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Abstract. Calcium silicate perovskite (named davemaoite, Ca-Pv for short) is believed to be the third most
abundant mineral in Earth’s lower mantle. Knowledge of its elasticity is important to constrain velocities of
pyrolite and basalt models in lower-mantle conditions and then decipher the origins of seismic signatures via
comparison with observed seismic velocities. Here elasticities and sound velocities of cubic CaSiO3–CaTiO3
perovskites at lower-mantle pressures have been investigated by first-principles calculations. The incorporation
of titanium into cubic Ca-Pv increases C11 but decreases C12 and C44 at high pressures. As a result, elastic
moduli (KS andG) and wave velocities (VP and VS) decrease with increasing Ti content. Cubic CaSiO3 exhibits
high-seismic-velocity anisotropies at low pressures, which gradually decrease with increasing pressure, reaching
minimum values near the lowermost mantle. In contrast, Ti-bearing Ca-Pv shows an initial decrease in velocity
anisotropies, followed by a progressive increase at higher pressures. Compositional effects on elastic proper-
ties and velocity anisotropies of cubic CaSiO3–CaTiO3 perovskites are significant at lower-mantle pressures.
Considering the amounts of Ca-Pv in pyrolite and basalt models, Ti-bearing Ca-Pv may be responsible for the
observed seismic velocity anomalies associated with subducted oceanic crust and a potential source of seismic
anisotropies in the lower mantle.

1 Introduction

Knowledge of structures and physical properties of con-
stituent minerals in the lower mantle is essential to model
the density and sound velocities of pyrolite and subducted
oceanic crust models. Comparisons between predicted seis-
mic velocities and geophysical observations are crucial to
discussions of the causes of seismic anomalies and dynamic
processes in the lower mantle. However, a major source of
uncertainty in the predicted seismic velocities of pyrolite has
been the influence of davemaoite, also called cubic CaSiO3
perovskite (Ca-Pv hereafter), on velocity (Murakami et al.,
2012; Tschauner et al., 2021). Cubic Ca-Pv is believed to
be the third most abundant mineral, as it comprises 5 vol. %–
10 vol. % and 24 vol. %–29 vol. % of pyrolite and basalt mod-
els in the lower mantle, respectively (Ricolleau et al., 2010;
Irifune et al., 2010). However, there are few reliable mea-
surements of its sound velocities in lower-mantle conditions
because it is technically challenging to carry out static com-
pression experiments in lower-mantle conditions.

As shown in Fig. S1 in the Supplement, CaSiO3 is sta-
ble in the wollastonite structure in ambient conditions and
transforms into breyite at pressures above ∼ 4 GPa (Essene,
1974). Breyite decomposes into larnite (Ca2SiO4) and titan-
ite (CaSi2O5) at pressures exceeding ∼ 8 GPa (Gasparik et
al., 1994). These two phases subsequently react to form the
perovskite phase above∼ 13 GPa (Sueda et al., 2006), where
tetragonal Ca-Pv is stable below ∼ 500 K, and the cubic Ca-
Pv becomes stable above this temperature (Komabayashi et
al., 2007; Sagatova et al., 2021; Yin et al., 2023). Experi-
mental studies at high pressure and room temperature on the
elasticity of tetragonal Ca-Pv (space group: I4/mcm) propose
that it might explain the seismic anomalies observed in the
deep mantle (Li et al., 2004; Kudo et al., 2012). However,
both experimental and theoretical studies on the phase sta-
bility of CaSiO3 show that CaSiO3 adopts a cubic perovskite
structure (space group: Pm3̄m) in lower-mantle conditions
(Komabayashi et al., 2007; Stixrude et al., 2007). Since cubic
Ca-Pv is unquenchable in ambient conditions, in situ exper-
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imental studies at high pressure and high temperature on its
elasticity are technically challenging. As recently as 2019,
Gréaux et al. (2019) reported in situ X-ray diffraction and
sound velocity measurements on cubic Ca-Pv of up to 23 GPa
and 1700 K. They found that cubic Ca-Pv has a smaller shear
modulus than the tetragonal phase, which leads to substan-
tially lower sound velocities of subducted basalt. This further
supports the hypothesis of accumulation of basaltic crust in
the uppermost lower mantle, which is associated with the ob-
served low-seismic-velocity signatures. Soon after, Thomson
et al. (2019) reported sound velocities of (Ti-bearing) Ca-
Pv at ∼ 12 GPa and up to 1500 K. By combining the new
results with literature data and extrapolating, they proposed
that seismic velocities of Ca-Pv can explain large low-shear-
velocity provinces observed in the lower mantle (Garnero et
al., 2016).

Since it is difficult to experimentally investigate the elas-
tic properties of Ca-Pv in lower-mantle conditions, it is es-
sential to employ computational methods. Karki and Crain
(1998) reported elastic properties of cubic Ca-Pv by first-
principles calculations in static (0 K) conditions. Stixrude et
al. (2007) investigated elasticities of cubic and tetragonal Ca-
Pv using static calculations and mean field theory. They pro-
posed that tetragonal Ca-Pv has a much smaller shear modu-
lus than cubic Ca-Pv. Additionally, Li et al. (2006) reported
the elasticity of tetragonal Ca-Pv in lower-mantle conditions
by means of first-principles molecular dynamics simulations.
Later, the elasticity of cubic Ca-Pv in lower-mantle condi-
tions was also studied using first-principles molecular dy-
namics. Kawai and Tsuchiya (2015) demonstrated that cubic
Ca-Pv had a smaller shear modulus and slower sound veloc-
ities than bridgmanite. This suggests that Ca-Pv-rich mate-
rial can produce low-seismic-velocity anomalies in the lower
mantle. Both theoretical results and experimental extrapola-
tions show that Ca-Pv with a small shear modulus may con-
tribute to low seismic velocity in subducted basalt.

Ca-Pv in mid-ocean ridge basalt (MORB) contains up
to 28 wt % TiO2 in lower-mantle conditions (Litasov and
Ohtani, 2005; Hirose and Fei, 2002; Ricolleau et al., 2010;
Ono et al., 2001). In contrast, Ca-Pv in pyrolite contains
a maximum of 3 wt % TiO2 in the lower mantle (Hirose,
2002; Kesson et al., 1998). Additionally, up to 2.9 wt % TiO2
has been reported in Ca-Pv inclusions found in deep dia-
mond (Nestola et al., 2018; Walter et al., 2011). Notably,
the incorporation of Ti stabilizes the tetragonal phase of
CaSi0.6Ti0.4O3 up to 1200 K at 12 GPa (Thomson et al.,
2019). This indicates that tetragonal–cubic phase transition
in Ti-bearing Ca-Pv occurs in higher-P –T conditions than
it does in pure CaSiO3 and may be associated with elastic
anomalies of Ca-Pv. The incorporation of Ti in Ca-Pv may
have a significant effect on its elastic properties. However,
there are limited experimental studies on the elasticity of Ti-
bearing Ca-Pv, and direct measurements of sound velocity
under lower-mantle conditions remain challenging. There-
fore, theoretical investigations into the elastic properties of

CaSiO3–CaTiO3 perovskites are both essential and signifi-
cant for advancing our understanding of the mineralogy and
dynamics of Earth’s lower mantle.

2 Computational methods

First-principles calculations based on density functional the-
ory (DFT) were performed using the Vienna ab initio sim-
ulation package (VASP) in static conditions (Kresse and
Furthmüller, 1996; Kresse and Joubert, 1999). The interac-
tion between ions and electrons was described by the pro-
jector augmented-wave (PAW) method (Blöchl, 1994). The
Ceperley–Alder exchange correlation potential of the lo-
cal density approximation (LDA) parametrized by Perdew
and Zunger was selected in this study (Ceperley and Alder,
1980; Perdew and Zunger, 1981), since it yields better agree-
ment with the experimental equation of state (Stixrude et
al., 2007). The kinetic energy cut-off was set to 1000 eV,
and the energy convergence criterion was 10−6 eV. The
Monkhorst–Pack scheme was used for Brillouin zone sam-
pling (Monkhorst and Pack, 1976).

According to phase diagram of the CaSiO3–CaTiO3
system (Kubo et al., 1997), cubic Ca-Pv (Pm3̄m) is
considered in this study. A 2× 2× 2 supercell (40
atoms) of the conventional cubic unit cell is built
(Tschauner et al., 2021). Four structural configura-
tions, 8CaSiO3–0CaTiO3 (CaSiO3), 7CaSiO3–1CaTiO3
(CaSi0.875Ti0.125O3), 6CaSiO3–2CaTiO3 (CaSi0.75Ti0.25O3),
and 4CaSiO3–4CaTiO3 (CaSi0.5Ti0.5O3), were considered
(Fig. 1). For all structural configurations, Si atoms are sub-
stituted by Ti atoms in the most dispersed way possible to
lower total energy. The k-points grid was set to 4× 4× 4 for
cubic Ca-Pv. Structural relaxations were performed at vari-
ous unit-cell volumes, where unit-cell parameters and atomic
positions were allowed to relax to obtain the minimum total
energy. The obtained minimum total energies (E) at different
volumes (V ) were fitted to the third-order finite strain equa-
tion to obtain unit-cell volume (V0), isothermal bulk modu-
lus (KT0), its pressure derivative (K ′T0), and energy (E0) at
zero pressure (Birch, 1978; Davies, 1974). Once the equilib-
rium structure at a given volume was obtained, the structure
was strained by applying compressional and shear strains of
±0.01, then the stress tensor in the strained structure was cal-
culated. The elastic constants were determined by the ratios
of deviatoric stress to applied strain.

It is noteworthy that the method of determining elastic
constants described above assumes that the Ca-Pv has a
Pm3̄m symmetry. Strictly, this assumption is incorrect as
some of Si atoms have been replaced by Ti atoms. The mag-
nitude of the effect of the broken symmetry on elastic con-
stants has been assessed by examination of the stress tensor
matrices. The deviations from the expected cubic symmetry
are sufficiently small (Table S1 in the Supplement).
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Figure 1. Four structural configurations of cubic CaSiO3–CaTiO3
perovskites with compositions of CaSiO3, CaSi0.875Ti0.125O3,
CaSi0.75Ti0.25O3, and CaSi0.5Ti0.5O3.

3 Results and discussion

Three independent elastic constants, C11, C12, and C44 for
the cubic Ca-Pv, are determined up to 130 GPa. The calcu-
lated elastic constants are analyzed using finite strain theory
as follows (Birch, 1978; Davies, 1974):

Cij = (1+ 2f )
7
2

[
Cij0+ a1f +

1
2
a2f

2
]
+ a3P, (1)

a1 = 3K0

(
C′ij − a3

)
− 7Cij0, (2)

a2 = 9K2
0C
′′

ij + 9K ′0K0

(
C′ij − a3

)
− 48K0

(
C′ij − a3

)
+ 63Cij0, (3)

f =
1
2
[

(
V0

V

) 2
3
− 1], (4)

where subscript 0 denotes values at zero pressure and prime
denotes pressure derivatives; f is the finite strain; a3 equals
3 for C11 and 1 for C12 and C44; and the parameters K0,
K0’, and V0 are taken from the E–V fitting of third-order
finite strain equation. A third-order equation is used for C11
and C12 assuming C′′ij = 0, while a fourth-order equation is
used for C44. The adiabatic bulk (K) and shear (G) moduli
of cubic Ca-Pv are calculated by means of Voigt–Reuss–Hill

approximation (Hill, 1952):

K =
KV+KR

2
, (5)
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2
, (6)
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3
, (7)
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5
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, (9)

where subscripts “V” and “R” denote Voigt and Reuss, re-
spectively. The obtained shear modulus is analyzed using the
fourth-order finite strain equation:

G= (1+ 2f )
5
2
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1
2
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2
]
, (10)
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9
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}
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Since calculations are performed in static conditions (0 K),
the adiabatic bulk modulus (KS) is equal to the isothermal
bulk modulus (KT). Thus, parameter K without a subscript
is used in these equations. The calculated KS0 via Voigt–
Reuss–Hill approximation is very close to KT0 (Table 2).
The isotropic aggregate compressional (VP) and shear (VS)
wave velocities of Ca-Pv are then evaluated from the bulk
and shear moduli and the density ρ as follows:

VP =

√
K + 4

3G

ρ
, (13)

VS =

√
G

ρ
. (14)

All elastic constants increase with increasing pressure, and
no elastic instability is found up to 130 GPa (Fig. 2). For dif-
ferent compositions, the individual elastic constants follow
similar trends with pressure. The elastic constants at zero
pressure and their pressure derivatives are listed in Table 1.
The C′11 increases but C′12 and C′44 decrease with an increas-
ing molar fraction of CaTiO3. This indicates that increas-
ing Ti content in cubic Ca-Pv has an opposite effect on C11
and C12 (C44). As a result, the elastic moduli (KS and G)
and wave velocities (VP and VS) increase at high pressures
(Figs. 2b and 3b). The elastic moduli and wave velocities of
cubic Ca-Pv with different compositions have similar trends
with pressure. In general, the addition of Ti in cubic Ca-Pv
makes elastic moduli (except for C11) and wave velocities
smaller with respect to pure cubic CaSiO3.

The calculated density, unit-cell volume, and elastic mod-
uli and their pressure derivatives, together with previous lit-
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Table 1. The elastic moduli and their pressure derivatives of cubic Ca-Pv at zero pressure.

Composition C11 (GPa) C′11 C12 (GPa) C′12 C44 (GPa) C′44 C′′44

CaSiO3 411.4 7.24 167.8 2.58 221.5 1.77 −0.016
CaSi0.875Ti0.125O3 410.8 7.38 157.2 2.52 195.3 1.59 −0.017
CaSi0.75Ti0.25O3 413.2 7.49 149.2 2.47 176.4 1.38 −0.016
CaSi0.5Ti0.5O3 406 7.65 137.3 2.4 142.1 1.14 −0.014

Figure 2. Elastic moduli of cubic CaSiO3–CaTiO3 perovskites
at high pressures. Black, red, orange, and blue symbols
represent CaSiO3, CaSi0.875Ti0.125O3, CaSi0.75Ti0.25O3, and
CaSi0.5Ti0.5O3, respectively. The dotted curves are the results of
fitting finite strain equations to the data (Birch, 1978; Davies, 1974).

Figure 3. Densities (a) and wave velocities (b) of cubic CaSiO3–
CaTiO3 perovskites at high pressures. Black, red, orange, and blue
symbols represent CaSiO3, CaSi0.875Ti0.125O3, CaSi0.75Ti0.25O3,
and CaSi0.5Ti0.5O3, respectively. The dashed curves are the best fit
of the Eulerian finite strain equation (Birch, 1978; Davies, 1974).

Figure 4. Elastic moduli of cubic CaSiO3–CaTiO3 perovskites at
20 GPa (black), 30 GPa (red), 80 GPa (orange), and 130 GPa (blue).
Symbols and dotted lines are calculated values and linear fitting re-
sults, respectively.

erature values of Ca-Pv, are summarized in Table 2. The vol-
ume per formula of Ca-Pv increases with an increasing mo-
lar fraction of CaTiO3. However, it is important to mention
that these Ca-Pv phases have different crystal structures. The
Ks0 and K ′S of cubic CaSiO3 obtained in this study are com-
parable to those of theoretical calculations and experimental
measurements considering the trade-off betweenKT0 andK ′T
(Karki and Crain, 1998; Kawai and Tsuchiya, 2015; Stixrude
et al., 2007; Li et al., 2006; Gréaux et al., 2019). The val-
ues of G0 and G′ of cubic CaSiO3 derived in this study are
in good agreement with those of other computational studies
but larger than those reported by Gréaux et al. (2019) based
on experiments because of the systematic overestimations of
elastic moduli by LDA calculations. The values of KS0 and
G0 of cubic CaSi0.5Ti0.5O3 obtained with our computations
are also larger than those of experimental studies due to the
same reason as mentioned before (Sinelnikov et al., 1998). In
general, both KS0 (KT0) and G0 of Ca-Pv decrease with an
increasing molar fraction of CaTiO3 demonstrated by both
experimental measurements and first-principles calculations.

The density as a function of the molar fraction of CaTiO3
has been fitted with a second-order polynomial, whereas
the elastic moduli and wave velocities exhibit linear rela-
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Table 3. The compositional derivatives of density, elastic constants, elastic moduli, and wave velocities of cubic Ca-Pv at 20, 30, 80, and
100 GPa.

P (GPa) dρ / dX d2ρ / dX2 dC11 / dX dC12 / dX dC44 / dX dKS / dX dG/ dX dVP / dX dVS / dX

20 −0.312 0.21 11.1 −69.6 −181.1 −42.5 −85.3 −1.27 −1.29
30 −0.292 0.20 16.6 −70.9 −189.9 −41.6 −92.6 −1.27 −1.33
80 −0.240 0.17 44.2 −89.4 −249.4 −44.5 −135.6 −1.43 −1.65
130 −0.234 0.20 63.6 −97.8 −304.8 −44.2 −178.6 −1.56 −1.91

X is the molar fraction of CaTiO3.

tionships with CaTiO3 content. The compositional deriva-
tives of density (dρ / dX and d2ρ / dX2), elastic constants
(dCij / dX), elastic moduli (dK / dX and dG/ dX), and
wave velocities (dVP / dX and dVS / dX) at 20, 30, 80, and
100 GPa are summarized in Table 3, where X denotes the
molar fraction of CaTiO3. The density of Ca-Pv increases
with pressure but decreases with increasing CaTiO3 content
(Figs. 3a and 5a). Among the elastic constants, dC11 / dX is
positive, while dC12 / dX and dC44 / dX are negative at all
four pressures, indicating that C11 increases while C12 and
C44 decrease with the addition of CaTiO3 (Fig. 4). Both KS
and G decrease with increasing CaTiO3 content. Notably,
cubic CaSi0.5Ti0.5O3 has a lower KS (∼ 3.1 %) and signif-
icantly lower G (∼ 23 %) than cubic CaSiO3 at 130 GPa
(Fig. 4b). This suggests that the incorporation of Ti into cu-
bic Ca-Pv has a more pronounced effect on shear properties
than on compressional properties, primarily due to the strong
compositional influence on C44. Consequently, the wave ve-
locities of cubic Ca-Pv decrease with increasing Ti content
(Fig. 5b). At 130 GPa, the VP and VS of cubic CaSi0.5Ti0.5O3
are reduced by approximately 5.3 % and 12 %, respectively,
compared to those of cubic CaSiO3.

To understand the evolution of velocity anisotropy in cu-
bic Ca-Pv at high pressures, the anisotropy for VP (AVP) and
the maximum anisotropy for VS (AVS) are defined as follows
(Mainprice, 1990):

AVP =
VP,max−VP,min

VP,max+VP,min
× 200%, (15)

AVs =

(
VS1−VS2

VS1+VS2

)
max
× 200%, (16)

where VP,max and VP,min represent the maximum and mini-
mum compressional velocities, respectively, and VS1 and VS2
are two orthogonally polarized shear velocities in a given
propagation direction. As shown in Fig. 6, both AVP and
AVS of cubic CaSiO3 decrease with pressure and have trends
consistent with those of previous theoretical studies (Karki
and Crain, 1998; Kawai and Tsuchiya, 2015). Cubic CaSiO3
has small AVP and AVS values at 130 GPa (AVP = 0.3 %
and AVS = 0.7 %). There is an enhanced composition effect
on velocity anisotropies of cubic Ca-Pv at high pressures.
The anisotropies of VP and VS in CaSi0.875Ti0.125O3 and
CaSi0.75Ti0.25O3 initially decrease with increasing pressure,

Figure 5. Densities and wave velocities of cubic CaSiO3–CaTiO3
perovskites at 20 GPa (black), 30 GPa (red), 80 GPa (orange), and
130 GPa (blue). Symbols and dashed curves are calculated values
and fitting results, respectively. Dashed and solid grey lines repre-
sent the density and velocities of the preliminary reference Earth
model at 670 and 2891 km, respectively.

reaching minimum values at approximately 70 and 30 GPa,
respectively, before increasing again at higher pressures. In
contrast, AVP and AVS values of CaSi0.5Ti0.5O3 continuously
increase with pressure, reaching∼ 12 % and∼ 30 %, respec-
tively, at 130 GPa. The elastic anisotropy of cubic crystals
can also be quantified using the Zener ratios, defined as A=
2C44/(C11−C12), whereA= 1 indicates elastic isotropy. As
shown in Fig. S2, the Zener ratio of cubic CaSiO3 decreases
with increasing pressure and approaches unity at∼ 125 GPa.
For Ti-bearing Ca-Pv (CaSi0.875Ti0.125O3, CaSi0.75Ti0.25O3,
and CaSi0.5Ti0.5O3), the Zener ratios also decrease with pres-
sure, crossing the isotropic value of 1 at approximately 5, 25,
and 65 GPa, respectively. The transition fromA> 1 toA< 1
significantly alters the directional dependence of VS. Specifi-
cally, the fastest VS, which propagates along the [100] direc-
tion when A> 1, shifts to the [111] direction when A< 1.
Conversely, the slowest VS, initially along [111] for A> 1,
shifts to the [100] direction for A< 1.
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Figure 6. Velocity anisotropies of cubic CaSiO3–CaTiO3 per-
ovskites at high pressures. Black, red, orange, and blue cir-
cles represent CaSiO3, CaSi0.875Ti0.125O3, CaSi0.75Ti0.25O3, and
CaSi0.5Ti0.5O3, respectively. Solid and open circles stand for AVP
and AVS, respectively.

4 Implications

Our results suggest that the acoustic wave velocities of cu-
bic Ca-Pv significantly decrease with increasing Ti content
(Fig. 5). Considering the temperature effect predicted by
Kawai and Tsuchiya (2015), the cubic Ca-Pv’s velocity pro-
files can be substantially reduced with the addition of Ti in
lower-mantle conditions. Thus, it is expected that cubic Ti-
bearing Ca-Pv can reduce the seismic velocity of subducted
oceanic crust in the lower mantle because the amount of Ca-
Pv in basalt is up to ∼ 29 vol. % (Ricolleau et al., 2010). In
addition, Ca-Pv in subducted MORB assemblages has a com-
position of CaSi1−xTixO3 with 0< x < 0.45 (Litasov and
Ohtani, 2005; Hirose and Fei, 2002; Ricolleau et al., 2010).
Ca-Pv discovered in “super-deep” diamonds has a detectable
content of Ti (Nestola et al., 2018; Walter et al., 2011).
However, although our theoretical results in static conditions
demonstrate that incorporation of Ti into Ca-Pv significantly
reduces its wave velocities at lower-mantle pressures, fur-
ther experimental or computational studies of the tempera-
ture effect on elasticities and velocities of Ti-bearing Ca-Pv
are required to determine whether or not its sound velocities
explain observed seismic velocity anomalies associated with
subducted oceanic crust in Earth’s lower mantle (Garnero et
al., 2016).

Although Ca-Pv adopts a cubic structure in the lower
mantle, it exhibits significant seismic velocity anisotropy in
the transition zone and the uppermost lower mantle. Kawai
and Tsuchiya (2015) have proposed that cubic CaSiO3 has
the largest anisotropy at the lower part of the mantle tran-
sition zone; even a small amount of cubic CaSiO3 could
produce detectable anisotropy. Our calculations confirm this
point of view. Thus, seismic anisotropy observed in the man-
tle transition zone associated with the subducted slabs may
be derived from highly anisotropic Ca-Pv (Foley and Long,
2011). More importantly, it is noteworthy that there is an
enhanced composition effect on velocity anisotropies of cu-

bic CaSiO3–CaTiO3 with Ti content. Incorporation of Ti into
Ca-Pv significantly increases its velocity anisotropies, espe-
cially for shear velocity, at lower-mantle pressures. Cubic
CaSi0.5Ti0.5O3 is highly anisotropic with AVP and AVS values
of up to ∼ 12 % and ∼ 30 %, respectively, at the lowermost
mantle pressure. These values are larger than those of fer-
ropericlase (AVP: ∼ 10 % and AVS: ∼ 23 %) and bridgman-
ite (AVP: ∼ 12 %; AVS: ∼ 16 %) (Yang et al., 2016; Kawai
and Tsuchiya, 2015; Kurnosov et al., 2017; Fu et al., 2018)
and comparable with those of MgSiO3 post-perovskite (Mg-
PPv) (AVP: ∼ 15 %; AVS: ∼ 30 %) (Tsuchiya et al., 2004).
The anisotropies of Ti-bearing Ca-Pv in lower-mantle con-
ditions can be much larger than results in static conditions,
taking into account the temperature effect based on the re-
sults by Kawai and Tsuchiya (2015). Although Mg-PPv is
believed to be the major origin of seismic anisotropies in the
lowermost mantle and D′′ layer (Wu et al., 2017; Garnero
and Mcnamara, 2008), our results indicate that Ti-bearing
Ca-Pv is highly anisotropic and may be an additional source
of seismic anisotropies in the lowermost mantle.
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