



## Supplement of

## Île Dumet (Armorican Massif, France) and its glaucophane eclogites: the little sister of Île de Groix

Gaston Godard et al.

Correspondence to: Gaston Godard (godard@ipgp.fr)

The copyright of individual parts of the supplement might differ from the article licence.

## **Supplementary material**

- Figure S1: Representative thin section images of the various rock types, showing their texture and mineralogy
- Figure S2: Orthogneiss interlayered with micaschists, at Les Sables Rouges, on the east coast of the island of Groix
- Table S1: Garnet compositions
- Table S2: Omphacite compositions

Figure S1: Representative thin section images of the various rock types showing their texture and mineralogy Plane-polarised light (left) and cross-polarised light (right); see Figure 4 and text for the details.



a: Eclogite band with abundant subhedral garnets containing microinclusions, surrounded by a foliated matrix of omphacite, epidote and quartz, with rare amphibole and rutile.



b: Garnet glaucophanite band with abundant euhedral garnets full of microinclusions, surrounded by a foliated matrix of glaucophane, quartz, minor omphacite, paragonite and rutile.



c: Amphibolite (i.e., retrogressed eclogite) with a typical symplectitic matrix of clinoamphibole and albitic plagioclase with epidote; garnet survives in part (e.g., lower left) but not omphacite; relict rutile is enveloped by titanite; relict quartz is rare.



d: Amphibolite (i.e., retrogressed eclogite) showing a typical symplectitic matrix of clinoamphibole and albitic plagioclase together with relict quartz; clinozoisite occurs particularly around micas (centre), where paragonite contains small lamellae of exsolved phengite; garnet survives in places (e.g., bottom right), but not omphacite.



e: Micaschist with isolated euhedral garnets, laths of phengite, clusters of chlorite and small grains of rutile enveloped in later titanite and clinozoisite, in a matrix of quartz with minor albite.



f: Orthogneiss (i.e., leucocratic metagranitoid) showing a dominant quartzofeldspathic matrix (with microcline, albite and quartz) interspersed by laths of phengite and clusters of Fe-oxides and garnet; biotite, chlorite, apatite, monazite and zircon may also occur.

Figure S2: Orthogneiss interlayered with micaschists, at Les Sables Rouges, on the east coast of the island of Groix (to compare with Fig. 3b).



| Sample                         | <ul> <li>ID1 (glaucophane eclogite)</li> </ul> |        |            |        | ID9 (glaucophane eclogite) |        |            |        | ID16 (amphibolitised eclogite) |        |            | ID25a (eclogite layer) |             |        |            | ID25b (glaucophanite layer) |             |        |            | ID33 (amphibolitised eclogite) |             |        |            |        |
|--------------------------------|------------------------------------------------|--------|------------|--------|----------------------------|--------|------------|--------|--------------------------------|--------|------------|------------------------|-------------|--------|------------|-----------------------------|-------------|--------|------------|--------------------------------|-------------|--------|------------|--------|
|                                | Garnet core                                    |        | Garnet rim |        | Garnet core                |        | Garnet rim |        | Garnet core                    |        | Garnet rim |                        | Garnet core |        | Garnet rim |                             | Garnet core |        | Garnet rim |                                | Garnet core |        | Garnet rim |        |
| Weight%                        | av(4)                                          | ±1σ    | av(7)      | ±1σ    | av(3)                      | ±1σ    | av(5)      | ±1σ    | av(15)                         | ±1σ    | av(13)     | ±1σ                    | av(7)       | ±1σ    | av(4)      | ±1σ                         | av(3)       | ±1σ    | av(6)      | ±1σ                            | av(3)       | ±1σ    | av(8)      | ±1σ    |
| SiO <sub>2</sub>               | 37.15                                          | 0.138  | 37.62      | 0.433  | 37.23                      | 0.418  | 37.52      | 0.200  | 36.93                          | 0.529  | 37.61      | 0.409                  | 37.71       | 0.295  | 38.33      | 0.413                       | 37.22       | 0.123  | 37.38      | 0.278                          | 37.86       | 0.342  | 37.30      | 0.365  |
| TiO <sub>2</sub>               | 0.27                                           | 0.012  | 0.14       | 0.031  | 0.15                       | 0.102  | 0.10       | 0.059  | 0.12                           | 0.054  | 0.10       | 0.040                  | 0.14        | 0.036  | 0.08       | 0.022                       | 0.15        | 0.023  | 0.16       | 0.045                          | 0.11        | 0.032  | 0.09       | 0.032  |
| $AI_2O_3$                      | 21.16                                          | 0.052  | 21.43      | 0.247  | 20.93                      | 0.099  | 21.00      | 1.078  | 21.57                          | 0.423  | 21.80      | 0.200                  | 21.31       | 0.184  | 21.79      | 0.337                       | 20.97       | 0.376  | 21.27      | 0.248                          | 21.49       | 0.049  | 21.39      | 0.221  |
| Cr <sub>2</sub> O <sub>3</sub> | 0.01                                           | 0.007  | 0.01       | 0.005  | 0.00                       | 0.000  | 0.00       | 0.000  | 0.00                           | 0.005  | 0.01       | 0.011                  | 0.01        | 0.019  | 0.03       | 0.032                       | 0.02        | 0.024  | 0.02       | 0.018                          | 0.05        | 0.059  | 0.03       | 0.028  |
| $Fe_2O_3^*$                    | 0.00                                           | 0.000  | 0.00       | 0.071  | 0.29                       | 0.190  | 0.43       | 0.207  | 0.00                           | 0.000  | 0.00       | 0.000                  | 0.08        | 0.187  | 0.00       | 0.012                       | 0.30        | 0.307  | 0.00       | 0.171                          | 0.00        | 0.000  | 0.00       | 0.030  |
| FeO                            | 23.75                                          | 0.400  | 29.47      | 0.322  | 24.27                      | 0.717  | 30.15      | 0.664  | 23.28                          | 0.548  | 27.32      | 0.678                  | 21.01       | 0.814  | 27.02      | 0.556                       | 24.34       | 0.469  | 28.70      | 0.474                          | 28.01       | 0.326  | 30.70      | 1.073  |
| MnO                            | 7.44                                           | 0.424  | 0.32       | 0.045  | 5.86                       | 0.744  | 0.39       | 0.102  | 6.44                           | 0.161  | 0.61       | 0.101                  | 8.43        | 0.934  | 0.37       | 0.054                       | 4.62        | 0.815  | 0.66       | 0.295                          | 2.50        | 0.434  | 0.46       | 0.087  |
| MgO                            | 0.92                                           | 0.021  | 1.87       | 0.154  | 0.59                       | 0.089  | 1.96       | 0.272  | 0.86                           | 0.118  | 2.36       | 0.158                  | 0.42        | 0.198  | 2.70       | 0.421                       | 1.20        | 0.140  | 1.46       | 0.285                          | 1.26        | 0.077  | 1.76       | 0.296  |
| CaO                            | 10.05                                          | 0.132  | 10.33      | 0.238  | 11.09                      | 1.026  | 9.10       | 0.245  | 11.08                          | 0.568  | 11.04      | 0.432                  | 11.62       | 0.710  | 10.49      | 0.308                       | 11.51       | 0.323  | 11.04      | 0.440                          | 9.47        | 0.278  | 8.59       | 0.522  |
| Na <sub>2</sub> O              | 0.01                                           | 0.006  | 0.01       | 0.005  | 0.04                       | 0.011  | 0.05       | 0.050  | 0.02                           | 0.015  | 0.02       | 0.017                  | 0.02        | 0.016  | 0.01       | 0.017                       | 0.01        | 0.008  | 0.02       | 0.016                          | 0.01        | 0.007  | 0.02       | 0.018  |
| K <sub>2</sub> O               | 0.00                                           | 0.003  | 0.00       | 0.003  | 0.00                       | 0.005  | 0.01       | 0.014  | 0.00                           | 0.002  | 0.00       | 0.004                  | 0.01        | 0.016  | 0.01       | 0.015                       | 0.01        | 0.016  | 0.01       | 0.012                          | 0.01        | 0.009  | 0.00       | 0.002  |
| Total                          | 100.77                                         | 0.353  | 101.19     | 0.685  | 100.45                     | 0.719  | 100.70     | 0.438  | 100.29                         | 0.860  | 100.86     | 0.506                  | 100.76      | 0.794  | 100.83     | 1.125                       | 100.34      | 0.383  | 100.71     | 0.679                          | 100.76      | 0.090  | 100.33     | 1.127  |
| Si                             | 2.963                                          | 0.0018 | 2.968      | 0.0115 | 2.979                      | 0.0100 | 2.983      | 0.0252 | 2.949                          | 0.0122 | 2.957      | 0.0109                 | 2.993       | 0.0098 | 2.996      | 0.0042                      | 2.970       | 0.0073 | 2.966      | 0.0113                         | 2.999       | 0.0191 | 2.975      | 0.0143 |
| Al                             | 1.989                                          | 0.0031 | 1.993      | 0.0072 | 1.974                      | 0.0063 | 1.968      | 0.0855 | 2.030                          | 0.0212 | 2.020      | 0.0092                 | 1.994       | 0.0182 | 2.007      | 0.0091                      | 1.972       | 0.0239 | 1.989      | 0.0150                         | 2.006       | 0.0083 | 2.010      | 0.0155 |
| Ti                             | 0.016                                          | 0.0008 | 0.008      | 0.0018 | 0.009                      | 0.0062 | 0.006      | 0.0035 | 0.007                          | 0.0032 | 0.006      | 0.0024                 | 0.008       | 0.0022 | 0.005      | 0.0013                      | 0.009       | 0.0014 | 0.009      | 0.0027                         | 0.006       | 0.0019 | 0.005      | 0.0019 |
| Cr                             | 0.001                                          | 0.0005 | 0.001      | 0.0003 | 0.000                      | 0.0000 | 0.000      | 0.0000 | 0.000                          | 0.0003 | 0.001      | 0.0007                 | 0.001       | 0.0012 | 0.002      | 0.0020                      | 0.001       | 0.0015 | 0.001      | 0.0012                         | 0.003       | 0.0037 | 0.002      | 0.0018 |
| Fe <sup>3+</sup> *             | 0.000                                          | 0.0000 | 0.000      | 0.0042 | 0.018                      | 0.0114 | 0.026      | 0.0124 | 0.000                          | 0.0000 | 0.000      | 0.0000                 | 0.000       | 0.0111 | 0.000      | 0.0007                      | 0.018       | 0.0185 | 0.000      | 0.0102                         | 0.000       | 0.0000 | 0.000      | 0.0018 |
| Fe <sup>2+</sup>               | 1.584                                          | 0.0251 | 1.944      | 0.0227 | 1.624                      | 0.0472 | 2.005      | 0.0542 | 1.555                          | 0.0410 | 1.796      | 0.0547                 | 1.400       | 0.0577 | 1.766      | 0.0325                      | 1.624       | 0.0377 | 1.905      | 0.0218                         | 1.855       | 0.0263 | 2.047      | 0.0708 |
| Mg                             | 0.110                                          | 0.0024 | 0.220      | 0.0164 | 0.071                      | 0.0104 | 0.232      | 0.0327 | 0.102                          | 0.0144 | 0.276      | 0.0180                 | 0.050       | 0.0235 | 0.315      | 0.0478                      | 0.142       | 0.0158 | 0.173      | 0.0332                         | 0.149       | 0.0088 | 0.210      | 0.0341 |
| Mn <sup>2+</sup>               | 0.502                                          | 0.0286 | 0.021      | 0.0028 | 0.397                      | 0.0525 | 0.026      | 0.0068 | 0.436                          | 0.0117 | 0.041      | 0.0067                 | 0.566       | 0.0603 | 0.025      | 0.0036                      | 0.312       | 0.0535 | 0.044      | 0.0200                         | 0.168       | 0.0288 | 0.031      | 0.0058 |
| Ca                             | 0.859                                          | 0.0113 | 0.873      | 0.0271 | 0.951                      | 0.0853 | 0.775      | 0.0233 | 0.948                          | 0.0495 | 0.930      | 0.0312                 | 0.988       | 0.0606 | 0.879      | 0.0289                      | 0.984       | 0.0326 | 0.938      | 0.0393                         | 0.804       | 0.0256 | 0.734      | 0.0412 |
| Na                             | 0.002                                          | 0.0009 | 0.001      | 0.0008 | 0.007                      | 0.0017 | 0.008      | 0.0075 | 0.002                          | 0.0023 | 0.002      | 0.0025                 | 0.003       | 0.0025 | 0.002      | 0.0025                      | 0.001       | 0.0012 | 0.003      | 0.0025                         | 0.001       | 0.0012 | 0.003      | 0.0028 |
| К                              | 0.000                                          | 0.0003 | 0.000      | 0.0003 | 0.000                      | 0.0005 | 0.001      | 0.0014 | 0.000                          | 0.0002 | 0.000      | 0.0004                 | 0.001       | 0.0016 | 0.001      | 0.0015                      | 0.001       | 0.0016 | 0.001      | 0.0012                         | 0.001       | 0.0009 | 0.000      | 0.0002 |
| $X_{Alm}$                      | 0.519                                          | 0.0074 | 0.636      | 0.0037 | 0.534                      | 0.0166 | 0.660      | 0.0067 | 0.511                          | 0.0115 | 0.590      | 0.0154                 | 0.466       | 0.0174 | 0.592      | 0.0100                      | 0.530       | 0.0119 | 0.622      | 0.0080                         | 0.624       | 0.0059 | 0.678      | 0.0229 |
| X <sub>Sps</sub>               | 0.164                                          | 0.0096 | 0.007      | 0.0010 | 0.130                      | 0.0171 | 0.009      | 0.0024 | 0.143                          | 0.0033 | 0.013      | 0.0022                 | 0.189       | 0.0198 | 0.008      | 0.0012                      | 0.102       | 0.0176 | 0.015      | 0.0065                         | 0.056       | 0.0099 | 0.010      | 0.0019 |
| $X_{Grs}$                      | 0.281                                          | 0.0037 | 0.285      | 0.0063 | 0.304                      | 0.0248 | 0.242      | 0.0128 | 0.312                          | 0.0163 | 0.305      | 0.0115                 | 0.329       | 0.0240 | 0.294      | 0.0103                      | 0.312       | 0.0047 | 0.306      | 0.0121                         | 0.269       | 0.0060 | 0.242      | 0.0132 |
| X <sub>Prp</sub>               | 0.036                                          | 0.0008 | 0.072      | 0.0058 | 0.023                      | 0.0034 | 0.076      | 0.0096 | 0.034                          | 0.0046 | 0.091      | 0.0059                 | 0.017       | 0.0078 | 0.106      | 0.0158                      | 0.046       | 0.0052 | 0.057      | 0.0110                         | 0.050       | 0.0032 | 0.069      | 0.0109 |
| $X_{Uv}$                       | 0.000                                          | 0.0002 | 0.000      | 0.0002 | 0.000                      | 0.0000 | 0.000      | 0.0000 | 0.000                          | 0.0002 | 0.000      | 0.0003                 | 0.000       | 0.0006 | 0.001      | 0.0010                      | 0.001       | 0.0008 | 0.000      | 0.0006                         | 0.002       | 0.0018 | 0.001      | 0.0009 |
| X <sub>Adr</sub>               | 0.000                                          | 0.0000 | 0.000      | 0.0021 | 0.009                      | 0.0057 | 0.013      | 0.0062 | 0.000                          | 0.0000 | 0.000      | 0.0000                 | 0.000       | 0.0056 | 0.000      | 0.0003                      | 0.009       | 0.0093 | 0.000      | 0.0051                         | 0.000       | 0.0000 | 0.000      | 0.0009 |

Table S1- Garnet compositionsav(n): average of n EMP analyses;  $\sigma$ : standard deviation; \*: calculated by stoichiometry; Xem: molar fraction of end-member em.

| Sample                           |        | ID     | )9     |        |        | ID     | 14     |        | ID2    | 25a    | ID25b  |        |  |
|----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Weight%                          | av(23) | ±1σ    | av(51) | ±1σ    | av(31) | ±1σ    | av(16) | ±1σ    | av(29) | ±1σ    | av(20) | ±1σ    |  |
| SiO <sub>2</sub>                 | 55.43  | 0.648  | 55.39  | 0.387  | 55.91  | 0.425  | 56.12  | 0.524  | 56.19  | 0.300  | 55.29  | 0.289  |  |
| TiO <sub>2</sub>                 | 0.05   | 0.048  | 0.08   | 0.085  | 0.04   | 0.023  | 0.04   | 0.015  | 0.04   | 0.023  | 0.07   | 0.029  |  |
| Al <sub>2</sub> O <sub>3</sub>   | 8.72   | 1.097  | 7.89   | 1.429  | 9.43   | 0.304  | 10.07  | 0.379  | 9.81   | 0.537  | 9.14   | 1.071  |  |
| Cr <sub>2</sub> O <sub>3</sub>   | 0.00   | 0.000  | 0.00   | 0.000  | 0.02   | 0.036  | 0.02   | 0.031  | 0.02   | 0.018  | 0.02   | 0.015  |  |
| Fe <sub>2</sub> O <sub>3</sub> * | 4.63   | 1.121  | 4.22   | 0.919  | 3.88   | 0.937  | 3.42   | 1.124  | 3.05   | 1.066  | 5.41   | 1.270  |  |
| FeO                              | 3.07   | 0.677  | 3.51   | 0.901  | 3.23   | 0.778  | 2.79   | 0.867  | 3.56   | 0.550  | 2.33   | 0.562  |  |
| MnO                              | 0.01   | 0.016  | 0.01   | 0.020  | 0.04   | 0.047  | 0.05   | 0.045  | 0.02   | 0.027  | 0.02   | 0.021  |  |
| MgO                              | 8.15   | 0.545  | 8.67   | 0.581  | 8.03   | 0.165  | 8.17   | 0.210  | 7.90   | 0.330  | 7.83   | 0.232  |  |
| CaO                              | 13.06  | 0.980  | 13.88  | 1.078  | 12.62  | 0.254  | 12.92  | 0.346  | 13.05  | 0.527  | 12.78  | 0.375  |  |
| Na <sub>2</sub> O                | 6.89   | 0.579  | 6.37   | 0.681  | 7.15   | 0.190  | 7.15   | 0.230  | 7.08   | 0.316  | 7.22   | 0.186  |  |
| K <sub>2</sub> O                 | 0.01   | 0.008  | 0.01   | 0.008  | 0.00   | 0.006  | 0.01   | 0.010  | 0.01   | 0.014  | 0.01   | 0.018  |  |
| Total                            | 100.02 | 0.537  | 100.03 | 0.369  | 100.35 | 0.585  | 100.77 | 0.660  | 100.73 | 0.388  | 100.10 | 0.502  |  |
| Si                               | 1.992  | 0.0109 | 1.996  | 0.0095 | 1.996  | 0.0107 | 1.989  | 0.0099 | 1.996  | 0.0058 | 1.983  | 0.0080 |  |
| AI                               | 0.008  | 0.0101 | 0.004  | 0.0079 | 0.004  | 0.0077 | 0.011  | 0.0093 | 0.004  | 0.0043 | 0.017  | 0.0080 |  |
| Al <sup>vi</sup>                 | 0.361  | 0.0517 | 0.331  | 0.0560 | 0.392  | 0.0131 | 0.409  | 0.0160 | 0.407  | 0.0231 | 0.369  | 0.0396 |  |
| Ti                               | 0.001  | 0.0013 | 0.002  | 0.0023 | 0.001  | 0.0006 | 0.001  | 0.0004 | 0.001  | 0.0006 | 0.002  | 0.0008 |  |
| Cr                               | 0.000  | 0.0000 | 0.000  | 0.0000 | 0.001  | 0.0010 | 0.001  | 0.0009 | 0.001  | 0.0005 | 0.000  | 0.0004 |  |
| Fe <sup>°⁺</sup> *               | 0.125  | 0.0307 | 0.114  | 0.0249 | 0.104  | 0.0250 | 0.091  | 0.0300 | 0.081  | 0.0285 | 0.146  | 0.0346 |  |
| Fe²⁺                             | 0.092  | 0.0205 | 0.106  | 0.0276 | 0.096  | 0.0234 | 0.083  | 0.0258 | 0.106  | 0.0163 | 0.070  | 0.0169 |  |
| Mg                               | 0.437  | 0.0313 | 0.466  | 0.0336 | 0.427  | 0.0093 | 0.432  | 0.0110 | 0.419  | 0.0177 | 0.419  | 0.0121 |  |
| Mn                               | 0.000  | 0.0005 | 0.000  | 0.0006 | 0.001  | 0.0014 | 0.001  | 0.0014 | 0.001  | 0.0008 | 0.001  | 0.0006 |  |
| Ca                               | 0.503  | 0.0404 | 0.536  | 0.0448 | 0.483  | 0.0104 | 0.491  | 0.0128 | 0.497  | 0.0204 | 0.491  | 0.0141 |  |
| Na                               | 0.480  | 0.0375 | 0.445  | 0.0449 | 0.494  | 0.0114 | 0.491  | 0.0147 | 0.488  | 0.0213 | 0.502  | 0.0130 |  |
| K                                | 0.000  | 0.0004 | 0.000  | 0.0004 | 0.000  | 0.0003 | 0.000  | 0.0004 | 0.000  | 0.0006 | 0.000  | 0.0008 |  |
| Σ cations                        | 4.000  |        | 4.000  |        | 4.000  |        | 4.000  |        | 4.000  |        | 4.000  |        |  |
| X <sub>Di</sub>                  | 0.412  | 0.0429 | 0.435  | 0.0377 | 0.393  | 0.0190 | 0.408  | 0.0213 | 0.395  | 0.0205 | 0.415  | 0.0188 |  |
| X <sub>Hd</sub>                  | 0.087  | 0.0155 | 0.099  | 0.0236 | 0.088  | 0.0178 | 0.078  | 0.0207 | 0.100  | 0.0127 | 0.069  | 0.0149 |  |
| X Cen-Cfs                        | 0.015  | 0.0102 | 0.019  | 0.0103 | 0.021  | 0.0103 | 0.015  | 0.0118 | 0.015  | 0.0079 | 0.003  | 0.0069 |  |
| X <sub>Ca-Tsch</sub>             | 0.003  | 0.0047 | 0.000  | 0.0043 | 0.001  | 0.0040 | 0.005  | 0.0046 | 0.001  | 0.0023 | 0.007  | 0.0039 |  |
| $X_{Jd}$                         | 0.361  | 0.0510 | 0.331  | 0.0562 | 0.392  | 0.0128 | 0.410  | 0.0156 | 0.408  | 0.0228 | 0.371  | 0.0402 |  |
| X <sub>Acm</sub>                 | 0.121  | 0.0218 | 0.116  | 0.0214 | 0.104  | 0.0138 | 0.084  | 0.0243 | 0.082  | 0.0249 | 0.136  | 0.0367 |  |

**Table S2- Omphacite compositions** av(*n*): average of *n* EMP analyses;  $\sigma$ : standard deviation; \*: calculated by stoichiometry, on the basis of 4 cations for 6 oxygens; *Xem*: molar fraction of end-member *em* (*Cen*, *Cfs and Ca-Tsch are clinoenstatite*, clinoferrosilite and Ca Tschermak, respectively).