: Constraints from melting experiments on a basalt
from the Izu-Bonin-Mariana arc, J. Petrol., 50, 1575–1603,
https://doi.org/10.1093/petrology/egp044, 2009.
Taylor, J. R., Wall, V. J., and Pownceby, M. I.: The calibration and
application of accurate redox sensors, Am. Mineral., 77, 284–295,
1992.
Thy, P. and Lofgren, G. E.: Experimental constraints on the low-pressure
evolution of transitional and mildly alkalic basalts: the effect of Fe-Ti
oxide minerals and the origin of basaltic andesites, Contrib. Mineral.
Petrol., 116, 340–351, https://doi.org/10.1007/BF00306502, 1994.
Toplis, M. J. and Carroll, M. R.: An experimental study of the influence of
oxygen fugacity on fe-ti oxide stability, phase relations, and mineral-melt
equilibria in ferro-basaltic systems, J. Petrol., 36, 1137–1170,
https://doi.org/10.1093/petrology/36.5.1137, 1995.
Tripoli, B. A., Cordonnier, B., Zappone, A., and Ulmer, P.: Effects of
crystallization and bubble nucleation on the seismic properties of magmas,
Geochem. Geophys. Geosyst, 17, 602–615, https://doi.org/10.1002/2015GC006123, 2015.
Villet, M. C. and Gavalas, G. R.: Measurement of concentration-dependent gas
diffusion coefficients in membranes from a psuedo-steady state permeation
run, J. Memb. Sci., 297, 199–205, https://doi.org/10.1016/J.MEMSCI.2007.03.045,
2007.
Wilke, M. and Behrens, H.: The dependence of the partitioning of iron and
europium between plagioclase and hydrous tonalitic melt on oxygen fugacity,
Contrib. Mineral. Petrol., 137, 102–114,
https://doi.org/10.1007/s004100050585, 1999.
Williams, D. W.: Improved cold seal pressure vessels to operate at 11000C at
3 Kilobars, Am. Mineral., 53, 1765–1769, 1968.
Yin, Y. and Zajacz, Z.: The solubility of silver in magmatic fluids: Implications for silver transfer to the magmatic-hydrothermal ore-forming environment, Geochim. Cosmochim. Acta, 238, 235–251, doi:10.1016/j.gca.2018.06.041, 2018.
Zajacz, Z., Seo, J. H., Candela, P. A., Piccoli, P. M., Heinrich, C. A., and
Guillong, M.: Alkali metals control the release of gold from volatile-rich
magmas, Earth Planet. Sc. Lett., 297, 50–56,
https://doi.org/10.1016/j.epsl.2010.06.002, 2010.
Zajacz, Z., Seo, J. H., Candela, P. A., Piccoli, P. M., and Tossell, J. A.:
The solubility of copper in high-temperature magmatic vapors: A quest for
the significance of various chloride and sulfide complexes, Geochim. Cosmochim. Ac., 75, 2811–2827, https://doi.org/10.1016/j.gca.2011.02.029, 2011.
Zajacz, Z., Candela, P. A., Piccoli, P. M., Wälle, M., and Sanchez-Valle,
C.: Gold and copper in volatile saturated mafic to intermediate magmas:
Solubilities, partitioning, and implications for ore deposit formation,
Geochim. Cosmochim. Ac., 91, 140–159, https://doi.org/10.1016/j.gca.2012.05.033,
2012a.
Zajacz, Z., Candela, P. A., Piccoli, P. M., and Sanchez-Valle, C.: The
partitioning of sulfur and chlorine between andesite melts and magmatic
volatiles and the exchange coefficients of major cations, Geochim. Cosmochim. Ac., 89, 81–101, https://doi.org/10.1016/j.gca.2012.04.039, 2012b.
Zajacz, Z., Candela, P. A., Piccoli, P. M., and Sanchez-Valle, C.: The
partitioning of sulfur and chlorine between andesite melts and magmatic
volatiles and the exchange coefficients of major cations, Geochim. Cosmochim. Ac., 89, 81–101, https://doi.org/10.1016/j.gca.2012.04.039, 2012c.
Zajacz, Z., Candela, P. A., Piccoli, P. M., Sanchez-Valle, C., and Wälle,
M.: Solubility and partitioning behavior of Au, Cu, Ag and reduced S in
magmas, Geochim. Cosmochim. Ac., 112, 288–304,
https://doi.org/10.1016/j.gca.2013.02.026, 2013.