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Abstract. Solid inclusion piezobarometry is the determination of the entrapment conditions of solid inclusions
in a host by measurement and interpretation of the residual pressure of the inclusion. The development over the
past two centuries of the concepts, analytical tools and measurement techniques of inclusion piezobarometry
is reviewed, and potential future developments are outlined for the special issue of the European Journal of
Mineralogy devoted to the study of mineral and melt inclusions.

1 A brief history

Inclusions in natural rocks are an invaluable asset for geosci-
entists because they provide information about processes in
the Earth’s past that are otherwise hidden or subsequently
overprinted. In particular, these “impurities” that are rem-
nants of geological processes frozen in the rock record have
the potential to provide quantitative data necessary for quan-
tifying a wealth of processes of great impact for all hu-
mankind.

Solid inclusion piezobarometry is the determination of the
entrapment conditions of inclusions in a host by the measure-
ment and interpretation of the residual pressure of the inclu-
sion. Several of the papers in this special issue (Tuttle and
Henry, 2023; Wang et al., 2023; Pummell and Thomas, 2024)
and a recent exhaustive review (Kohn et al., 2023) illustrate
that it is a rapidly developing method within petrology and
mineralogy that offers an additional constraint on rock histo-
ries beyond that of conventional thermodynamic analysis of
mineral phase equilibria. The recent widespread use of inclu-
sion piezobarometry is, however, based upon concepts, ana-
lytical tools and measurement techniques that have been de-
veloped over a period of two centuries. Certainly, the recog-
nition of inclusions in crystals, and the possibility that the
nature of the inclusions could shed light on the conditions
of growth of the host crystal, is far older (e.g. Steno, 1669).
But, as far as we can determine, Brewster (1820, 1835)
was the first to report birefringence haloes around inclusions

(he called them cavities at the time, believing them to be
filled with gas) when viewed under polarised light. From
the changes in birefringence colours when viewed through
tint plates, and by comparison with the birefringence he ob-
served in glass when under the force of an indenter, Brewster
correctly concluded that the inclusions were exerting an out-
wards force on their diamond host.

Although he was studying fluid and melt inclusions, con-
taining vapour bubbles, it was Sorby (1858) who showed that
the properties of inclusions (in this case the temperature at
which the vapour bubble disappeared) could be used to indi-
cate the pressure and temperature conditions of original en-
trapment. In a subsequent examination of inclusions in dia-
monds Sorby and Butler (1869) were able to demonstrate that
the inclusions themselves were birefringent and thus crys-
talline. They interpreted the surrounding birefringent haloes
in the diamond as “proving that the inclosed crystals have
exerted a pressure on the surrounding diamond” but then
drew the wrong conclusion that “We, however, do not imag-
ine that the crystals have increased in size, but that probably
they have prevented the uniform contraction of the diamond”.
This last statement is wrong. Harris et al. (1970) credit Sut-
ton (1918) as the first to recognise correctly that the strain
birefringence observed in the host arises from strain, and by
implication stress or pressure, in the inclusion. However, that
is not at all clear because the discussion by Sutton (1918)
concerns heating the diamond after entrapment of the inclu-
sion. He correctly deduced that the lower thermal expansion
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coefficient of the diamond prevents the inclusion from ex-
panding as much as it should on heating, and thus stress and
strain would be created in the diamond around the inclusion
and could lead to fracture of the diamond host. Therefore,
Sutton must also have realised that cooling has the opposite
effect to heating; it would lead to a reduction of inclusion
stress in diamond. Therefore, cooling cannot be responsible
for the birefringent haloes seen in diamonds when observed
at room temperature. This was confirmed by the analysis
(Goodier, 1933) of the stress developed in and around inclu-
sions when the host is subject to an external stress, which in-
clude changes in external hydrostatic pressure and the effec-
tive stress generated as the result of cooling. Goodier (1933)
showed that, starting from a system in uniform stress and
strain, the final stress state is determined solely by the elas-
tic properties of the system and the volume strain imposed
on the host. And after a change in pressure or temperature a
spherical inclusion has a uniform internal pressure while the
host develops a deviatoric stress field, and hence the strain
birefringence, while the pressure (equated to the mean stress)
everywhere in the host remains equal to the external pres-
sure. These results were confirmed and generalised by Es-
helby (1957) for elliptically shaped inclusions. These analy-
ses of Goodier and Eshelby showed that the final inclusion
pressure, denoted Pinc in modern work (Angel et al., 2015),
arises from two contributions to the volume change of the
inclusion. The first is the pressure of the inclusion arising
from it being constrained to the ideal volume change of its
host subject to the change in pressure and temperature from
entrapment. In the absence of plastic flow, cracking or other
deformation of the host mineral, this can be calculated from
thermodynamics, or specifically the equations of state of the
host and inclusion phases if they are both isotropic. Hence it
has been called “Pthermo”. But if Pthermo is not equal to the
external pressure applied to the host, there would be a force
imbalance at the wall of the inclusion. If Pthermo is greater
than the final external pressure on the host, the excess pres-
sure in the inclusion would force the inclusion to expand, and
thus the inclusion pressure would decrease until it is balanced
by the radial stress in the host that builds up from compres-
sion of the host by the inclusion. It is this mutual relaxation
that deforms the host anisotropically and thus creates the ob-
served optical birefringence in cubic host minerals such as
diamond.

With the determination of the components of the photoe-
lastic tensor of diamond (Poindexter, 1955), all of the con-
cepts and tools were apparently available to infer the pres-
sures of inclusions from measurement of the birefringence in
their diamond hosts. But it is difficult to measure and then
interpret the birefringence because what is actually observed
is the total birefringence integrated through the thickness of
the specimen, so this approach remains an experimental chal-
lenge to this day (e.g. Howell et al., 2010; Howell and Nas-
dala, 2008). Prior to 1960 it therefore appears that the only
methodology available to constrain the entrapment condi-

tions of solid inclusions was to determine the temperature
at which inclusions fractured the host (Smith, 1952).

The key conceptual breakthrough that avoided the prob-
lem of measuring the birefringence (or strains in the host)
was due to Rosenfeld and Chase (1961). They noted that af-
ter entrapment of the inclusion there is a path in P −T space
along which the inclusion crystal has exactly the same frac-
tional volume change as the host. The slope of this line, sub-
sequently called an isomeke (Adams et al., 1975b), depends
on the contrast between the coefficients of volume expan-
sion, αH and αI , and compressibility, βH and βI , of the two
minerals:(
∂P

∂T

)
isomeke

=
αH −αI

βH −βI
. (1)

Along this P − T path a cubic inclusion such as garnet or
spinel continues (without further compression or expansion)
to completely fill the cavity in a cubic host mineral such as di-
amond. Therefore, no stress difference is developed between
the host and inclusion along an isomeke, the inclusion pres-
sure remains equal to the external pressure on the host and,
consequently, there is no strain field in the host.

The insight of Rosenfeld and Chase (1961) therefore re-
duced the determination of possible entrapment conditions
to finding a point on the entrapment isomeke and then ei-
ther calculating the isomeke in P − T space via Eq. (1)
from the known properties of the minerals, or measuring
isomekes directly by comparison dilatometry of the two min-
erals (Adams et al., 1975a; Cohen and Rosenfeld, 1979). The
entrapment isomeke could often be found by either heating
or cooling the host-inclusion system and finding the tem-
perature at which the strain birefringence disappeared (e.g.
Rosenfeld and Chase, 1961; Hutchison, 1967). Or the ther-
mal expansion of the trapped and freed inclusion crystal
could be measured separately by diffraction and the temper-
ature of the entrapment isomeke at room pressure found by
calculation (e.g. Harris et al., 1970).

Finding the entrapment isomeke experimentally avoids
two problems. First, there is the problem of how to mea-
sure the pressure or stress state in the inclusion while still
entrapped in its host and, second, how to allow for the mu-
tual elastic relaxation of a host-inclusion system starting
from a measurement of the final inclusion stress state, Pinc.
The solution of this second step was long delayed. Instead,
the forward problem of calculating the stress state of host-
inclusion systems along a presumed exhumation path start-
ing from known entrapment conditions was addressed by
Gillet et al. (1984) and then Van Der Molen and Van Roer-
mund (1986), both groups motivated by calculating under
what conditions cracking would be initiated around inclu-
sions during exhumation. These analyses avoided the prob-
lems of calculations over large P and T changes, and hence
large changes in volume that take materials out of the lin-
ear elastic regime, by calculating the relaxation over a se-
ries of small decrements in P and T . If the calculated final
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Pinc matched the measured one, then the proposed entrap-
ment conditions could be the actual entrapment conditions
of the inclusion. However, while this approach allows the
effects of phase transitions such as from coesite to quartz
within the inclusion to be calculated, it is not an elegant
or practical approach to finding possible entrapment condi-
tions from a measured final Pinc. That was enabled by Zhang
(1998) showing that the relaxation term can be calculated di-
rectly from the elastic properties of the host and inclusion
and the actual measured inclusion pressure. A P − T point
on the entrapment isomeke can then be calculated, usually
at room temperature. And the isomeke through this point is
calculated with Eq. (1) that represents (unlike the forward
calculation method) all possible entrapment conditions from
one calculation. First applications included estimates of en-
trapment isomekes of olivines in diamond from their Pinc de-
termined from the up-shift of a Raman band of the olivine
(Izraeli et al., 1999) and of coesite inclusions in diamond
whose Pinc was determined by both Raman spectroscopy and
in situ X-ray diffraction (Sobolev et al., 2000).

In the subsequent two decades the methodology has been
improved and become widely used primarily because of three
developments: first, the widespread availability of micro-
Raman spectrometers to determine inclusion pressures (e.g.
Enami et al., 2007, for quartz in garnet, QuiG) from the
pressure-induced shift in their Raman lines; second, by the
introduction of more precise and more realistic equations
of state into the calculations, as summarised by Angel et
al. (2014); and third, and perhaps even more importantly, by
the provision of user-friendly software to perform the cal-
culations of entrapment conditions from the measurements
of either the Raman shifts of inclusions (e.g. Kohn, 2014)
or the pressures or strain states inferred from them or X-ray
measurements (e.g. Angel et al., 2017; Mazzucchelli et al.,
2021).

In contrast, measurements of the stress fields in the host
are not commonly used to determine inclusion pressures or
their entrapment conditions. Pressure determination, for ex-
ample by EBSD, is not possible because specimen prepara-
tion to allow the stress field in the host close to the inclu-
sion to be measured will always result in relaxation of that
stress (Campomenosi et al., 2018; Zhang, 1998; Zhong et al.,
2019). But modern developments in mineral physics have al-
lowed the study of inclusions to return full circle to the ef-
fects in the host represented by the birefringent haloes first
reported by Brewster (1820) two centuries ago. Quantitative
measurements of the birefringence around undisturbed inclu-
sions in diamond are now possible (Howell et al., 2010), and
the stresses that they imply agree with independent determi-
nations from mapping by Raman spectroscopy (Nasdala et
al., 2003; Howell and Nasdala, 2008).

Minerals are not elastically isotropic. This means that even
a spherical inclusion will develop anisotropic stress (if the
inclusion is anisotropic) or anisotropic strain (if the host
is anisotropic). Much recent research has focussed on find-

ing corrections for these effects so that Pinc measurements
can be used within the isotropic model. For example, dif-
ferent inclusion shapes lead to different amounts of mutual
elastic relaxation, but shape correction factors can be calcu-
lated (Mazzucchelli et al., 2018). Anisotropic stress in the
inclusion moves the Raman peaks from their positions un-
der hydrostatic stress, but these effects can be calculated
(Murri et al., 2018, 2022) allowing measured peak shifts to
be more correctly interpreted (Angel et al., 2019; Gonzalez
et al., 2021) and a mean Pinc to be determined for use in
isotropic isomeke calculations. Full anisotropic analyses are
also available (Zhong et al., 2021). But measurement of in-
clusion strains also opens up the possibility of using them
to define separate linear isomekes of each cell parameter of
the inclusion with the host (Adams et al., 1975a; Gonzalez et
al., 2021) whose crossing point in P −T space will uniquely
identify the entrapment (or resetting) conditions of the in-
clusion (e.g. Alvaro et al., 2020). Multiphase inclusions can
also be treated within the isotropic model by calculating the
elastic properties of the composite inclusion from the prop-
erties of the phases (Angel et al., 2023), and the effects of
phase transitions in the inclusion can be addressed through
more complex visco-elastic models (e.g. Zhukov and Kor-
sakov, 2015).

With these extensions of the simple spherical inclusion
model in place, there is now more focus on the geological in-
terpretation of inclusion pressures. Many inclusions clearly
retain pressures that reflect entrapment conditions (e.g. Endo
et al., 2012; Gianola et al., 2023). The Pinc of other inclu-
sions, however, do not, indicating that the inclusion stress
state has been modified by non-elastic processes during ex-
humation. This is a hazard that has long been recognised (e.g.
Rosenfeld and Chase, 1961; Carstens, 1971). But now such
processes can be modelled so that the inclusion pressures
become “tiny timekeepers” of the exhumation of their host
rocks (Zhong et al., 2018, 2020). At the same time, some in-
clusion pressures can be reset even on laboratory timescales
(Pummell and Thomas, 2024) that can be as short as minutes
under some conditions (Campomenosi et al., 2023). The Pinc
of such inclusions then provides an indication of the condi-
tions prevailing in the rock at the time that resetting ends. In
combination with dating inclusions (e.g. Kinny and Meyer,
1994), these few examples show that there is much more ge-
ology still to be learned from solid inclusion piezobarometry
beyond a simple pressure and temperature of entrapment.
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