

Supplement of

Multifaceted orogenic fluid dynamics unraveled by hydrothermal epidote

Veronica Peverelli et al.

Correspondence to: Veronica Peverelli (veronica.peverelli@unibe.ch)

The copyright of individual parts of the supplement might differ from the article licence.

1 U-Pb data of allanite secondary reference materials and epidote unknowns

Sample P6b was dated during the same session as sample Gr0-e, in which AVC allanite gave a Tera–Wasserburg age of 281.3 \pm 4.3 Ma (anchored to the ²⁰⁷Pb/²⁰⁶Pb value of 0.854 \pm 0.015 at 275 Ma of Stacey and Kramers, 1975; see the supplementary material of Peverelli et al., 2022a). Sample GE4 was dated along with sample Heyuan-1 of Peverelli et al. (2021; see their Table 3), with CAP allanite returning a Tera–Wasserburg age of 288.5 ± 2.9 Ma and AVC allanite one of 292.4 \pm 3.7 Ma, both anchored to a ²⁰⁷Pb/²⁰⁶Pb value of 0.854 \pm 0.015 (at 275 Ma; Stacev and Kramers, 1975). Samples P8, OBA19-03B and GAS19-01A were dated on 22 February 2021, with CAP allanite returning an anchored Tera–Wasserburg age of 283.8 ± 4.2 Ma (Fig. A1a) and AVC allanite one of 283.0 \pm 2.5 Ma (Fig. A1b; both anchored to the 207 Pb/ 206 Pb value of 0.854 \pm 0.015 at 275 Ma of Stacey and Kramers, 1975). Sample Planggenstock was dated on 23 February 2021, when CAP allanite yielded a Tera–Wasserburg age of 285.6 ± 3.2 Ma (Fig. A1c) and AVC allanite one of 284.1 \pm 4.1 Ma (Fig. A1d; both anchored to the ²⁰⁷Pb/²⁰⁶Pb value of 0.854 \pm 0.015 at 275 Ma of Stacey and Kramers, 1975). All AVC ages are within uncertainty of the reference U-Pb age of 289.6 ± 5.6 Ma (Gregory et al., 2007). The age obtained from CAP allanite on 22 February 2021 is within the uncertainty of the reference age of 275.0 ± 4.7 Ma (Gregory et al., 2007), while that calculated on 23 February 2021 is outside uncertainty of it by ca. 1 % (2.7 myr). Such a difference is negligible if compared to the uncertainties in epidote U–Pb ages of no less than 10 %.

Table S1

Measurement conditions for U-Pb isotope data by LA-ICP-MS.

	Laboratory & Sample Preparation								
Laboratory name	Institute of Geological Sciences, University of Bern (Switzerland)								
Sample type/mineral	Epidote (unknowns), allanite (reference materials)								
Sample preparation	Thin sections								
Imaging	Backscattered electron imaging: 1 nA beam current, 20 kV acceleration voltage, working								
2 2	distances of 8.5–9.5 mm								
	Laser ablation system								
Make, Model & type	Resonetics RESOlutionSE 193 nm excimer laser								
Ablation cell & volume	S-155 large volume constant geometry cell (Laurin Technic, Australia)								
Laser wavelength	193 nm								
Pulse width	5 nsec								
On-sample fluence	3 J cm ⁻²								
Repetition rate	5 Hz								
Ablation duration	40 sec								
Spot diameter	50 μm								
Sampling mode	Static spot ablation								
Carrier gas	Pure He (0.4 1 min ⁻¹) and N ₂ (0.003 1 min ⁻¹) mixed with Ar (0.86 1 min ⁻¹) immediately after the								
-	ablation cell								
Cell carrier gas flow	0.86 1 min ⁻¹								
	ICP-MS Instrument								
Make, Model & type	Agilent 7900 single quadrupole								
Sample introduction	Ablation aerosol with squid device								
RF power	1350 W (22 and 23 February 2021)								
Sampler, skimmer cones	Ni								
Detection system	Single collector secondary electron multiplier								
Data acquisition protocol	Time-resolved analysis								
Scanning mode	Peak-hopping one point per peak								
Detector mode	Pulse counting, dead time correction applied and analog mode when signal intensity $> 10^6$ cps								
Masses measured	206, 207, 208, 232, 238								
Dwell times	40 msec (all masses)								
Sweep time	ca. 0.21 sec								
Th/U (232/238) ratios and oxide	$>$ 98 % and 0.2 %; measured on NIST 612 using a beam size 50 μ m, fluence 2.5 J cm ⁻² , repetition								
production (248/232)	rate 5 Hz, scan rate 5 µm sec ⁻¹								
Sensitivity on mass 232	6585 cps ppm ⁻¹ (22 February 2021) and 6640 cps ppm ⁻¹ (23 February 2021); measured on NIST								
70.5.1.1	612 using a beam size 50 µm, fluence 2.5 J cm ²² , repetition rate 5 Hz, scan rate 5 µm sec ⁻¹								
IC Dead time	38 nsec								
0 11 1	Data Processing								
Gas blank	30 sec on-peak zero subtracted								
Calibration strategy	Tara allanite used as primary reference material; CAP and AVC allanite used for quality control								
Primary reference material	Tara allanite (Gregory et al., 2007; Smye et al., 2014; ²⁰⁷ Pb-correction using an initial ²⁰⁷ Pb/ ²⁰⁰ Pb								
Data processing peakage	Idlite 7.0% and the Vigual A ga Lloom Phine Data Paduation								
Data processing package	Scheme (Chew et al. 2014)								
Initial Ph correction	No initial Ph correction applied to epidote unknown and allanite secondary reference materials								
Uncertainty level & propagation	Age uncertainties are given at 95 % confidence level and do not include propagation of long-term								
encertainty level & propagation	reproducibility of secondary standards								
Quality control / Validation	CAP and AVC allanite (Barth et al. 1994: Gregory et al. 2007).								
Other information	The suitability of allanite as a sufficiently matrix-matched reference material for epidote U-Ph								
	geochronology is outlined in Peverelli et al. (2021)								

Table S2

U–Pb isotope data of allanite secondary reference materials. Uncertainties are given as 2 standard errors (2 SE). f206 indicates the fraction of initial Pb in each measurement and it is calculated as:

$$\left(\left({^{207}Pb}/{^{206}Pb} \right)_{meas} - \left({^{207}Pb}/{^{206}Pb} \right)_{rad} \right) / \left(\left({^{207}Pb}/{^{206}Pb} \right)_{in} - \left({^{207}Pb}/{^{206}Pb} \right)_{rad} \right).$$

Error correlation (rho) is calculated as:

$$\left(\binom{206}{Pb}/\frac{238}{U}/2SE_{206/238}\right)/\left(\left(\binom{207}{Pb}/\frac{235}{U}/2SE_{207/235}\right)\right).$$

in = initial; meas = measured; rad = radiogenic. Mass 235 is not measured, and therefore 235 U is calculated from measurements of mass 238 using the 238 U/ 235 U ratios of 137.818 according to Hiess et al. (2012).

						22 February	2021					
						CAP alla	nite					
Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	$(^{207}Pb/^{206}Pb)_{in}$	(²⁰⁷ Pb/ ²⁰⁶ Pb) _{rad}
1	0.17	18.678	0.303	0.1845	0.0029	1.368	0.021	0.053	0.001	0.95	0.866	0.0518
2	0.21	17.422	0.282	0.2213	0.0035	1.747	0.028	0.057	0.001	0.99		
3	0.14	18.939	0.294	0.1642	0.0025	1.192	0.018	0.053	0.001	0.97		
4	0.12	19.701	0.307	0.1514	0.0022	1.06	0.01	0.051	0.001	0.85		
5	0.19	17.699	0.288	0.2067	0.0035	1.604	0.027	0.056	0.001	1.0		
6	0.13	19.120	0.303	0.154	0.002	1.109	0.016	0.052	0.001	0.91		
7	0.18	18.008	0.289	0.1981	0.0031	1.513	0.024	0.055	0.001	0.99		
8	0.23	16.858	0.276	0.2387	0.0043	1.949	0.037	0.059	0.001	1.2		
9	0.15	19.279	0.301	0.1704	0.0025	1.219	0.017	0.052	0.001	0.89		
10	0.18	18.103	0.301	0.1985	0.0038	1.51	0.03	0.055	0.001	1.2		
11	0.21	17.328	0.285	0.2237	0.0039	1.775	0.029	0.058	0.001	0.99		
12	0.24	16.537	0.273	0.2416	0.0045	2.015	0.036	0.060	0.001	1.1		
						AVC alla	nite					
Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	$(^{207}Pb/^{206}Pb)_{in}$	(²⁰⁷ Pb/ ²⁰⁶ Pb) _{rad}
1	0.25	16.989	0.283	0.2523	0.0041	2.043	0.034	0.059	0.001	1.0	0.854	0.0518
2	0.18	18.365	0.287	0.1972	0.0026	1.477	0.018	0.054	0.001	0.78		
3	0.14	19.106	0.296	0.1666	0.0022	1.208	0.014	0.052	0.001	0.75		
4	0.23	17.059	0.274	0.2329	0.0035	1.888	0.026	0.059	0.001	0.86		
5	0.24	16.694	0.279	0.2481	0.0042	2.06	0.03	0.060	0.001	0.93		
6	0.28	15.883	0.277	0.28	0.01	2.425	0.046	0.063	0.001	1.1		
7	0.26	16.434	0.270	0.2642	0.0056	2.219	0.043	0.061	0.001	1.2		
8	0.32	15.283	0.257	0.3059	0.0054	2.756	0.043	0.065	0.001	0.93		
9	0.29	15.783	0.274	0.2858	0.0051	2.498	0.039	0.063	0.001	0.90		
10	0.18	18.318	0.292	0.1932	0.0033	1.463	0.025	0.055	0.001	1.1		

14	0.20	18.024	0.286	0.2083	0.0039	1.61	0.026	0.055	0.001	1.0		
15	0.20	18.106	0.279	0.2148	0.003	1.646	0.03	0.055	0.001	1.0		
16	0.21	17.658	0.306	0.2176	0.0041	1.716	0.028	0.057	0.001	0.94		
17	0.21	17.841	0.286	0.2177	0.0029	1.681	0.022	0.056	0.001	0.81		
18	0.16	18.598	0.301	0.1819	0.0025	1.36	0.02	0.054	0.001	0.91		
19	0.24	16.647	0.277	0.2463	0.0039	2.039	0.032	0.060	0.001	0.94		
20	0.20	17.464	0.281	0.2124	0.0035	1.692	0.027	0.057	0.001	0.99		
21	0.18	17.999	0.311	0.1951	0.0048	1.509	0.034	0.056	0.001	1.3		
22	0.29	15.790	0.274	0.2826	0.0064	2.484	0.047	0.063	0.001	1.1		
						23 February	y 2021					
						CAP alla	nite					
Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	(²⁰⁷ Pb/ ²⁰⁶ Pb) _{in}	(²⁰⁷ Pb/ ²⁰⁶ Pb) _{rad}
1	0.16	18.748	0.633	0.1804	0.0033	1.337	0.023	0.053	0.002	0.51	0.854	0.0518
2	0.10	20.032	0.682	0.1285	0.0027	0.884	0.019	0.050	0.002	0.63		
3	0.12	18.986	0.649	0.1505	0.0018	1.097	0.012	0.053	0.002	0.32		
4	0.12	19.342	0.636	0.1473	0.0021	1.049	0.015	0.052	0.002	0.43		
5	0.16	17.781	0.601	0.1835	0.003	1.431	0.021	0.056	0.002	0.43		
6	0.12	19.550	0.650	0.1487	0.0022	1.048	0.014	0.051	0.002	0.40		
7	0.18	18.430	0.611	0.1946	0.003	1.46	0.02	0.054	0.002	0.41		
8	0.11	19.631	0.655	0.137	0.002	0.964	0.012	0.051	0.002	0.37		
9	0.20	18.457	0.613	0.2107	0.0035	1.575	0.023	0.054	0.002	0.44		
10	0.19	17.966	0.614	0.203	0.004	1.562	0.026	0.056	0.002	0.49		
11	0.16	18.549	0.619	0.1831	0.0033	1.363	0.023	0.054	0.002	0.50		
12	0.18	17.969	0.613	0.1936	0.0034	1.487	0.024	0.056	0.002	0.47		
13	0.17	18.149	0.626	0.1915	0.0036	1.454	0.026	0.055	0.002	0.52		
						AVC alla	nite					
Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	(²⁰⁷ Pb/ ²⁰⁶ Pb) _{in}	(²⁰⁷ Pb/ ²⁰⁶ Pb) _{rad}
1		17.425	0.577	0.2298	0.0037	1.829	0.028	0.057	0.002	0.46	0.584	0.0518
2		13.004	0.473	0.3852	0.0065	4.05	0.09	0.077	0.003	0.62		
3		15.671	0.540	0.2967	0.0058	2.615	0.047	0.064	0.002	0.52		
4		17.649	0.592	0.229	0.004	1.798	0.034	0.057	0.002	0.56		
5		15.741	0.545	0.284	0.005	2.49	0.04	0.063	0.002	0.46		
5 6		15.741 16.226	0.545 0.553	0.284 0.2641	0.005 0.0048	2.49 2.257	0.04 0.039	0.063 0.062	0.002 0.002	0.46 0.51		
5 6 7		15.741 16.226 15.664	0.545 0.553 0.540	0.284 0.2641 0.2949	0.005 0.0048 0.0055	2.49 2.257 2.599	0.04 0.039 0.041	0.063 0.062 0.064	0.002 0.002 0.002	0.46 0.51 0.46		
5 6 7 8		15.741 16.226 15.664 16.889	0.545 0.553 0.540 0.570	0.284 0.2641 0.2949 0.2528	0.005 0.0048 0.0055 0.0055	2.49 2.257 2.599 2.076	0.04 0.039 0.041 0.044	0.063 0.062 0.064 0.059	0.002 0.002 0.002 0.002	0.46 0.51 0.46 0.63		
5 6 7 8 9		15.741 16.226 15.664 16.889 15.126	0.545 0.553 0.540 0.570 0.526	0.284 0.2641 0.2949 0.2528 0.306	0.005 0.0048 0.0055 0.0055 0.006	2.49 2.257 2.599 2.076 2.805	0.04 0.039 0.041 0.044 0.051	0.063 0.062 0.064 0.059 0.066	0.002 0.002 0.002 0.002 0.002	0.46 0.51 0.46 0.63 0.52		
5 6 7 8 9 10		15.741 16.226 15.664 16.889 15.126 14.932	0.545 0.553 0.540 0.570 0.526 0.513	0.284 0.2641 0.2949 0.2528 0.306 0.3146	0.005 0.0048 0.0055 0.0055 0.006	2.49 2.257 2.599 2.076 2.805 2.908	0.04 0.039 0.041 0.044 0.051 0.052	0.063 0.062 0.064 0.059 0.066 0.067	0.002 0.002 0.002 0.002 0.002 0.002	0.46 0.51 0.46 0.63 0.52 0.52		

18.073

18.142

17.495

11

12

13

0.19

0.18

0.22

0.278

0.276

0.285

0.2057

0.2001

0.2303

0.0024

0.0022

0.0036

1.564

1.515

1.81

0.017

0.016

0.03

0.055

0.055

0.057

0.001

0.001

0.001

0.71

0.69

0.88

12	15.906	0.557	0.2837	0.0054	2.47	0.04	0.063	0.002	0.49
13	15.456	0.525	0.288	0.006	2.59	0.05	0.065	0.002	0.56
14	17.206	0.592	0.2209	0.0049	1.762	0.034	0.058	0.002	0.56
15	19.066	0.654	0.1632	0.0024	1.185	0.015	0.052	0.002	0.37
16	16.439	0.567	0.2473	0.0037	2.078	0.028	0.061	0.002	0.39
17	17.188	0.591	0.2252	0.0045	1.805	0.034	0.058	0.002	0.55
18	15.456	0.525	0.295	0.007	2.638	0.058	0.065	0.002	0.65
19	15.627	0.537	0.2852	0.0065	2.515	0.048	0.064	0.002	0.55
20	15.723	0.569	0.3005	0.0078	2.622	0.065	0.064	0.002	0.68
21	15.122	0.526	0.2999	0.0074	2.73	0.07	0.066	0.002	0.74

Table S3

U–Pb isotope data of epidote unknowns. Uncertainties are given as 2 standard errors (2SE). f206 indicates the fraction of initial Pb in each measurement and it is calculated as:

$$\left(\left({}^{207}Pb/{}^{206}Pb\right)_{meas}-\left({}^{207}Pb/{}^{206}Pb\right)_{rad}\right)/\left(\left({}^{207}Pb/{}^{206}Pb\right)_{in}-\left({}^{207}Pb/{}^{206}Pb\right)_{rad}\right).$$

Error correlation (rho) is calculated as:

 $\left(\binom{206}{Pb}/\frac{238}{U}/2SE_{206/238}\right)/\left(\left(\binom{207}{Pb}/\frac{235}{U}/2SE_{207/235}\right)\right).$

Initial ²⁰⁷Pb/²⁰⁶Pb ratio are obtained from Tera – Wasserburg diagrams excluding outliers (see Sect. 5.1). in = initial; meas = measured; rad = radiogenic. Mass 235 is not measured, and therefore ²³⁵U is calculated from measurements of mass 238 using the ²³⁸U/²³⁵U ratios of 137.818 according to Hiess et al. (2012).

						rob						
Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	$(^{207}Pb/^{206}Pb)_{in}$	(²⁰⁷ Pb/ ²⁰⁶ Pb) _{rad}
1	1.00	1.240	0.021	0.7837	0.0039	87.27	0.66	0.806	0.014	0.44	0.7846	0.0466
2	0.99	1.082	0.021	0.778	0.005	99.1	1.1	0.924	0.018	0.57		
3	0.99	2.411	0.039	0.7744	0.0049	44.39	0.34	0.415	0.007	0.47		
4	0.94	14.577	0.319	0.7439	0.0062	7.1	0.1	0.069	0.001	0.65		
5	0.99	5.537	0.095	0.7799	0.0056	19.38	0.18	0.181	0.003	0.54		
6	0.97	5.890	0.090	0.7628	0.0056	17.94	0.11	0.170	0.003	0.40		
7	1.00	2.371	0.047	0.785	0.005	45.91	0.63	0.422	0.008	0.69		
8	0.91	22.311	0.473	0.715	0.005	4.424	0.076	0.045	0.001	0.81		
9	1.01	3.068	0.050	0.793	0.004	35.68	0.24	0.326	0.005	0.41		
10	0.96	8.241	0.129	0.7553	0.0048	12.662	0.072	0.121	0.002	0.36		
11	0.99	2.239	0.035	0.7769	0.0051	47.88	0.26	0.447	0.007	0.35		
12	0.99	7.032	0.124	0.7802	0.0071	15.42	0.15	0.142	0.002	0.55		
13	0.97	7.197	0.114	0.7591	0.0049	14.567	0.092	0.140	0.002	0.40		
14	0.97	3.044	0.049	0.7618	0.0061	34.55	0.24	0.328	0.005	0.43		
15	0.99	3.578	0.056	0.7792	0.0063	30.25	0.18	0.279	0.004	0.38		
16	0.99	2.447	0.042	0.779	0.004	44.01	0.49	0.409	0.007	0.64		
17	1.00	1.592	0.028	0.7845	0.0053	68.33	0.73	0.628	0.011	0.61		
18	0.99	2.353	0.039	0.7743	0.0055	45.41	0.44	0.425	0.007	0.58		
19	1.00	1.012	0.017	0.786	0.003	107.27	0.85	0.988	0.017	0.46		
20	0.99	0.184	0.004	0.7805	0.0036	585.5	8.6	5.43	0.11	0.73		
21	0.98	0.510	0.009	0.7732	0.0055	210.6	1.9	1.962	0.035	0.51		
22	0.96	7.199	0.420	0.7571	0.0041	14.6	0.86	0.139	0.0081	1.01		
23	0.98	0.692	0.011	0.7705	0.0049	154.6	1.2	1.445	0.024	0.47		
24	0.97	0.727	0.012	0.7595	0.0046	144.8	1.1	1.376	0.022	0.47		
25	0.99	1.364	0.035	0.776	0.006	78.6	1.8	0.733	0.019	0.88		

						P8						
Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	$(^{207}Pb/^{206}Pb)_{in}$	$({}^{207}Pb/{}^{206}Pb)_{rad}$
1	0.99	0.646	0.010	0.7717	0.0052	164.3	1.7	1.547	0.025	0.64	0.7811	0.0466
2	0.99	3.189	0.065	0.7729	0.0048	33.36	0.58	0.314	0.006	0.85		
3	0.97	5.741	0.089	0.7621	0.0055	18.24	0.12	0.174	0.003	0.42		
4	0.98	3.119	0.051	0.7691	0.0066	33.98	0.33	0.321	0.005	0.60		
5	0.99	0.765	0.014	0.7729	0.0075	140.5	1.6	1.307	0.024	0.62		
6	1.00	0.886	0.016	0.7776	0.0052	120.7	1.1	1.13	0.02	0.51		
7	1.00	0.638	0.013	0.7824	0.0083	170.9	2.3	1.568	0.031	0.68		
8	1.00	2.370	0.067	0.7791	0.0044	45.2	1.1	0.422	0.012	0.86		
9	1.00	1.299	0.027	0.7803	0.0048	82.6	1.1	0.77	0.02	0.64		
10	0.98	2.407	0.050	0.769	0.006	43.95	0.78	0.415	0.009	0.86		
11	0.96	8.826	0.179	0.7515	0.0078	11.8	0.2	0.113	0.002	0.79		
12	0.98	3.223	0.049	0.7684	0.0052	32.82	0.25	0.310	0.005	0.50		
13	0.98	5.069	0.077	0.7653	0.0047	20.81	0.11	0.197	0.003	0.35		
14	0.98	5.942	0.099	0.7678	0.0091	17.76	0.17	0.168	0.003	0.57		
15	1.00	2.980	0.052	0.7797	0.0068	36.4	0.4	0.336	0.006	0.66		
16	1.00	2.483	0.056	0.7795	0.0058	43.43	0.82	0.403	0.009	0.84		
17	0.98	2.362	0.051	0.7698	0.0053	44.77	0.61	0.423	0.009	0.63		
18	0.99	3.233	0.050	0.7733	0.0062	32.87	0.25	0.309	0.005	0.49		
19	1.00	0.692	0.013	0.7828	0.0052	155.5	1.7	1.446	0.028	0.56		
20	0.91	23.2126	0.409	0.7137	0.0065	4.26	0.05	0.043	0.001	0.69		

GE4

Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	$(^{207}Pb/^{206}Pb)_{in}$	$(^{207}Pb/^{206}Pb)_{rad}$
1	1.02	1.733	0.075	0.7476	0.0085	59.9	2.3	0.577	0.025	0.89	0.7308	0.0464
2	1.03	0.823	0.024	0.752	0.007	120.6	1.6	1.208	0.035	0.46		
3	1.01	2.540	0.071	0.74	0.01	40	0.81	0.394	0.011	0.72		
4	1.01	1.370	0.045	0.7345	0.0069	74.7	2	0.73	0.02	0.81		
5	1.02	5.461	0.146	0.742	0.008	18.98	0.2	0.183	0.005	0.39		
6	0.94	25.615	0.656	0.6873	0.0064	3.712	0.046	0.039	0.001	0.48		
7	1.00	5.249	0.234	0.728	0.016	18.41	0.79	0.190	0.008	0.96		
8	0.98	6.485	0.206	0.719	0.008	15.26	0.3	0.154	0.005	0.62		
9	0.99	3.070	0.085	0.7245	0.0091	32.77	0.41	0.326	0.009	0.45		
10	1.01	2.641	0.077	0.74	0.01	37.93	0.92	0.379	0.011	0.83		
11	0.96	7.605	0.202	0.706	0.008	13.05	0.15	0.131	0.003	0.43		
12	0.98	6.702	0.180	0.716	0.008	14.93	0.21	0.149	0.004	0.52		
13	0.98	9.930	0.276	0.71	0.01	10.17	0.19	0.101	0.003	0.67		
14	0.97	9.9108	0.383	0.709	0.013	10.06	0.31	0.101	0.004	0.80		
15	0.97	9.766	0.267	0.7072	0.0074	10.22	0.12	0.102	0.003	0.43		
16	0.97	3.698	0.137	0.711	0.012	26.72	0.77	0.27	0.01	0.78		
17	0.95	10.699	0.275	0.6984	0.0064	9.11	0.1	0.093	0.002	0.43		

20	0.96	12.270	0.346	0.703	0.010	8.08	0.13	0.081	0.002	0.57		
21	0.97	6.752	0.242	0.7136	0.0099	14.14	0.3	0.148	0.005	0.59		
22	0.94	19.642	0.579	0.690	0.009	4.86	0.11	0.051	0.001	0.77		
23	0.99	2.115	0.058	0.7255	0.0065	47.76	0.62	0.473	0.013	0.47		
24	0.96	0.656	0.018	0.7008	0.0059	148.2	2.3	1.525	0.041	0.58		
						OBA19-0)3B					
Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	(²⁰⁷ Pb/ ²⁰⁶ Pb) _{in}	(²⁰⁷ Pb/ ²⁰⁶ Pb) _{rad}
1	0.99	5.822077317	0.0881311	0.801	0.004	19.16	0.07	0.172	0.003	0.25	0.8118	0.0463
2	0.98	9.305	0.1385	0.7975	0.0032	11.79	0.05	0.107	0.002	0.315		
3	0.97	13.4975	0.219	0.7902	0.0068	7.88	0.05	0.075	0.001	0.384		
4	0.99	5.712	0.085	0.8015	0.0035	19.34	0.09	0.175	0.003	0.30		
5	0.95	23.116	0.353	0.7769	0.0045	4.70	0.02	0.043	0.001	0.32		
6	0.97	10.734	0.161	0.7886	0.0044	10.24	0.05	0.093	0.001	0.32		
7	0.96	19.220	0.307	0.7815	0.0033	5.63	0.03	0.052	0.001	0.37		
8	0.95	25.8937	0.389	0.7723	0.0035	4.11	0.02	0.039	0.001	0.28		
9	1.00	4.320	0.065	0.8085	0.0031	25.78	0.11	0.231	0.003	0.28		
10	0.97	17.437	0.277	0.7904	0.0036	6.31	0.04	0.057	0.001	0.43		
11	0.97	12.293	0.181	0.7919	0.0032	8.87	0.04	0.081	0.001	0.34		
12	0.98	9.359	0.140	0.7978	0.0039	11.57	0.09	0.107	0.002	0.54		
13	0.98	7.771	0.115	0.7986	0.0036	14.15	0.06	0.129	0.002	0.29		
14	0.98	8.331	0.125	0.7988	0.0034	13.19	0.11	0.120	0.002	0.56		
15	0.98	10.801	0.163	0.7932	0.0044	10.23	0.05	0.093	0.001	0.31		
16	0.98	6.848	0.098	0.7988	0.0025	16.07	0.07	0.146	0.002	0.32		
17	1.01	0.361	0.006	0.8165	0.0042	297.3	3.9	2.77	0.049	0.74		
18	0.99	5.023	0.076	0.8055	0.0039	22.02	0.13	0.199	0.003	0.39		
19	0.99	7.677	0.118	0.8013	0.0044	14.52	0.07	0.130	0.002	0.33		
						GAS19-0	01A					
Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	$(^{207}Pb/^{206}Pb)_{in}$	$(^{207}Pb/^{206}Pb)_{rad}$
1	0.99	6.835	0.107	0.8306	0.0071	16.78	0.15	0.146	0.002	0.57	0.8381	0.0463
2	1.00	1.797	0.035	0.841	0.006	64.41	0.93	0.556	0.011	0.73		
3	1.00	2.823	0.076	0.8358	0.0058	41	1	0.354	0.009	0.91		
4	1.01	1.108	0.018	0.8427	0.0072	104	1	0.903	0.015	0.58		
5	1.00	1.938	0.032	0.8362	0.0065	59.3	0.4	0.516	0.008	0.41		
6	1.00	0.022	0.001	0.8391	0.0038	5340	120	45.9	1.2	0.86		
7	1.00	0.845	0.015	0.8403	0.0072	134.3	1.6	1.183	0.021	0.67		
8	1.00	1.214	0.022	0.84	0.01	96.5	1.2	0.824	0.015	0.68		
9	1.01	1.253	0.025	0.8437	0.0071	93.8	1.4	0.798	0.016	0.74		
10	1.00	1.536	0.026	0.8349	0.0055	74.7	0.5	0.651	0.011	0.40		
11	0.99	3.733	0.067	0.8339	0.0071	30.71	0.39	0.268	0.005	0.71		

2.538

19.646

18

19

0.97

0.95

0.064

0.618

0.7103

0.697

0.0059

0.011

38.83

4.79

0.53

0.13

0.39

0.051

0.01

0.002

0.54

0.86

12	1.00	1.570	0.024	0.837	0.003	73.35	0.49	0.637	0.010	0.44		
3	0.99	1.785	0.028	0.8338	0.0041	64.4	0.5	0.560	0.009	0.50		
4	1.00	0.469	0.007	0.8373	0.0039	245.4	1.9	2.132	0.034	0.49		
5	1.00	0.928	0.015	0.834	0.004	123.47	0.73	1.077	0.017	0.37		
16	1.00	1.805	0.029	0.835	0.003	63.75	0.59	0.554	0.009	0.57		
17	0.99	3.273	0.049	0.8289	0.0038	35.22	0.19	0.305	0.005	0.36		
18	0.99	1.615	0.039	0.8305	0.0049	71	1	0.619	0.015	0.87		
19	1.00	1.404	0.039	0.836	0.006	83	2	0.71	0.02	0.86		
20	0.99	2.494	0.039	0.8287	0.0068	45.71	0.29	0.401	0.006	0.40		
21	0.99	2.100	0.034	0.832	0.006	54.5	0.5	0.476	0.008	0.58		
22	1.00	0.623	0.010	0.8344	0.0044	184.5	1.7	1.606	0.025	0.59		
23	1.00	2.337	0.047	0.8343	0.0046	49.1	0.6	0.428	0.009	0.57		
24	1.00	1.485	0.026	0.8399	0.0064	77.8	1.1	0.673	0.012	0.79		
25	1.00	1.896	0.031	0.8343	0.0066	60.48	0.39	0.527	0.008	0.40		
26	1.00	0.739	0.011	0.8381	0.0046	155.9	1.1	1.353	0.021	0.45		
27	0.99	1.261	0.024	0.8335	0.0053	90.92	0.94	0.793	0.015	0.55		
28	0.99	1.511	0.023	0.831	0.005	75.69	0.48	0.66	0.01	0.42		
						Planggens	stock					
Spot	f206	²³⁸ U/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²⁰⁶ Pb	2 SE	²⁰⁷ Pb/ ²³⁵ U	2 SE	²⁰⁶ Pb/ ²³⁸ U	2 SE	rho	(²⁰⁷ Pb/ ²⁰⁶ Pb)in	(²⁰⁷ Pb/ ²⁰⁶ Pb
1	0.99	2.488	0.099	0.8017	0.0077	45	1	0.402	0.016	0.56	0.8071	0.0463
2	1.00	0.945	0.032	0.8089	0.0045	118.6	1.2	1.058	0.036	0.30		
3	0.99	2.964	0.105	0.8025	0.0045	37.49	0.37	0.337	0.012	0.28		
4	1.00	1.618	0.055	0.8056	0.0045	68.9	0.9	0.618	0.021	0.38		
5	0.98	9.385	0.317	0.7924	0.0048	11.68	0.08	0.106	0.004	0.19		
6	1.00	1.010	0.035	0.807	0.005	110.6	1.3	0.99	0.03	0.34		
7	1.01	1 316	0.045	0.8126	0.0061	84.88	0.86	0.760	0.026	0.30		
, 8	1.00	1 831	0.060	0.8063	0.0044	61	1	0.546	0.018	0.23		
0	1.00	1.031	0.049	0.8062	0.0043	78.02	0.88	0.699	0.024	0.33		
10	0.00	2 275	0.107	0.8002	0.0045	22.02	0.36	0.30	0.024	0.33		
10	0.00	3.116	0.107	0.700	0.004	25.56	0.20	0.30	0.011	0.20		
12	0.99	1.424	0.107	0.799	0.004	33.30	0.57	0.521	0.011	0.30		
12	0.99	2.050	0.049	0.3010	0.0044	27.52	0.26	0.097	0.024	0.23		
15	0.99	2.930	0.090	0.7995	0.0040	37.32	0.20	0.339	0.011	0.21		
14	0.98	5.774	0.127	0.794	0.005	29.12	0.16	0.265	0.009	0.16		
15	0.99	3.332	0.120	0.799	0.005	31.41	0.27	0.283	0.010	0.25		
16	1.00	3.382	0.114	0.804	0.005	33	+	0.30	0.01	0.30		
17	1.00	2.623	0.089	0.8061	0.0062	42.32	0.56	0.381	0.013	0.39		
18	0.99	3.940	0.132	0.801	0.004	28.12	0.12	0.254	0.008	0.13		
19	0.99	2.089	0.070	0.8018	0.0044	53.17	0.23	0.479	0.016	0.13		
20	1.00	1.635	0.056	0.8038	0.0044	68.08	0.66	0.612	0.021	0.28		
21	0.84	83.822	3.091	0.683	0.017	1.14	0.02	0.012	0.001	0.48		

23	0.99	6.588	0.239	0.797	0.013	16.93	0.26	0.152	0.005	0.42
24	1.01	3.2	0.1	0.8131	0.0096	35.1	0.4	0.312	0.011	0.29
25	0.99	1.659	0.055	0.8024	0.0048	66.98	0.38	0.60	0.02	0.17
26	1.00	2.226	0.074	0.8088	0.0065	50.4	0.4	0.449	0.015	0.24
27	0.99	2.011	0.069	0.8003	0.0075	55.09	0.44	0.497	0.017	0.23
28	0.99	3.418	0.114	0.8007	0.0052	32.43	0.18	0.293	0.010	0.17
29	1.00	1.636	0.056	0.804	0.005	68.09	0.39	0.611	0.021	0.17
30	1.00	1.780	0.060	0.8064	0.0048	62.81	0.34	0.562	0.019	0.16
31	0.98	9.288	0.311	0.793	0.005	11.83	0.07	0.108	0.004	0.17
32	0.99	5.653	0.195	0.801	0.005	19.58	0.22	0.177	0.006	0.33
33	0.99	6.743	0.227	0.7968	0.0049	16.37	0.08	0.148	0.005	0.14
34	1.00	4.843	0.171	0.8065	0.0063	23.06	0.27	0.206	0.007	0.33
35	0.98	9.952	0.337	0.7953	0.0051	11.09	0.07	0.100	0.003	0.18
36	1.00	1.333	0.044	0.8047	0.0045	83.47	0.46	0.75	0.02	0.16

3 Cerium, Pb, Th, U and sum of REE (ΣREE) of the studied epidote samples

Mass fractions of Ce, Pb, Th, U and the sum of REE (SREE; Table S4) were determined by LA-ICP-MS at the University of Bern. Measurements in samples P1 of spots 13-38 were carried out on a Geolas Pro 193 nm ArF excimer laser (Coherent, USA) coupled with an ELAN DRCe quadrupole ICP-MS (QMS; Perkin Elmer, USA). Ablation rate was ca. 0.1 µm per laser pulse, repetition rate 10 Hz and beam sizes between 24 and 60 μ m, with ablation in 1 L min⁻¹ He and 0.008 L min⁻¹ H₂. Details on the measurement procedures are outlined in Pettke et al. (2012). All other samples and spots in sample P1 were analyzed on a RESOlutionSE 193 nm excimer laser system (Applied Spectra, USA) equipped with an S-155 large-volume constant-geometry chamber (Laurin Technic, Australia) coupled with an Agilent 7900 ICP-QMS. Repetition rate was 5 Hz, spot sizes between 20 and 30 μ m, with ablation in He which admixed with the Ar carrier gas for transport to the ICP-MS. The NIST SRM612 was used for optimization of analytical conditions of both systems. The basalt glass GSD-1G was used as external standard, and the NIST SRM612 for quality control. Data reduction was carried out using SILLS (Guillong et al., 2008), using the sum of total oxides (98.3 % for epidote and 100 % for the NIST SRM612) for internal standardization (see Halter et al., 2002). Calculation of limits of detection used the formulation of Pettke et al. (2012) for each element in each analysis.

Analysis	Ce [µg g ⁻¹]	Pb [µg g ⁻¹]	Th [µg g ⁻¹]	U [µg g ⁻¹]	ΣREE [µg g ⁻¹]
		Epic	lote P1		
1	0.03	19	0.004	4.9	0.84
2	2.1	44	0.75	6.3	9.4
3	0.22	26	0.003	4.8	1.9
4	0.02	28	0.88	3.3	0.04
5	0.02	12	< 0.01	0.28	0.20
6	1.2	24	< 0.02	2.0	3.3
7	0.11	7.3	< 0.01	2.7	2.0
8	0.14	12	< 0.01	1.2	1.7
9	0.69	12	< 0.01	1.2	3.4
10	1.2	13	< 0.01	1.2	4.9
11	0.55	17	< 0.01	1.4	2.7
12	1.6	91	0.11	0.88	7.9
13	1.2	23	0.23	2.8	19
14	1.0	32	0.10	4.8	12
15	2.9	26	0.24	0.69	11
16	1.6	13	0.08	1.8	10
17	< 0.10	28	< 0.04	0.24	<i>N/A</i>
18	0.20	12	0.01	0.92	1.9
19	0.47	23	0.06	2.4	5.2
20	0.71	35	< 0.07	5.0	7.0
21	0.04	7.6	< 0.03	0.53	0.04
22	< 0.07	15	< 0.02	0.87	0.11
23	4.2	28	< 0.02	0.51	8.3
24	< 0.09	27	< 0.03	0.49	<i>N/A</i>
25	8.3	9.5	< 0.03	1.2	24

Table S4: Cerium, Th, U and sum of REE (Σ REE) measured by LA-ICP-MS in the studied epidote samples. Analyses below limits of detection are indicated by the symbol < followed by limit of detection calculated for that specific analysis. N/A = all REE measurements were below individual limits of detection.

26	0.78	7.5	0.04	0.85	3.7
27	0.30	16	0.02	1.2	3.0
28	0.26	8.6	< 0.02	1.7	2.4
29	0.70	11	< 0.01	2.2	3.4
30	0.29	11	0.08	0.52	0.89
31	0.12	24	0.06	6.0	1.5
32	1.1	16	< 0.07	14	23
33	0.17	6.3	< 0.03	1.5	0.83
34	0.56	67	0.02	7.4	2.0
35	0.12	58	0.03	11	1.4
36	0.20	12	< 0.01	1.6	2.3
37	0.21	13	< 0.01	0.95	2.4
38	0.16	10	< 0.02	1.4	1.7
		Epi	dote P2		
1	0.71	6.3	< 0.06	2.1	1.9
2	0.13	11	< 0.06	1.4	0.24
2	34	42	< 0.08	2.3	79
3	18	39	< 0.05	1.4	39
3	1.1	33	< 0.06	0.78	3.6
4	0.92	12	< 0.11	0.49	2.2
4	0.77	29	9.8	2.1	2.6
5	0.26	48	< 0.07	0.63	1.8
5	7.8	36	3.4	8.2	27
6	0.51	15	< 0.04	1.0	3.1
6	0.42	18	< 0.05	1.2	2.8
7	1.3	20	< 0.03	0.99	5.0
7	0.42	18	< 0.05	0.78	2.4
8	1.3	27	< 0.04	1.8	6.7
8	15	17	< 0.03	2.7	38
9	0.49	25	0.04	1.1	2.6

10	1.6	44	0.36	2.6	5.1	
10	0.03	20	4.5	0.72	0.14	
11	0.20	47	< 0.03	0.45	1.6	
11	0.11	47	< 0.04	0.69	0.92	
12	0.88	50	< 0.02	1.5	3.2	
12	0.05	21	0.39	2.6	0.50	
13	5.3	121	< 0.02	18	14	
13	0.10	11	< 0.02	0.69	0.25	
14	0.32	23	< 0.01	6.1	1.2	
		Epi	dote P3			
1	200	54	1.8	6.5	469	
2	50	34	2.3	6.7	128	
2	132	40	1.3	14	313	
3	1.9	60	20	2.0	8.6	
3	5.8	56	< 0.04	1.1	17	
		Epidote	e Grimsel-1			
1	10	172	8.9	133	92	
2	8.1	150	0.18	137	96	
2	4.1	125	0.15	188	48	
3	7.6	135	0.30	186	69	
3	7.4	133	0.26	174	70	
4	4.3	118	0.14	164	48	
4	6.6	130	0.36	160	54	
5	7.6	136	2.2	185	64	
5	8.2	132	2.0	192	63	
6	5.2	133	0.12	195	57	
6	8.5	151	7.6	182	67	
7	20	152	0.99	226	125	
7	14	127	0.47	79	131	
8	18	131	< 0.09	129	163	
8	8.8	155	0.82	353	89	

9	1.9	171	0.15	266	67
9	9.3	97	0.07	60	42
10	15	169	0.71	125	87
10	9.3	87	0.30	137	55
11	17	174	0.56	242	131
11	12	148	2.6	102	79
12	9.7	175	0.47	225	82
12	7.2	93	4.9	103	34
13	8.5	193	0.81	136	53
13	3.0	78	1.9	158	40
14	2.5	179	0.14	263	79
14	0.97	93	0.04	54	23
15	3.0	152	0.84	140	48
15	6.3	93	0.83	118	41
16	2.9	113	3.0	105	30
		Epidote	e Grimsel-2		
1	10	75	0.07	217	144
2	6.8	69	0.27	159	110
3	7.1	75	0.20	151	100
4	5.2	51	< 0.06	121	100
5	4.4	62	< 0.05	117	87
6	6.8	74	0.07	161	97
7	14	97	0.11	273	180
8	18	95	0.13	266	125
9	17	65	0.21	284	115
10	6.1	88	< 0.02	177	131
11	9.5	93	< 0.03	109	117
12	29	75	0.53	535	188
13	10	62	0.36	311	97
		Epic	lote P6b		
1	2.1	39	< 0.04	180	71

2	1.7	109	< 0.03	29	30	-
3	1.6	75	< 0.04	11	24	
4	6.1	56	0.25	43	37	
5	4.6	51	0.60	40	30	
6	0.69	33	< 0.04	42	13	
7	1.6	34	< 0.04	174	40	
8	3.6	32	0.04	12	23	
9	0.99	41	< 0.01	40	15	
10	9.3	115	0.02	24	46	
11	11	54	< 0.06	5.2	40	
12	2.3	79	< 0.02	8.1	14	
13	6.4	84	< 0.07	8.3	28	
14	0.89	60	< 0.04	4.0	12	
15	2.5	98	< 0.01	18	28	
16	0.70	67	< 0.04	5.6	13	
17	2.8	176	< 0.06	7.7	27	
18	19	46	0.08	17	68	
19	34	119	0.52	40	109	
20	6.2	59	< 0.05	9.1	40	
		Epi	dote P8			-
1	0.78	26	< 0.04	30	25	_
2	3.5	53	0.22	201	62	
3	4.7	35	0.08	67	49	
4	1.5	58	0.01	24	22	
5	1.2	26	< 0.03	15	15	
5	2.4	58	< 0.03	79	54	
7	2.9	68	0.05	11	28	
8	0.89	56	< 0.02	27	20	
Ð	6.9	52	< 0.04	7.1	37	
10	1.2	45	< 0.01	71	37	
11	0.72	34	< 0.02	57	33	

12	0.94	48	< 0.02	18	19		
13	0.94	30	0.06	24	18		
		Epic	lote GE4				
1	28	38	0.004	80	196		
2	2.1	30	< 0.006	20	42		
3	0.55	30	< 0.008	11	21		
4	0.84	31	< 0.007	41	59		
5	3.1	61	0.02	162	132		
6	0.38	58	0.01	5.4	13		
7	84	63	1.3	147	441		
8	1.7	43	0.07	160	99		
9	2.1	63	0.06	76	156		
10	2.0	77	0.01	53	107		
11	2.1	29	< 0.005	72	116		
12	1.2	62	0.03	48	77		
13	5.6	43	0.56	20	80		
14	0.11	18	0.00	15	214		
15	1.3	47	0.11	182	142		
16	1.3	66	0.01	107	168		
Epidote OBA19-03B							
1	1.7	189	< 0.01	363	160		
2	6.4	128	0.01	263	282		
3	8.8	200	< 0.007	475	366		
4	3.8	168	< 0.01	531	348		
5	365	127	7.9	365	1437		
6	81	114	1.7	604	636		
7	1.3	175	< 0.007	415	265		
8	6.2	151	0.02	439	328		
9	321	151	13	452	1364		
10	0.26	116	0.04	313	50		
11	1.0	148	0.04	124	24		

12	331	118	1.5	330	1293		
13	0.26	117	0.02	245	95		
14	0.20	120	0.02	158	51		
15	0.25	134	0.03	101	29		
16	240	164	12	191	893		
17	422	166	2.9	345	1499		
18	25	146	0.43	224	250		
19	15	197	0.01	456	395		
20	17	186	0.13	466	431		
21	0.19	137	< 0.007	342	165		
22	3.6	116	< 0.01	249	247		
23	0.08	142	< 0.01	247	87		
24	6.2	115	0.02	246	209		
25	0.02	116	< 0.005	241	149		
26	0.04	191	< 0.01	221	75		
		Epidote	GAS19-01A				
1	1.1	37	0.12	56	21		
2	0.97	39	0.09	22	13		
3	1.0	48	2.5	27	14		
4	0.46	67	0.13	13	6.6		
5	0.90	45	< 0.01	18	10		
6	2.0	83	0.02	13	12		
7	25	199	0.86	349	273		
8	8.7	47	0.12	43	88		
9	2.6	45	0.02	36	23		
10	2.7	34	0.08	25	25		
11	4.5	226	0.37	735	82		
12	0.77	95	0.82	9.2	6.0		
13	0.65	96	0.12	45	19		
14	2.1	74	0.64	67	41		
Epidote Planggenstock							

1	156	105	0.27	44	443	
2	82	69	0.14	35	257	
3	50	89	0.04	27	165	
4	62	44	0.10	30	218	
5	84	57	0.11	45	299	
6	64	53	0.04	33	245	
7	39	48	0.02	21	172	
8	35	40	0.02	18	158	
9	22	25	0.02	15	103	
10	59	47	0.02	51	212	
11	48	43	0.04	44	181	
12	27	15	0.08	29	103	
13	17	15	0.02	18	77	
14	46	153	0.28	26	142	
15	46	154	0.28	27	141	
16	49	185	0.40	53	175	
17	44	148	0.44	53	164	
18	38	149	0.24	21	118	
19	41	142	0.22	22	126	
20	49	126	0.31	25	146	
21	54	168	0.26	28	162	
22	58	154	0.31	29	170	

References

Barth, S., Oberli, F., and Meier, M.: ThPb versus UPb isotope systematics in allanite from cogenetic rhyolite and granodiorite: implications for geochronology, Earth Planet. Sci. Lett., 124, 149–159, https://doi.org/10.1016/0012-821X(94)00073-5, 1994.

Gregory, C. J., Rubatto, D., Allen, C. M., Williams, I. S., Hermann, J., and Ireland, T.: Allanite micro-geochronology: A LA-ICP-MS and SHRIMP U-Th-Pb study, Chem. Geol., 245, 162–182, https://doi.org/10.1016/j.chemgeo.2007.07.029, 2007.

Hiess, J., Condon, D. J., McLean, N., and Noble, S. R.: $^{238}U/^{235}U$ Systematics in Terrestrial Uranium-Bearing Minerals, Science (80-.)., 335, 1610 LP – 1614, https://doi.org/10.1126/science.1215507, 2012.

Peverelli, V., Ewing, T., Rubatto, D., Wille, M., Berger, A., Villa, I. M., Lanari, P., Pettke, T., and Herwegh, M.: U – Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation, Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, 2021.

Peverelli, V., Berger, A., Mulch, A., Pettke, T., Piccoli, F., and Herwegh, M.: Epidote U-Pb geochronology and H isotope geochemistry trace pre-orogenic hydration of midcrustal granitoids, Geology, 50, 1073–1077, https://doi.org/10.1130/G50028.1, 2022a.

Smye, A. J., Roberts, N. M. W., Condon, D. J., Horstwood, M. S. A., and Parrish, R. R.: Characterising the U-Th-Pb systematics of allanite by ID and LA-ICPMS: Implications for geochronology, Geochim. Cosmochim. Acta, 135, 1–28, https://doi.org/10.1016/j.gca.2014.03.021, 2014.

Stacey, J. S. and Kramers, J. D.: Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 26, 207–221, https://doi.org/10.1016/0012-821X(75)90088-6, 1975.