Articles | Volume 32, issue 1
https://doi.org/10.5194/ejm-32-187-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-187-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multistage origin of dunite in the Purang ophiolite, southern Tibet, documented by composition, exsolution and Li isotope characteristics of constituent minerals
Center for Advanced Research on the Mantle (CARMA), Key Laboratory of
Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology,
Chinese Academy of Geological Sciences, Beijing 100037, China
Key Laboratory of Depositional Mineralization and Sedimentary
Minerals, Shandong University of Science and Technology, Qingdao 266590,
China
Jingsui Yang
Center for Advanced Research on the Mantle (CARMA), Key Laboratory of
Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology,
Chinese Academy of Geological Sciences, Beijing 100037, China
Hans-Peter Schertl
Ruhr University Bochum, Faculty of Geosciences, Institute of
Geology, Mineralogy and Geophysics, 44780 Bochum, Germany
Key Laboratory of Depositional Mineralization and Sedimentary
Minerals, Shandong University of Science and Technology, Qingdao 266590,
China
Zhao Liu
MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of
Mineral Resources, CAGS, Beijing 100037, China
Xiangzhen Xu
Center for Advanced Research on the Mantle (CARMA), Key Laboratory of
Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology,
Chinese Academy of Geological Sciences, Beijing 100037, China
Related authors
Fahui Xiong, Xiangzhen Xu, Enrico Mugnaioli, Mauro Gemmi, Richard Wirth, Edward S. Grew, Paul T. Robinson, and Jingsui Yang
Eur. J. Mineral., 32, 557–574, https://doi.org/10.5194/ejm-32-557-2020, https://doi.org/10.5194/ejm-32-557-2020, 2020
Short summary
Short summary
Two new nanominerals: titanium monophosphide and titanium disilicide, formed at pressures of Earth’s upper mantle by the action of methane and hydrogen from the mantle on basaltic melts in the Luobusa ophiolite (Tibet). The minerals were characterized by 3D electron diffraction, which can solve the crystal structures of phases less than a micrometer in size. The results contribute to our understanding of deeply subducted crustal rocks and their exhumation back to the Earth's surface.
Fahui Xiong, Xiangzhen Xu, Enrico Mugnaioli, Mauro Gemmi, Richard Wirth, Edward S. Grew, Paul T. Robinson, and Jingsui Yang
Eur. J. Mineral., 32, 557–574, https://doi.org/10.5194/ejm-32-557-2020, https://doi.org/10.5194/ejm-32-557-2020, 2020
Short summary
Short summary
Two new nanominerals: titanium monophosphide and titanium disilicide, formed at pressures of Earth’s upper mantle by the action of methane and hydrogen from the mantle on basaltic melts in the Luobusa ophiolite (Tibet). The minerals were characterized by 3D electron diffraction, which can solve the crystal structures of phases less than a micrometer in size. The results contribute to our understanding of deeply subducted crustal rocks and their exhumation back to the Earth's surface.
Cited articles
Abzalov, M. Z.: Chrome-spinels in gabbro-wehrlite intrusions of the Pechenga
area, Kola Peninsula, Russia: emphasis on alteration features, Lithos, 43,
109–134, https://doi.org/10.1016/S0024-4937(98)00005-X, 1998.
Ackerman, L., Ulrych, J., Řanda, Z., Erban, V., Hegner, E., Magna, T.,
Balogh, K., Frána, J., Lang, M., and Novák, J. K.: Geochemical
characteristics and petrogenesis of phonolites and trachytic rocks from the
České Středohoří Volcanic Complex, the Ohře Rift,
Bohemian Massif, Lithos, 224–225, 256—271, https://doi.org/10.1016/j.lithos.2015.03.014, 2015.
Akizawa, N. and Arai, S.: Petrology of mantle diopsidite from WadiFizh, northern Oman ophiolite: Cr and REE mobility by hydrothermal solution, Island Arc., 23, 312–323, https://doi.org/10.1111/iar.12074, 2014.
Akizawa, N., Arai, S., Tamura, A., Uesugi, J., and Python, M.: Crustal diopsidites from the northern Oman ophiolite: evidence for hydrothermal circulation through suboceanic Moho, J. Mineral. Petrol. Sci., 106, 261–266, https://doi.org/10.2465/jmps.110621b, 2011
Arai, S.: Chromian spinel lamellae in olivine from the Iwanai-dake
peridotite mass, Hokkaido, Japan, Earth Planet. Sc. Lett., 39, 267–273, https://doi.org/10.1016/0012-821X(78)90202-9, 1978.
Arai, S.: Characterization of chromian spinel peridotites by olivine –
chromian spinel compositional relationships: review and interpretation,
Chem. Geol., 113, 191–204, https://doi.org/10.1016/0009-2541(94)90066-3,
1994.
Arai, S. and Miura, M.: Formation and modification of chromitites in the
mantle, Lithos, 264, 277–295, https://doi.org/10.1016/j.lithos.2016.08.039, 2016.
Ashworth, J. R.: Two kinds of exsolution in chondritic olivine,
Mineral. Mag., 43, 535–538, https://doi.org/10.1180/minmag.1979.043.328.14,
1979.
Ashworth, J. R. and Chambers, A. D.: Symplectic reaction in olivine and the
controls of intergrowth spacing in symplectites, J. Petrol., 41, 285–304,
https://doi.org/10.1093/petrology/41.2.285, 2000.
Bai, Y., Su, B. X., Chen, C., Yang, S. H., Liang, Z., Xiao, Y., Qin, K. Z., and
Malaviarachchi, S. P. K.: Base metal mineral segregation and Fe-Mg exchange
inducing extreme compositions of olivine and chromite from the Xiadong
Alaskan-type complex in the southern part of the Central Asian Orogenic
Belt, Ore Geol. Rev., 90, 184–192, https://doi.org/10.1016/j.oregeorev.2017.01.023,
2017.
Banfield, J. F., Veblen, D. R., and Jones, B. F.: Transmission electron
microscopy subsolidus oxidation and weathering of olivine, Contrib. Mineral. Petr., 106, 110–123,
https://doi.org/10.1007/BF00306412, 1990.
Bédard, É., Hébert, R., Guilmette, C., Lesage, G., Wang, C., and
Dostal, J.: Petrology and geochemistry of the Saga and Sangsang ophiolitic
massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an
arc–back-arc origin, Lithos, 113, 48–67,
https://doi.org/10.1016/j.lithos.2009.01.011, 2009.
Bonatti, E. and Michael, P. J.: Mantle peridotites from continental rifts
to ocean basins to subduction zones, Earth Planet. Sc. Lett., 91, 297–311, https://doi.org/10.1016/0012-821x(89)90005-8, 1989.
Bosi, F., Biagioni, C., and Pasero, M.: Nomenclature and classification of
the spinel supergroup, Eur. J. Mineral., 31, 183–192,
https://doi.org/10.1127/ejm/2019/0031-2788, 2019.
Brenan, J. M., Neroda, E., Lundstrom, C. C., Shaw, H. F., Ryerson, F. J., and
Phinney, D. L.: Behaviour of boron, beryllium and lithium during melting and
crystallization constraints from mineral-melt partitioning experiments,
Geochim. Cosmochim. Ac., 62, 2129–2141, https://doi.org/10.1016/S0016-7037(98)00131-8, 1998.
Chan, G. H. N., Aitchison, J. C., Crowley, Q. G., Horstwood, M. S. A., Searle,
M. P., Parrish, R. R., and Chan, J. S. L.: U-Pb zircon ages for Yarlung Tsangbo
suture zone ophiolites, southwestern Tibet and their tectonic implications,
Gondwana Res., 27, 719–732, https://doi.org/10.1016/j.gr.2013.06.016, 2015.
Chan, L. H., Leeman, W. P., and You, C. F.: Lithium isotopic composition of
Central American Volcanic Arc lavas: implications for modification of subarc
mantle by slab-derived fluids, Chem. Geol., 160, 255–280,
https://doi.org/10.1016/S0009-2541(01)00298-4, 1999.
Chan, L. H., Alt, J. C., and Teagle, D. A. H.: Lithium and lithium isotope
profiles through the upper oceanic crust: a study of seawater–basalt
exchange at ODP sites 504B and 896A, Earth Planet. Sc. Lett., 201, 187–201,
https://doi.org/10.1016/s0012-821x(02)00707-0, 2002.
Chen, L. H., Zhou, X. H., Chen, S. H., and Zhang, G. H.: Chromite Lamellae in
olivine of dunite, Seismology and Geology, 22, 79–86, 2000.
Dai, J. G., Wang, C. S., Polat, A., Santosh, M., Li, Y. L., and Ge, Y. K.: Rapid
forearc spreading between 130–120 Ma: evidence from geochronology and
geochemistry of the Xigaze ophiolite, southern Tibet, Lithos, 172–173, 1–16,
https://doi.org/10.1016/j.lithos.2013.03.011, 2013.
Decitre, S. E., Deloule, E., Reisberg, L., James, R., Agrinier, P., and
Mevel, C.: Behavior of Li and its isotopes during serpentinization of
oceanic peridotites, Geochem. Geophy. Geosy., 3, 1, https://doi.org/10.1029/2001GC000178, 2002.
Dick, H. J. B. and Bullen, T.: Chromian chromian spinel as a petrogenetic
indicator in abyssal and alpine-type peridotites and spatially associated
lavas, Contrib. Mineral. Petr., 86, 54–76, https://doi.org/10.1007/BF00373711, 1984.
Dobrzhinetskaya, L., Green, H. W., and Wang, S.: Alpe Arami: A peridotite
massif from depths of more than 300 kilometers, Science, 271, 1841–1845,
https://doi.org/10.1126/science.271.5257.1841, 1996.
Drury, M. R. and Van Roermund, H. L. M.: Metasomatic origin for Fe-Ti-rich
multiphase inclusions in olivine from kimberlite xenoliths, Geology, 16,
1035–1038, https://doi.org/10.1130/0091-7613(1988)016<1035:MOFFTR>2.3.CO;2, 1988.
Dubois-Côté, V., Hébert, R., Dupuis, C., Wang, C. S., Li, Y. L.,
and Dostal, J.: Petrological and geochemical evidence for the origin of the
Yarlung Zangbo ophiolites, southern Tibet, Chem. Geol., 214, 265–286,
https://doi.org/10.1016/j.chemgeo.2004.10.004, 2005.
Gao, Y. J., Snow, J. E., Casey, J. F., and Yu, J. B.: Cooling-induced
fractionation of mantle Li isotopes from the ultraslow-spreading Gakkle
Ridge, Earth Planet. Sc. Lett., 301, 231–240, https://doi.org/10.1016/j.epsl.2010.11.003, 2011.
Gong, X. H., Shi, R. D., Griffin, W. L., Huang, Q. S., Xiong, Q., Chen, S. S.,
Zhang, M., and O'Reilly, S. Y.: Recycling of ancient subduction-modified
mantle domains in the Purang ophiolite (southwestern Tibet), Lithos, 262, 11–26,
https://doi.org/10.1016/j.lithos.2016.06.025, 2016.
Hacker, B. R., Sharp, T., Zhang, R. Y., Liou, J. G., and Hervig, R. L.:
Determining the origin of ultrahigh-pressure lherzolites, Science, 278, 702–704,
https://doi.org/10.1126/science.278.5338.702, 1997.
Hamelin, C., Seitz, H. M., Barrat, J. A., Dosso, L., Maury, R., and
Chaussidon, M.: A low δ7Li lower crustal component: evidence
from an alkalic intraplate volcanic series (Chaîne des Puys, French
Massif Central), Chem. Geol., 266, 205–217,
https://doi.org/10.1016/j.chemgeo.2009.06.005, 2009.
Hébert, R., Adamson, A. C., and Komor, S. C.: Metamorphic petrology of ODP
109, Hole 670A serpentinized peridotites: serpentinization processes at a
slow spreading ridge environment, in: Proceedings of the ODP, Sci. Results 106/109, edited by: Detrick, R., Honnorez, J., Bryan,
W. B., and Juteau, T.,
College Station, Texas, 103–115, 1990.
Hébert, R., Huot, F., Wang, C. S., and Liu, Z.: Yarlung Zangbo ophiolites
(southern Tibet) revisited: geodynamic implication from the mineral record,
in: Ophiolites in Earth History, edited by: Dilek, Y. and Robinson, P. T., Geological Society London Special Publications,
165–190, https://doi.org/10.1144/GSL.SP.2003.218.01.10, 2003.
Hellebrand, E., Snow, J. E., Dick, H. J. B., and Hofmann, A. W.: Coupled major
and trace elements as indicators of the extent of melting in mid-ocean-ridge
peridotites, Nature, 410, 677–681, https://doi.org/10.1038/35070546, 2001.
Ishii, T., Robinson, P. T., Maekawa, H., and Fiske, R.: Petrological studies
of peridotites from diapiric serpentinite seamounts in the
Izu-Ogasawara-Mariana Forearc, Leg 125, in: Proceedings of the Ocean Drilling Program, Scientific
Results, 125, Ocean Drilling Program, edited by: Fryer, O., Pearce, J. A., and
Stokking, L. B., College Station, TX, 445–485, 1992.
Ishikawa, T., Fujisawa, S., Nagaishi, K., and Masuda, T.: Trace element
characteristics of the fluid liberated from amphibolitefacies slab:
Inference from the metamorphic sole beneath the Oman ophiolite and
implication for boninite genesis, Earth Planet. Sc. Lett., 240, 355–377,
https://doi.org/10.1016/j.epsl.2005.09.049, 2005.
Johnson, K. T. M., Dick, H. J. B., and Shimizu, N.: Melting in the oceanic upper
mantle: an ion microprobe study of diopsides in abyssal peridotites,
J. Geophys. Res., 95, 2661–2678, https://doi.org/10.1029/JB095iB03p02661, 1990.
Kamenetsky, V. S., Crawford, A. J., and Meffre, S.: Factors controlling the
chemistry of magmatic spinel: an empirical study of associated olivine,
Cr-spinel and melt inclusions from primitive rocks, J. Petrol., 42, 655–671,
https://doi.org/10.1093/petrology/42.4.655, 2001.
Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J., and Irving, A. J.:
High-field-strength element depletions in arc basalts due to mantle magma
interaction, Nature, 345, 521–524, https://doi.org/10.1038/345521a0, 1990.
Li, J. F., Xia, B., Liu, L. W., Xu, L. F., He, G. S., Wang, H., Zhang, Y. Q., and
Yang, Z. Q.: SHRIMP U-Pb zircon dating of diabase in the Langa Co ophiolite,
Purang, Tibet, China, and its geological significance, Geological Bulletin of China, 27, 1739–1743,
2008 (in Chinese).
Li, X. P., Chen, H. K., Wang, Z. L., Wang, L. J., Yang, J. S., and Robinson,
P. T.: Spinel peridotite, olivine websterite and the textural evolution of
the Purang ophiolite complex, western Tibet, J. Asian Earth Sci., 110, 55–71,
https://doi.org/10.1016/j.jseaes.2014.06.023, 2015.
Liang, F. H., Yang, J. S., Xu, Z. Q., and Zhao, J. N.: Chromium in the olivine
lattice: Chromium –rich olivines and their implication of deep mantle
origin in the Luobusa mantle peridotite and chromitite, Tibet, Acta Petrol. Sin., 30,
2125–2136, 2014 (in Chinese with English abstract).
Liang, Z., Xiao, Y., Thakurta, J., Su, B. X., Chen, C., Bai., Y., and Sakyi,
P. A.: Exsolution lamellae in olivine grains of dunite units from different
types of mafic-ultramafic complexes, Acta Geological Sinica, 92, 586–599, 2018.
Libourel, G.: Systematics of calcium partitioning between olivine and
silicate melt: imphcations for melt Structure ad calcium content of magmatic
olivines, Contrib. Mineral. Petr., 136, 60–80, https://doi.org/10.1007/s004100050524, 1999.
Liu, C. Z., Wu, F. Y., Wilde, S. A., Yu, L., and Li, J.: Anorthitic
plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa
ophiolite (southwestern Tibetan Plateau) formed by hydrous melt
metasomatism, Lithos, 114, 413–422, https://doi.org/10.1016/j.lithos.2009.10.008,
2010.
Liu, C. Z., Zhang, C., Yang, L., Zhang, L., Ji, W. Q., and Wu, F. Y.: Formation
of gabbronorites in the Purang ophiolite (SW Tibet) through melting of
hydrothermally altered mantle along a detachment fault, Lithos, 205, 127–141,
https://doi.org/10.1016/j.lithos.2014.06.019, 2014.
Liu, F., Yang, J. S., Lian, D. Y., Zhao, H., Zhao, Y. J., and Zhang, L.: The
Genesis and Tectonic Significance of Mafic Dikes in the Western Part of the
Yarlung Zangbo Suture Zone, Tibet, Acta Geoscientia Sinica, 36, 441–454, 2015.
Liu, Z., Li, Y., Xiong, F. H., Wu, D., and Liu, F.: Petrology and
geochronology of MOR gabbro in the Purang ophiolite of western Tibet, China,
Acta Petrol. Sin., 27, 3169–3279, 2011.
Lundstrom, C. C., Chaussidon, M., Hsui, A. T., Kelemen, P., and Zimmerman, M.:
Observations of Li isotopic variations in the Trinity Ophiolite: evidence
for isotopic fractionation by diffusion during mantle melting, Geochim. Cosmochim. Ac., 69,
735–751, https://doi.org/10.1016/j.gca.2004.08.004, 2005.
Malpas, J., Zhou, M., Robinson, P. T., and Reynolds, P. H.: Geochemical and
geochronological constraints on the origin and emplacement of the Yarlung
Zangbo ophiolites, Southern Tibet, in:
Ophiolites Through Earth History, edited by: Dilek, Y. and Robinson, P. T., Geological Society, London, Special Publications, 218, 191–206,
https://doi.org/10.1144/GSL.SP.2003.218.01.11, 2003.
Markl, G., Marks, M., and Wirth, R.: The influence of T, aSiO2 and
fO2 on exsolution textures in Fe-Mg olivine: An example from augite
syenites of the Ilimaussaq Intrusion, South Greenland, Am. Mineral., 86, 36–46,
https://doi.org/10.2138/am-2001-0105, 2001.
Marks, M. A. W., Rudnick, R. L., McCammon, C., Vennemann, T., and Markl, G.:
Arrested kinetic Li isotope fractionation at the margin of the
Ilímaussaq complex, South Greenland: evidence for open-system processes
during final cooling of peralkaline igneous rocks, Chem. Geol., 246, 207–230,
https://doi.org/10.1016/j.chemgeo.2007.10.001, 2007.
Marschall, H. R., Pogge von Strandmann, P. A. E., Seitz, H. M., Elliott, T., and
Niu, Y. L.: The lithium isotopic composition of orogenic ec ogites and deep
subducted slabs, Earth Planet. Sc. Lett., 262, 563–580,
https://doi.org/10.1016/j.epsl.2007.08.005, 2007.
Meng, Y. K., Xu, Z. Q., Santosh, M., Ma, X. X., Chen, X. J., Guo, G. L., and Liu,
F.: Late Triassic crustal growth in southern Tibet: Evidence from the
Gangdese magmatic belt, Gondwana Res., 37, 449–464, https://doi.org/10.1016/j.gr.2015.10.007, 2016.
Meng, Y. K., Xiong, F. H., Yang, J. S., Liu, Z., Kieran, A., Robinson, P. T.,
and Xu, X. Z.: Geochronology and geochemistry of the Magmatic Rocks from the
Zedong Ophiolite in the Eastern Yarlung-Zangbo Suture zone, Southern Tibet,
J. Earth Sci., 30, 1125–1143, https://doi.org/10.1007/s12583-019-1248-3, 2019.
Miller, C., Thöni, M., Frank, W., Schuster, R., Melcher, F., Meisel, T.,
and Zanetti, A.: Geochemistry of tectonomagmatic affinity of the Yungbwa
ophiolite, SW Tibet, Lithos, 66, 155–172, https://doi.org/10.1016/S0024-4937(02)00217-7, 2003.
Mikouchi, T., Yamada, I., and Miyamoto, M.: Spplectic exsolution in olivine
from the Nakhla martian meteorite, Meteoritics and Planetary Science, 35, 937–942, https://doi.org/10.1111/j.1945-5100.2000.tb01483.x, 2000.
Miyawaki, R., Hatert, F., Pasero, M., and Mills, S. J.: IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 52, Eur. J. Mineral., 32, 1–11, https://doi.org/10.5194/ejm-32-1-2020, 2020.
Moseley, D.: Ilmenite exsolution in olivine, Am. Mineralo., 66, 976–979, 1981.
Moseley, D.: Symplectic exsolution in olivine, Am. Mineral., 69, 139–153, 1984.
Otten, M. T.: The subsolidus history of the Artfjället Gabbro: a TEM
study ofolivine, augite and orhopyroxene, J. Petrol., 26, 488–514,
https://doi.org/10.1093/petrology/26.2.488, 1985.
Ozawa, K.: Melting and melt segregation in the mantle wedge above a
subduction zone: evidence from the chromite-bearing peridotites of the
Miyamori ophiolite complex, northeastern Japan, J. Petrol., 35, 647–678,
https://doi.org/10.1093/petrology/35.3.647, 1994.
Pagé, P., Bédard, J. H., Schroetter, J. M., and Tremblay, A.: Mantle
petrology and mineralogy of the Thetford mines ophiolite complex, Lithos, 100,
255–292, https://doi.org/10.1016/j.lithos.2007.06.017, 2008.
Parkinson, I. J. and Pearce, J. A.: Peridotites from the Izu–Bonin–Mariana
forearc (ODP Leg 125): evidence for mantle melting and melt–mantle
interaction in a supra-subduction zone setting, J. Petrol., 39, 1577–1618,
https://doi.org/10.1093/petroj/39.9.1577, 1998.
Parkinson, I. J., Arculus, R. J., and Eggins, S. M.: Peridotite xenoliths from
Grenada, Lesser Antilles island arc, Contrib. Mineral. Petr., 146, 241–262, https://doi.org/10.1007/s00410-003-0500-z, 2003.
Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J., and Leat, P. T.:
Geochemistry and tectonic significance of peridotites from the South
Sandwich arc-basin system, South Atlantic, Contrib. Mineral. Petr., 139, 36–53,
https://doi.org/10.1007/s004100050572, 2000.
Python, M., Ishida, Y., Ceuleneer, G., and Arai, S.: Trace element heterogeneity in hydrothermal diopside: evidence for Ti depletion and Sr-Eu-LREE enrichment during hydrothermal metamorphism of mantle harzburgite, J. Mineral. Petrol. Sci., 102, 143–149, https://doi.org/10.2465/jmps.060830, 2007
Ren, Y. F., Chen, F. Y., and Yang, J. S.: Exsolutions of diopside and magnetite
in olivine from mantle dunite, Luobusa ophiolite, Tibet, China, Acta Geologica Sinica-English Edition, 82,
377–384, 2008.
Richter, F., Watson, B., Chaussidon, M., Mendybaev, R., and Ruscitto, D.:
Lithium isotope fractionation by diffusion in minerals. Part 1: pyroxenes,
Geochim. Cosmochim. Ac., 126, 352–370, https://doi.org/10.1016/j.gca.2013.11.008, 2014.
Risold, A. C., Trommsdorff, V., Reusser, E., and Ulmer, P.: Genesis of
FeTiO3 inclusions in garnet peridotites from the Central Alps, Terra Nova, 9,
28–29, 1997.
Sakae, S. and Jun-Ichi, K.: Clinopyroxene REE geochemistry of the Red Hills
peridotite, New Zealand: Interpretation of magmatic processes in the upper
mantle and the Moho transition zone, J. Petrol., 48, 119–139,
https://doi.org/10.1093/petrology/egl056, 2007.
Savov, I. P., Ryan, J. G., D'Antonio, M., and Fryer, P.: Shallow slab fluid
release across and along with the Mariana arc-basin system: insights from
the geochemistry of serpentinized peridotites from the Mariana forearc, J. Geophys. Res.-Sol. Ea., 112, B09205,
https://doi.org/10.1029/2006JB004749, 2007.
Song, S. G., Zhang, L. F., and Niu, Y. L.: Ultra-deep origin of garnet
peridotite from the North Qaidam ultrahigh-pressure belt, northern Tibetan
Plateau, NW China, Am. Mineral., 9, 1330–1336, https://doi.org/10.2138/am-2004-8-922,
2004.
Su, B. X., Gu, X. Y., Deloule, E., Zhang, H. F., Li, Q. L., Li, X. H., Vigier, N., Tang, Y. J., Tang, G. Q., Liu, Y., Brewer, A., Mao, Q., and Ma, Y. G.: Potential orthopyroxene, clinopyroxene and olivine reference materials for in situ lithium isotope determination, Geostand. Geoanal. Res., 39, 357–369, https://doi.org/10.1111/j.1751-908X.2014.00313.x, 2015.
Su, B. X., Zhou, M. F., and Robinson, P. T.: Extremely large fractionation of
Li isotopes in a chromite-bearing mantle sequence, Sci. Rep., 6, 22370,
https://doi.org/10.1038/srep22370, 2016.
Su, B. X., Chen, C., Bai, Y., Pang, K. N., Qin, K. Z., and Sakyi, P. A.: Lithium
isotopic composition of Alaskan-type intrusion and its implication,
Lithos, 286–287, 363–368, https://doi.org/10.1016/j.lithos.2017.06.024, 2017.
Su, B. X., Chen, C., Pang, K. N., Sakyi, P. A., Uysal, İ., Avcı, E., Liu,
X., and Zhang, P. F.: Melt penetration in the oceanic lithosphere: Li isotope
records from the Pozantı-Karsantıophiolite in southern Turkey, J. Petrol., 59,
191–205, https://doi.org/10.1093/petrology/egy023, 2018.
Su, B. X., Zhou, M. F., Jing, J. J., Robinson, P. T., Chen, C., Xiao, Y., Liu,
X., Shi, R. D., Lenaz, D., and Hu, Y.: Distinctive melt activity and chromite
mineralization in Luobusa and Purang ophiolites, southern Tibet: constraints
from trace element compositions of chromite and olivine, Sci. Bull., 64, 108–121,
https://doi.org/10.1016/j.scib.2018.12.018, 2019.
Teng, F. Z., McDonough, W. F., Rudnick, R. L., Dalpé, C., Tomascak, P. B.,
Chappell, B. W., and Gao, S.: Lithium isotopic composition and concentration
of the upper continental crust, Geochim. Cosmochim. Ac., 68, 4167–4178,
https://doi.org/10.1016/j.gca.2004.03.031, 2004.
Teng, F. Z., Dauphas, N., Helz, R. T., Gao, S., and Huang, S.:
Diffusion-driven magnesium and iron isotope fractionation in Hawaiian
olivine, Earth Planet. Sc. Lett., 308, 317–324, https://doi.org/10.1016/j.epsl.2011.06.003, 2011.
Tomascak, P. B., Widom, E., Benton, L. D., Goldstein, S. L., and Ryan, J. G.:
The control of lithium budgets in island arcs, Earth Planet. Sc. Lett., 196, 227–238,
https://doi.org/10.1016/s0012-821x(01)00614-8, 2002.
Tomascak, P. B., Magna, T., and Dohmen, R.: Advances in Lithium Isotope
Geochemistry, Springer International Publishing Switzerland, 1–195, https://doi.org/10.1007/978-3-319-01430-2, 2016.
Vils, F., Pelletier, L., Kalt, A., Müntener, O., and Ludwig, T.: The
lithium, boron and beryllium content of serpentinized peridotites from ODP
Leg 209 (Sites 1272A and 1274A): implications for lithium and boron budgets
of oceanic lithosphere, Geochim. Cosmochim. Ac., 72, 5475–5504, https://doi.org/10.1016/j.gca.2008.08.005, 2008.
Weyer, S. and Seitz, H. M.: Coupled lithium- and iron isotope fractionation
during magmatic differentiation, Chem. Geol., 294–295, 42–50, https://doi.org/10.1016/j.chemgeo.2011.11.020, 2012.
Wimpenny, J., Gislason, S. R., James, R. H., Gannoun, A., Pogge von
Strandmann, P. A. E., and Burton, K.: The behaviour of Li and Mg isotopes
during primary phase dissolution and secondary mineral formation in basalt,
Geochim. Cosmochim. Ac., 74, 5259–5279, https://doi.org/10.1016/j.gca.2010.06.028, 2010.
Wirth, R.: Focused ion beam (FIB) combined with SEM and TEM: advanced
analytical tools for studies of chemical composition, microstructure and
crystal structure in geomaterials on a nanometre scale, Chem. Geol., 261, 217–229,
https://doi.org/10.1016/j.chemgeo.2008.05.019, 2009.
Wunder, B., Meixner, A., Romer, R. L., and Heinrich, W.:
Temperature-dependent isotopic fractionation of lithium between
clinopyroxene and high-pressure hydrous fluids, Contrib. Mineral. Petr., 151, 112–120,
https://doi.org/10.1007/s00410-005-0049-0, 2006.
Wunder, B., Deschamps, F., Watenphul, A., Guillot, S., Meixner, A., Romer,
R. L., and Wirth, R.: The effect of chrysotile nano-tubes on the
serpentine-fluid Li-isotopic fractionation, Contrib. Mineral. Petr., 159, 781–790,
https://doi.org/10.1007/s00410-009-0454-x, 2010.
Xiao, Y., Teng, F. Z., Su, B. X., Hu, Y., Zhou, M. F., Zhu, B., Shi, R. D.,
Huang, Q. S., Gong, X. H., and He, Y. S.: Iron and magnesium isotopic
constraints on the origin of chemical heterogeneity in podiform chromitite
from the Luobusa ophiolite, Tibet, Geochem. Geophy. Geosy., 17, 940–953, https://doi.org/10.1002/2015gc006223, 2016.
Xiao, Y., Zhang, H. F., Su, B. X., Zhu, B., Chen, B., Chen, C., and Sakyi,
P. A.: Partial melting control of lithium concentrations and isotopes in the
Cenozoic lithospheric mantle beneath Jiande area, the Cathaysia block of SE
China, Chem. Geol., 466, 750–761, https://doi.org/10.1016/j.chemgeo.2017.07.024, 2017.
Xiong, F. H., Yang, J. S., Liu, Z., Guo, G., L., Chen, S. Y., Xu, X. Z., Li,
Y., and Liu, F.: High-Cr and high-Al chromitite found in western
Yarlung-Zangbo suture zone in Tibet, Acta Petrol. Sin., 29, 1878–1908, 2013 (in Chinese with
English abstract).
Xiong, F. H., Yang, J. S., Robinson, P. T., Xu, X. Z., Liu, Z., Li, Y., Li,
J. Y., and Chen, S. Y.: Origin of podiform chromitite, a new model based on
the Luobusa ophiolite, Tibet, Gondwana Res., 27, 525–542, https://doi.org/10.1016/j.gr.2014.04.008, 2015.
Xiong, F. H., Yang, J. S., Guo, G. L., Liu, Z., Xu, X. Z., Tian, Y. Z., Lai,
S. M., Chen, Y. H., and Zhang, L.: Exsolution in Olivine from the Lower
Cr# Dunite in the Purang Ophiolite, the Western portion of the
Yarlung-Zangbo Suture Zone in Tibet, Acta Geoscientica Sinica, 37, 79–89, 2016 (in Chinese with
English abstract).
Xiong, F. H., Yang, J. S., Dilek, Y., and Wang, C. L.: Nanoscale Diopside and
Spinel Exsolution in Olivine from Dunite of the Tethyan Ophiolites,
Southwestern Turkey: Implications for the multi-stage process, J. Nanosci. Nanotechno., 17,
6587–6596, https://doi.org/10.1166/jnn.2017.14506, 2017.
Xiong, F. H., Yang, J. S., Xu, X. Z., Kapsiotis, A., Hao, X. L., and Liu, Z.:
Compositional and isotopic heterogeneities in the Neo-Tethyan upper mantle
recorded by coexisting Al-rich and Cr-rich chromitites in the Purang
peridotite massif, SW Tibet (China), J. Asian Earth Sci., 159, 109-129, https://doi.org/10.1016/j.jseaes.2018.03.024, 2018.
Xiong, F. H., Meng, Y. K., Yang, J. S., Liu, Z., Xu, X. Z., Eslami, A., and
Zhang, R.: Geochronology and petrogenesis of the mafic dykes from the Purang
ophiolite: Implications for the evolution of the western Yarlung-Tsangpo
suture zone, southwestern Tibet, Geosci. Front., 11, 277–292, https://doi.org/10.1016/j.gsf.2019.05.006, 2019a.
Xiong, F. H., Liu, Z., Kapsiotis, A., Yang, J. S., Lenaz, D., and Robinson,
P. T.: Petrogenesis of lherzolites from the Purang ophiolite, Yarlung-Zangbo
Suture Zone, Tibet: origin and significance of ultra-high pressure and
other “unusual” minerals in the Neo-Tethyan lithospheric
mantle, Int. Geol. Rev., 17,2184–2210, https://doi.org/10.1080/00206814.2019.1584771, 2019b.
Xiong, F. H., Dilek, Y., Xu, X. Z., and Yang, J. S.: Opx–Cpx exsolution
textures in lherzolites of the Cretaceous Purang Ophiolite (S. Tibet, China),
and the deep mantle origin of Neotethyan abyssal peridotites, Int. Geol. Rev.,
https://doi.org/10.1080/00206814.2019.1627678, in press, 2019c.
Xu, X. Z., Yang, J. S., Guo, G. L., and Li, J. Y.: Lithological research on the
Purang mantle peridotite in western Yarlung-Zangbo suture zone in Tibet,
Acta Petrol. Sin., 27, 3179–3196, 2011 (in Chinese with English abstract).
Yamaji, K., Makita, Y., Watanabe, H., Sonoda, A., Kanoh, H., Hirotsu, T.,
and Ooi, K.: Theoretical estimation of lithium isotopic reduced partition
function ratio for lithium ions in aqueous solution, Journal of Physical and Chemical Annual, 105, 602–613,
https://doi.org/10.1021/jp001303i, 2001.
Yang, J. S., Xu, X. Z., Li, Y., Li, J. Y., Ba, D. Z., Rong, H., and Zhang, Z. M.:
Diamonds recovered from peridotite of the Purang ophiolite in the
Yarlung-Zangbo suture of Tibet: A proposal for a new of diamond occurrence,
Acta Petrol. Sin., 27, 3171–3178, 2011 (in Chinese with English abstract).
Zhang, P. F., Zhou, M. F., Robinson, P. T., Pearce, J. A., Malpas, J., Liu,
Q. Y., and Xia, X. P.: Evolution of nascent mantle wedges during subduction
initiation: Li-O isotopic evidence from the Luobusa ophiolite, Tibet,
Geochim. Cosmochim. Ac., 245, 35–58, https://doi.org/10.1016/j.gca.2018.09.037, 2019a.
Zhang, P. F., Zhou, M. F., Liu, Q. Y., Malpas, J., Robinson, P. T., and He,
Y. S.: Modification of mantle rocks by plastic flow below spreading centers:
Fe isotopic and fabric evidence from the Luobusa ophiolite, Tibet,
Geochim. Cosmochim. Ac., 253, 84–110, https://doi.org/10.1016/j.gca.2019.03.008, 2019b.
Zhang, R. Y., Shu, J. F., Mao, H. K., Juhn, G., and Liou, J. G.: Magnetite
lamellae in olivine and clinohumite from Dabie UHP ultramafic rock, central
China, Am. Mineral., 84, 564–569, 1999.
Zhang, R. Y., Liou, J. G., Yang, J. S., Liu, L., and Bor-ming, J.: Garnet
peridotites in UHP mountain belts of China, Int. Geol. Rev., 46, 981–1004, https://doi.org/10.2747/0020-6814.46.11.981, 2004.
Zhao, W. X., Hu, Y. X., Li, X. M., Liao, C. Z., Du, J. J., and Jiang, D.: The
compositional in the homogeneity of the needle-exsolution magnetites in
olivine from Bixiling garnet peridotite, Acta Petrologica et Mineralogica, 25, 40–44, https://doi.org/10.1016/S1872-2040(06)60043-1, 2006.
Zheng, H., Huang, Q. T., Kapsiotis, A., Lenaz, D., Velicogna, M., Xu, C.,
Cheng, C., Xia, B., Liu, W. L., Xiao, Y., and Yang, J.: Coexistence of MORB-
and OIB-like dolerite intrusions in the Purang ultramafic massif, SW Tibet:
A paradigm of plume-influenced MOR-type magmatism prior to subduction
initiation in the Neo-Tethyan lithospheric mantle, Geol. Soc. Am. Bull., 131, 1276–1294, https://doi.org/10.1130/B35005.1, 2019.
Zhou, M. F., Robinson, P. T., Malpas, J., and Li, Z.: Podiform chromitites in the
Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction
and chromite segregation in the upper mantle, J. Petrol., 37, 3–21, https://doi.org/10.1093/petrology/37.1.3, 1996.
Zhou, M. F., Robinson, P. T., Malpas, J., Edwards, S. J., and Qi, L.: REE and
PGE geochemical constraints on the formation of dunites in the Luobusa
ophiolite, southern Tibet, J. Petrol., 46, 615–639, https://doi.org/10.1093/petrology/egh091, 2005.
Short summary
There have been many different ages found for ophiolite. We have researched these ages through fieldwork and microscopy to identify three types of dunite. These are useful ways to research the origin of ophiolitic magma. The Purang ophiolite, which crops out over an area of about 650 km2 in the western Yarlung–Zangbo suture zone, chiefly consists of mantle peridotite, pyroxenite and gabbro. It is a useful ultra-massif for showing the multistage nature of ophiolite.
There have been many different ages found for ophiolite. We have researched these ages through...