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Abstract. Elastic thermobarometry (or piezobarometry) is the process of determining the P (pressure) and T
(temperature) of entrapment of inclusions from their pressure, stress or strain measured when their host mineral
is at room conditions. The methods and software used for piezobarometry are currently restricted to inclusions
consisting of single phases. In this contribution we describe the theory of the elasticity of mixtures of different
phases and combine it with the existing isotropic analysis of the elastic interactions between single-phase in-
clusions and their hosts to calculate the inclusion pressures of mixed-phase inclusions. The analysis shows that
the reliability of calculated entrapment conditions for mixed-phase inclusions, including those containing fluid
plus minerals, depends in a complex way upon the contrasts between the elastic properties of the host and the
phases in the inclusion. The methods to calculate the entrapment conditions of mixed-phase inclusions have been
incorporated into the EosFit7c program (version 7.6) that is available as freeware from http://www.rossangel.net.

1 Introduction

Elastic thermobarometry (or piezobarometry) is the process
of determining the P (pressure) and T (temperature) of en-
trapment of inclusions from the pressure measured in them
when their host mineral is at room conditions. It has re-
cently provided new constraints on the P–T conditions at-
tained during metamorphism (e.g. Zhong et al., 2018; Gon-
zalez et al., 2019; Korsakov et al., 2020; Kosminska et al.,
2020) and on the environments in which lithospheric and
mantle diamonds grow (e.g. Izraeli et al., 1999; Sobolev et
al., 2000; Nestola et al., 2011; Anzolini et al., 2018, 2019).
Current applications of elastic thermobarometry rely on sev-
eral fundamental assumptions. At the time of entrapment
of the inclusion it is assumed that the host and inclusion
both experience the same temperature and the same homo-
geneous isotropic stress (i.e. hydrostatic pressure) and that,

once sealed, there is no void space in the inclusion. The
standard analysis (e.g. Angel et al., 2017b; Mazzucchelli et
al., 2021; Angel et al., 2022a; Cisneros and Befus, 2020) is
based on the assumption that the host and inclusion behave
entirely elastically from entrapment until the time of mea-
surement of the residual pressure of the inclusion, Pinc, in
the laboratory. Partial or complete resetting of Pinc during
exhumation by plastic flow or cracking of the host mineral
is therefore not considered in the calculations, although plas-
tic flow in the host mineral during its post-entrapment ex-
humation history (e.g. Ferrero and Angel, 2018; Anzolini et
al., 2019; Campomenosi et al., 2021) can reset the inclusion
stress state so that the measured Pinc may indicate the condi-
tions of resetting rather than entrapment (Zhong et al., 2018;
Campomenosi et al., 2023). The standard analysis also as-
sumes that the inclusion is spherical and is elastically isolated
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within the host and that the host and inclusion are both elas-
tically isotropic. With these assumptions the measured Pinc
can be used with the equations of state (EoSs) of the inclu-
sion and host phases to calculate an entrapment isomeke, a
line in P–T space that represents possible entrapment condi-
tions (Adams et al., 1975; Rosenfeld and Chase, 1961). Sev-
eral programs are available that perform this calculation (e.g.
Kohn, 2014; Angel et al., 2017b; Mazzucchelli et al., 2021;
Cisneros and Befus, 2020).

Minerals are not elastically isotropic, which means that
even if they are trapped in cubic mineral hosts they will be
under non-hydrostatic stress when measured in the labora-
tory (e.g. Bonazzi et al., 2019; Murri et al., 2022). But it
has been shown for common inclusion minerals such as zir-
con and quartz that the biggest influence of this deviatoric
stress is on the frequencies of Raman bands used to deter-
mine the inclusion “pressure” (Bonazzi et al., 2019). If the
mode Grüneisen tensor (Angel et al., 2019b) of the inclusion
mineral is used to determine its strain state from the mea-
sured Raman frequencies and then its stress state (Gilio et
al., 2021a), the average normal stress can then be used as
a good approximation of Pinc from which a reliable entrap-
ment isomeke can be calculated (Bonazzi et al., 2019). Cor-
rections to the measured Pinc of non-spherical inclusions can
be calculated so that the model can still be used to calcu-
late their entrapment conditions (Mazzucchelli et al., 2018).
A full analysis of systems in which both the host and the
inclusion are elastically anisotropic is currently under devel-
opment (Mazzucchelli et al., 2019; Gonzalez et al., 2021).

All of this analysis has been focused on single-phase in-
clusions. But many inclusions contain more than one phase,
some of the most obvious being the multiphase “nanogran-
itoid” inclusions derived from the crystallisation of melt
inclusions (Cesare et al., 2015) and those containing two
phases together as a result of partial back transformation of
a high-pressure polymorph (e.g. quartz and coesite; Chopin,
1984; Ye et al., 2001). Fluid films are often found around sil-
icate inclusions in diamonds (Nimis et al., 2016) and around
diamond inclusions in silicates along with graphite (e.g. Per-
raki et al., 2006; Kotková et al., 2021). Diamonds are also
found in fluid-dominated inclusions (Frezzotti et al., 2011).
Rims of amorphous material occur around diamond inclu-
sions in silicate hosts (e.g. Kotková et al., 2021; Jakubová
et al., 2022) and oxide inclusions in silicates (Alifirova et
al., 2022). In this paper we therefore describe the theory of
the elasticity of mixtures of different phases to calculate the
elastic properties of mixed-phase inclusions. We start with an
analysis of the elastic properties of multiphase inclusions that
contain sufficient fluid to ensure hydrostatic pressure condi-
tions throughout the inclusion and use this in the isotropic
analysis of host–inclusion systems, as described above, to
calculate the effect of the fluid on inclusion pressures. We
then extend this analysis to multiphase inclusions without
fluids. This allows us to determine when the Pinc of various

types of multiphase inclusions can be used to reliably calcu-
late their entrapment conditions and when they cannot.

2 Methods

In the context of this work we use the term “fluid” to indi-
cate any material that cannot support significant shear stress
because it has small or zero shear moduli. Thus fluid can in-
dicate a gas, liquid or melt, with or without dissolved species.
If there is sufficient fluid in an inclusion, then there will be
no elastic interactions between the solid mineral grains, and
all of the minerals within the fluid and the fluid itself will be
under the same hydrostatic pressure. In such situations (e.g.
Fig. 1a, b) the fluid is said to “percolate”, which means that it
occupies a single continuous connected volume. The temper-
ature is also assumed to be uniform across the inclusion and
the host mineral at all times. All other situations, especially
those in which the fluid is not a continuous phase in the in-
clusion or the mineral grains form a continuous network (e.g.
Fig. 1c), lead to stress gradients within the solid phases, and
no simple thermodynamic analysis with EoS can be made.
For the purposes of making the presentation of the thermody-
namics straightforward, we further assume that there are no
reactions between the minerals and the fluid or between the
minerals themselves, there is no precipitation of solid from
the fluid and no dissolution of the minerals or the host min-
eral into the fluid, and there is no loss of volatiles (e.g. Ni et
al., 2017) from the inclusion. Thus, we assume that the chem-
ical composition and amount of each mineral phase and that
the fluid remains constant. Under these conditions the P –V –
T relation of each mineral phase in the inclusion is defined
by its own hydrostatic EoS. Note that this approach can in-
corporate the effects of isochemical phase transitions in the
solid mineral phases (e.g. the α–β transition in quartz) as
well as in the fluid. Under these constraints and assumptions
the P –V –T relationship of a composite inclusion can be de-
rived from the individual EoS of the solid and fluid phases in
the inclusion. The expressions that we derive here also apply
in general to any mixture of phases in a closed system under
uniform P and T . For extension to closed systems in which
there are chemical reactions between the phases, see Stixrude
and Lithgow-Bertelloni (2022).

2.1 EoS of mixtures

The derivation of the elastic properties and EoS of a compos-
ite inclusion is easiest to follow if we use the molar volumes
of the phases, Vmi , and define the number of moles of each
phase i in the inclusion as mi (see Appendix). The total vol-
ume Vi of each phase in the inclusion is then miVmi , where
mi remains constant in a given inclusion, and Vmi at any P
and T is given by the EoS of the phase i. The total volume,
V , of the mixture of the phases in the inclusion at any P and
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Figure 1. Various configurations of fluid (blue) and solid (white
and grey) in composite inclusions. In (a) and (b) the fluid occupies
a single continuous volume, and the solid does not form a contin-
uous network across the inclusion. The pressure of the fluid will
be hydrostatic and the same as the solid phase or phases. This situa-
tion is exactly analogous to experiments in a diamond anvil pressure
cell with a hydrostatic pressure medium. (c) Examples in which the
solid phases form a continuous network so there will be stress gra-
dients in the solid and the stress state in the inclusion will not be
hydrostatic.

T is the sum of the volumes of the individual phases:

V =

n phase∑
i=1

miVmi . (1)

The volume fraction fi of any phase in the inclusion is
given by

fi =
miVmi

V
. (2)

It is important to note that while the number of moles of
each phase mi remains constant because the inclusion is a
closed system that does not undergo chemical exchange be-
tween the phases, the volume fractions fi will vary with P
and T because the phases have different elastic properties.
We will show below how the volume fractions fi vary with
pressure.

The volume thermal expansion coefficient α of the mix-
ture of the phases in the inclusion is obtained by taking the
temperature derivative of Eq. (1):

α =
1
V

∂V

∂T
=

1
V

n phase∑
i=1

mi
∂Vmi

∂T
. (3)

The thermal expansion coefficient of a single phase is
αi =

1
Vmi

∂Vmi
∂T

, so substitution into Eq. (3) shows that the

thermal expansion of the mixture is the sum of the individ-
ual thermal expansion coefficients of the phases weighted by
their volume fractions but not by the molar fractions of the
phases:

α =

n phase∑
i=1

mi
Vmi

V
αi =

n phase∑
i=1

fiαi . (4)

The volume compressibility β = 1
V
∂V
∂P

of the inclusion can
be obtained in the same way by taking the derivative of
Eq. (1) with respect to pressure:

β =

n phase∑
i=1

miVmi

V
βi =

n phase∑
i=1

fiβi . (5)

Equations of state are normally expressed not in terms of
the compressibility but in its inverse, the bulk modulus K =
−V ∂P

∂V
=
−1
β

. From Eq. (5) the bulk modulus of the mixture
of phases in the inclusion is thus

1
K
=

n phase∑
i=1

fi

K i
. (6)

This is the well-established result that the Reuss bound
on the elastic properties of a mixture of phases all under
the same hydrostatic pressure is determined, in general, as
a linear sum of the compliances or compressibilities of the
components and not as a linear sum of the moduli (e.g. Hill,
1963). The latter is the Voigt bound, which is appropriate for
situations when all of the components of the mixture are sub-
ject to the same isotropic strain but not the same pressure.
Although the Voigt bound is appropriate for the composite
properties of a host and inclusion in the fictive “unrelaxed
state” (Angel et al., 2014b) where the inclusion is subject
to the volume strain imposed by the host mineral, the Voigt
bounds are not relevant for the properties of a mixture in-
cluding a fluid and are therefore not discussed further in this
work.

The rate of change of the bulk modulus with pressure
K ′ = ∂K/∂P is also an important parameter of EoS. It can
be obtained for the mixture of phases in the inclusion by tak-
ing the pressure derivative of Eq. (5); thus,

∂β

∂P
=

n phase∑
i=1

∂ (fiβi)

∂P
=

n phase∑
i=1

[
fiβ
′

i +βi
∂fi

∂P

]
, (7)

in which we use β ′i = ∂βi/∂P . Equation (7) shows that the
change in the compressibility of a mixture with pressure is
more complicated than might be expected. It is made up of
two contributions. The first, fiβ ′i , is the sum over the com-
pressibility derivatives of the individual phases, weighted by
their volume fractions, and it represents the change in the to-
tal compressibility with pressure if the volume fractions of
the phases fi do not change with pressure. The second term
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represents the contribution from the changing volume frac-
tions of the phases as pressure is changed and can lead to
some unexpected properties. It can be evaluated by taking
the pressure derivative of Eq. (2):

∂fi

∂P
=
mi

V

[
∂Vmi

∂P
−
Vmi

V

∂V

∂P

]
=
miVmi

V

[
1
Vmi

∂Vmi

∂P
−

1
V

∂V

∂P

]
= fi [βi −β] . (8)

This shows that the volume fractions of the phases in mix-
tures remain constant only if their compressibilities (or bulk
moduli) are the same as the compressibility of the mixture.
If there are only two phases in the mixture, this would re-
quire the two phases to have identical compressibilities and
thus EoSs. Substituting the result of Eq. (8) back into Eq. (7)
and using Eq. (5) gives the pressure derivative of the Reuss
bound on the compressibility:

∂β

∂P
=−β2

+

n phase∑
i=1

fiβ
′

i +

n phase∑
i=1

fiβ
2
i , (9)

from which the pressure derivative of the Reuss bulk modu-
lus of the mixture follows as

K ′ =
∂K

∂P
=K2 ∂β

∂P
=

1
β2

∂β

∂P
. (10)

The form of these relationships between the properties of
the individual phases and those of the mixture shows that,
while the molar proportions of the phases in a mixture re-
main constant in a closed system such as an inclusion, the
elastic properties of the mixture depend (Eqs. 4, 6, 10) on
the volume fractions that change (Eq. 8) with P and T . This
has the important consequence that it is not possible to de-
fine the parameters of an EoS for a mixture by simply taking
an average of the EoS parameters of the phases at reference
conditions weighted by either volume or molar fractions. In-
stead, the properties of a mixture can only be defined as the
appropriate sums, given above, of the properties of the in-
dividual phases calculated at P and T from their individual
EoS.

2.2 Mixtures in inclusions

Apart from the calculation of the elastic properties of the
mixed-phase inclusion outlined in the previous section, host–
inclusion calculations for multiphase inclusions can be based
on the standard idealised model of an isotropic isolated
spherical inclusion embedded within an isotropic homoge-
neous host phase (Angel et al., 2017b). The effect of the
shapes of non-spherical multiphase inclusions on measured
Pinc values can be corrected by a shape factor (Mazzucchelli
et al., 2018). The final measured inclusion pressure Pinc can

then be considered to arise from two contributions, Pthermo
and 1Prelax:

Pinc = Pthermo+1Prelax. (11)

The first term, Pthermo, is the pressure generated in the in-
clusion due to the volume change imposed upon it by the
volume change of the host on exhumation from entrapment
to room conditions (Angel et al., 2017b). This is easily cal-
culated from the EoSs of the host and the inclusion phases
(e.g. Angel et al., 2014b, 2017b). However, it is a fictive pres-
sure that is never actually measurable because an inclusion at
Pthermo cannot be in mechanical equilibrium with its host at
room pressure. If Pthermo is greater than room pressure, the
inclusion therefore expands within the host and the inclusion
pressure decreases. This has been described as the mutual
elastic relaxation of the system and is denoted 1Prelax (e.g.
Angel et al., 2014b, 2017b; Zhang, 1998). In general, when
Pthermo is more positive than the external final pressure, then
1Prelax < 0, and vice versa. This means that the final mea-
sured inclusion pressure Pinc always lies between Pthermo and
the external pressure.

The magnitude of 1Prelax can be calculated in several
ways by relying on various assumptions. One approach
uses the concept of the entrapment isomeke (Rosenfeld and
Chase, 1961; Adams et al., 1975; Angel et al., 2014b), which
is the line through entrapment conditions along which the
volume ratios V/Vtrap of a free host crystal and a free inclu-
sion crystal would be equal. The pressure of the isomeke can
be determined at any T from the EoS of the host and inclu-
sion by finding the pressure at which their two V/Vtrap curves
cross (Fig. 2). The pressure of the entrapment isomeke at the
temperature at which Pinc is measured is denoted Pfoot. The
entrapment isomeke is a thermodynamic concept whose po-
sition depends only upon the entrapment P and T and the
EoSs of the host and inclusion. The change in inclusion vol-
ume along the entrapment isomeke is the same as for a free
crystal under the same change in P and T . Therefore the in-
clusion pressure remains equal to the external pressure on the
entrapment isomeke. Hence, the entrapment isomeke is use-
ful because it separates the areas of P and T space where
the inclusion is at higher pressures than the external pressure
applied to the host from areas where the inclusion pressure is
lower than the external pressure (e.g. Rosenfeld and Chase,
1961; Angel et al., 2015b).

The slope of an isomeke between the host and inclusion
can be calculated from their elastic properties:(
∂P

∂T

)
isomeke

=
αI−αH

βI−βH
, (12)

in which the subscripts “H” and “I” indicate the properties
of the host and inclusion phases respectively. Because the in-
clusion pressure remains equal to the external pressure on the
entrapment isomeke, the inclusion is in mechanical equilib-
rium with its host, and there is no relaxation. The isomeke
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Figure 2. Plot of V/Vtrap against pressure at 25 ◦C for quartz and
zircon for entrapment at 1.5 GPa and 900 ◦C. The crossing point
of these two curves corresponds to the pressure on the entrapment
isomeke at 25 ◦C, denoted as Pfoot. EoS from Angel et al. (2017a)
and Ehlers et al. (2022).

therefore provides a reference state of uniform stress Pfoot
at room T from which 1Prelax can be calculated isother-
mally (Angel et al., 2014b, 2017b). The effects of mixtures
on 1Prelax can be understood by using a linearised approxi-
mation of the approach of Angel et al. (2014b):

1Prelax ∼
KI

KH
K21Pfoot, (13)

in which K21 =
KI−KH
KI−

4
3GH

is a function of the bulk moduli as

well as the shear modulus GH of the host.

2.3 Implementation in EosFit

The equations given in Sect. 2.1 have been coded into the
EoS module of the CrysFML Fortran subroutine library
(Rodriguez-Carvajal and Gonzalez-Platas, 2003) that un-
derlies the EosFit suite of programs (Angel et al., 2014a;
Gonzalez-Platas et al., 2016) for EoS calculations. While the
properties of a mixture can be calculated at any P and T di-
rectly through these equations from the EoS of the individual
phases, it is not possible to invert Eq. (1) in order to directly
calculate the P at a known V and T . To overcome this prob-
lem the calculation of P is done in two steps within the EoS
module of the CrysFML. First, a simple search in P at con-
stant T is performed until the calculated volume Vcal is ap-
proximately equal to the specified V . Then Vcal−V is calcu-
lated for a series of P values, and the array of values is fitted
with a spline to determine the pressure at which Vcal−V = 0.
The use of a spline interpolation means that the precision of

the resulting pressure value is not significantly limited by nu-
merical precision.

Calculations at any P and T of the elastic properties (K ,
K ′ and α), volume and pressure of mixtures of phases from
their individual EoS can be performed in a dedicated util-
ity, named mphase (for multiphase calculations), within the
EosFit7c console program (Angel et al., 2014a). The pro-
gram is freely available at http://www.rossangel.net in com-
piled form for Windows™, Linux™ and MacOS™ operating
systems. The architecture of the EosFit7c program also al-
lows it to be called from other software such as MATLAB™
to perform EoS calculations, including those in the mphase
utility, without the need to cross-compile code directly with
the CrysFML library.

The EoS parameters of individual phases can be loaded
into the mphase utility from the standard “.eos” files used
throughout the EosFit program suite. For convenience, the
file format has been extended to allow the EoSs of several
phases to be stored together in a single file. The mphase util-
ity also includes the common EosFit7c commands to input
the EoS directly or to modify EoS parameters and associ-
ated metadata. The EoS of fluid phases can be imported di-
rectly from tables of V at P and T values in text files. The
elastic properties of fluid EoSs provided in this way are cal-
culated by numerical differentiation and interpolation on the
table values. In order for calculations in mphase to be mean-
ingful, the pressure units for the bulk moduli of the various
phases must all be in the same units (e.g. kbar or GPa) and
the reference volume given for the EoS of each phase must be
the molar volume in consistent units (e.g. cm3 mol−1). This
is checked by the mphase utility before calculations can be
made, and inconsistencies are clearly reported to the user.

Within mphase the molar quantities of each phase, denoted
mi above, are termed the “stoichiometries” of the phases.
Properties can be calculated and listed for both a fixed sto-
ichiometry of a mixture over ranges of P and T or for ranges
of stoichiometry and volume fractions at a single P and T .
Isochors of mixtures can also be calculated. The use of neg-
ative stoichiometries for some phases enables the variation
of 1V of reactions to be calculated as a function of P and
T . In studies of multiphase inclusions the stoichiometries of
the phases within the inclusion are typically not known, but
the volume fractions of the phases when the host is at room
conditions can be measured or estimated. Therefore, mphase
includes a command to calculate the stoichiometries from the
volume fractions of the phases specified by the user.

Apart from the calculation of the elastic properties of the
mixed-phase inclusion, all of the calculations for host and
inclusion systems use the same methods as the EosFit-Pinc
program (Angel et al., 2017b). Specifically, mphase allows
the calculation of isomekes between a multiphase inclusion
and its host, the entrapment isomeke given an observed fi-
nal inclusion pressure Pinc and the Pinc from known entrap-
ment conditions Ptrap and Ttrap. The value of1Prelax (Eq. 13)
is calculated by the iterative method described in Angel et
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al. (2017b) which uses the elastic properties of the host at
the final room conditions and the bulk modulus of the inclu-
sion at the final Pinc. In the cases in which the calculation
of Pfoot fails, for reasons we discuss below, the relaxation is
approximated by1Prelax ∼

−3KI
4GH

Pinc (from Eq. 21 in Zhang,
1998), which is a linear-elastic approximation to our Eq. (13)
(Appendix in Angel et al., 2014b). As we will show below,
the cases in which Pfoot cannot be calculated normally corre-
spond to relatively small values of Pthermo and Pinc, and this
approximation does not introduce any significant discontinu-
ity in the trends of Pinc with inclusion composition.

3 Mixed fluid–solid inclusions

3.1 Properties of fluid plus solid mixtures

The properties of fluid and solid mixtures are most easily
demonstrated with a simple mixture of one fluid and one
solid mineral. We express the properties in terms of the vol-
ume fraction ffluid in the mixture, with the volume fraction
of the solid therefore being (1−ffluid). Equations (3) and (5)
clearly show that the thermal expansion coefficient and the
compressibility of this mixture are linear in the volume frac-
tion of fluid. However, EoSs are normally parameterised in
terms of the bulk modulus, which is the inverse of the com-
pressibility. As a consequence, the fact that fluids are typi-
cally much softer than solids means that the variation in the
bulk modulus is very non-linear (Fig. 3a) and that the bulk
modulus decreases very rapidly as small amounts of fluid
are added to the solid; the properties of a mixture with small
amounts of fluid are therefore very sensitive to the exact vol-
ume fraction of the fluid. At larger volume fractions of fluid
the bulk modulus becomes close to that of the pure fluid.
Thus, adding a small amount of solid to a fluid has no sig-
nificant effect on the bulk modulus (Fig. 3a). The magnitude
of the effects of adding fluid depends on the contrast in the
bulk moduli of the fluid and solid. As Fig. 3a shows, the re-
duction in the bulk modulus upon mixing CO2 with olivine
is much more rapid than adding water, because CO2 at room
conditions is a gas and thus its bulk modulus is several or-
ders of magnitude less than that of water. For practical ap-
plications to inclusions, the effects of less than a few volume
percent of any fluid will not be those shown in Fig. 3 because
the solid will remain as a connected network of crystals (e.g.
Fig. 1c). Thus, the properties of the inclusion will remain
between those of the minerals and the fluid until the solid
phases no longer form a continuous network, at which point
the properties will rapidly change to those shown in Fig. 3.

The variation of the pressure derivative of the compress-
ibility ∂β

∂P
(Eq. 9) is almost linear in ffluid because only the

first term (in β2) is non-linear. But the behaviour of the pres-
sure derivative K ′ of the bulk modulus is more complex in
mixtures (Fig. 3b) and deserves some detailed explanation.
It also arises from the much lower bulk modulus of the fluid

Figure 3. The variation of the (a) bulk modulus and (b) its pres-
sure derivative K ′ of solid–fluid mixtures. Properties are shown for
olivine with water at 0 GPa and 25 ◦C (black lines) and 0.5 GPa
and 25 ◦C (blue lines). Properties for olivine plus CO2 mixtures are
shown as red lines. The EoSs used to calculate these properties are
the BM3 isothermal model (Angel et al., 2018) for mantle compo-
sition (Fo90-92) olivine, the water EoS of Zhang and Duan (2005),
and the CO2 EoS of Pitzer and Sterner (1994).

compared to that of the solid. This means that there is a rapid
decrease in the volume fraction ffluid as pressure is increased,
and this contributes to an increase in the bulk modulus of the
mixture (Eq. 6, Fig. 3a) in addition to the normal stiffening
of the individual phases with increasing pressure. This be-
haviour of K ′ can be simply expressed as

K ′ =
∂K

∂ffluid
×
∂ffluid

∂P
. (14)

Both derivatives in Eq. (14) are negative, the value of ∂K
∂ffluid

being the slope of the lines shown in Fig. 3a and ∂ffluid
∂P

be-
cause the compressibility of the fluid is larger and thus more
negative than the mixture of fluid plus solid (Eq. 8). Thus,
the value of K ′ increases rapidly with the first addition of
the fluid to the solid because ∂K

∂ffluid
is very large and negative

for small amounts of fluid. At much larger fluid fractions,
corresponding to mixtures dominated by the fluid, ∂K

∂ffluid
is

smaller, so the value of K ′ is smaller, although it always re-
mains higher than the K ′ of the stiffer solid (Fig. 3b). This
significant non-linearity (Fig. 3b) can also be considered to
be arising from the factor of 1

β2 (Eq. 10) relating K ′ to ∂β
∂P

.

Differentiation with respect to ffluid of the expression for β2
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(from Eq. 5) shows that β2 has a minimum value at

fmax
fluid =

βsolid

βfluid−βsolid
, (15)

at which point K ′ has a maximum value (Fig. 3b). The value
of β2 can never become zero because the bulk modulus must
always be positive, so the maximum value of K ′ always re-
mains finite. As pressure is increased the compressibility of
the fluid increases faster than that of the solid, so βfluid−βsolid
(Eq. 15) becomes smaller, and the maximum in K ′ therefore
shifts towards larger fluid fractions as shown in Fig. 3b for
olivine plus water at 0.5 GPa. At the same time, the increase
in fmax

fluid means that the maximum value of K ′ is reduced
(Eq. 14) by increasing pressure. Conversely, if the contrast in
the compressibilities between the solid and fluid is increased,
for example on changing the fluid from water to CO2, the
maximum value of K ′ is increased and it occurs at smaller
fluid fractions (Fig. 3b). This pattern of variation in elastic
properties for a simple mixture of a fluid with a single solid
will also occur for mixtures of several solid phases with a sin-
gle fluid phase provided the fluid remains much softer than
the solid minerals.

3.2 Effect of fluids on inclusions in a stiff host

In the absence of fluid, and assuming similar thermal expan-
sion coefficients for the host and the inclusion, an inclusion
that has a lower bulk modulus than its host would exhibit a
positive Pinc when measured in the laboratory at room condi-
tions. We will use olivine in diamond as an example because
olivine inclusions in gem-quality diamonds are surrounded
by a thin film of hydrous silicic fluid (Nimis et al., 2016).
Such films seem to be almost ubiquitous around silicate and
oxide inclusions in lithospheric diamonds (e.g. Nestola et al.,
2018; Nimis et al., 2019), and their existence may explain the
hydrostatic stress state of some of the inclusions (Angel et al.,
2022a). Although there is evidence that the fluid has precip-
itated material after entrapment and that the fluid is not pure
water, we will use the properties of water (Zhang and Duan,
2005) to illustrate the possible effects on Pinc of the presence
of fluids in these inclusions.

The final pressures Pinc of inclusions can be understood in
terms of how their isochors compare to their host and their
isomekes with their host (e.g. Rosenfeld and Chase, 1961;
Adams et al., 1975; Angel et al., 2014b). The slopes of iso-
chors of a single phase i are given by (∂P/∂T )Vi = αiKi .
Although water has a much lower bulk modulus than olivine
(Fig. 3a), it also has a much larger thermal expansion coef-
ficient in this range of P and T , and, as a consequence, the
isochors of both phases are very similar (Fig. 4).

The isochor of diamond through P = 5.3 GPa and T =
1100 ◦C also passes through P = 0.0 GPa and T = 25 ◦C.
Thus, the volume of diamond would not change from entrap-
ment at these conditions to the examination at room condi-
tions. In this special case the volume of an inclusion phase

Figure 4. The isochors (solid lines) of diamond (Angel et al.,
2015a), olivine (Angel et al., 2018) and water (Zhang and Duan,
2005) that all pass through 5.3 GPa and 1100 ◦C. Dashed lines are
the isomekes of water and olivine with diamond and represent the P
and T required for the inclusion phase to have the same pressure as
the external pressure applied to the diamond host after entrapment
at 5.3 GPa and 1100 ◦C.

trapped in the diamond at P = 5.3 GPa and T = 1100 ◦C
would not change on exhumation (apart from the mutual elas-
tic relaxation), and therefore the Pthermo of the inclusion will
be defined by the isochor of the inclusion phase through en-
trapment conditions. The similarity of the isochor pressures
of water and olivine at 25 ◦C (1.365 and 1.249 GPa respec-
tively) therefore qualitatively suggests that the effect of wa-
ter on the inclusion pressures of olivine may be smaller than
might be expected from their great contrast in bulk moduli.
The contrast between the elastic properties of diamond and
water is extreme with αH� αI and βH� βI, so the slope of
their isomeke is, from Eq. (12), very similar to that of the
isochor of water (Fig. 4):(
∂P

∂T

)
isomeke

∼
αI

βI
=

(
∂P

∂T

)
Vinc

= αIKI. (16)

This is why the isochors of fluid inclusions in minerals
can be used to estimate their conditions of entrapment (e.g.
Roedder and Bodnar, 1980). By contrast, the much stiffer
compressibility of olivine compared to that of water means
that the isomeke of olivine with diamond for entrapment at
P = 5.3 GPa and T = 1100 ◦C lies at pressures significantly
above those of its isochor (Fig. 4). The consequence is that,
as water is added to an inclusion of olivine trapped at these
conditions, the Pfoot decreases quite rapidly. This contributes
to a decrease in 1Prelax (Eq. 13). The bulk modulus of the
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Figure 5. The variation of pressures of olivine plus water inclusions
in diamond as a function of the fluid volume fraction for two differ-
ent entrapment conditions. The value of 1Prelax = Pinc−Pthermo
is indicated by the arrow. Note that although lower entrapment pres-
sures lead to Pfoot for olivine inclusions being less than for water,
the trend of increasing inclusion pressure Pinc applies for all entrap-
ment conditions.

composite inclusion also falls rapidly (Fig. 3a), so KI
KH

also
decreases and the amount of relaxation becomes smaller at
larger fluid fractions (Fig. 5) and almost zero for a pure fluid
inclusion. The result, for these entrapment conditions, is that
Pinc increases with fluid content (Fig. 5). For lower entrap-
ment pressures, such as P = 4 GPa and T = 1100 ◦C, the
Pfoot of olivine is lower than that of pure water inclusions,
so Pfoot also increases with increasing fluid content, but the
value of 1Prelax is less than the previous entrapment exam-
ple (Fig. 5). Quite surprisingly, this means the presence of
pure water will increase the measured inclusion pressures of
olivine inclusions in diamond when they have been trapped
in the lithosphere or upper mantle.

Figures 5 and 6 show that the difference in Pthermo of
pure solid inclusion compared to that of the pure fluid inclu-
sion trapped at the same conditions is the primary control on
whether fluid increases or decreases Pinc. For solid inclusions
in diamond Pthermo tends to decrease as the bulk modulus of
the solid increases, so inclusions of garnet (K0∼ 170 GPa)
and spinels (K0∼ 190–200 GPa) have lower Pthermo and Pinc
than olivines (K0∼ 125 GPa) trapped at the same conditions,
and thus the presence of fluid also raises their inclusion pres-
sures. Coesite (K0 = 101 GPa; Angel et al., 2001) and or-
thoenstatite (K0 = 105 GPa; Angel and Jackson, 2002) are
sufficiently soft that Pthermo and Pinc are significantly higher

Figure 6. The variation of pressures of coesite plus water (dashed
lines) and orthoenstatite plus water (solid lines) inclusions in dia-
mond as a function of the fluid volume fraction for the same en-
trapment conditions as Fig. 4 (P = 5.3 GPa and T = 1100 ◦C). The
value of Pthermo for both minerals is higher than for pure water, so
addition of fluid decreases the measured inclusion pressure Pinc in
contrast to stiffer inclusion minerals such as olivine (Fig. 5).

than water trapped at the same conditions, and thus the pres-
ence of fluid will, in contrast to the case of olivine, garnets
and spinels, reduce the inclusion pressures (Fig. 6). The ef-
fect is particularly strong for coesite whose isomekes with
diamond are approximately horizontal in P –T space (Angel
et al., 2022a) as a result of its thermal expansion coefficient
being very small (Kulik et al., 2018) and similar to that of
diamond (see Eq. 12).

3.3 Effect of fluids on inclusions in a soft host

The effect of the addition of the fluid to a solid inclusion
phase that is stiffer than the host (the fluid always remain-
ing softer than the host mineral) follows the same principles
illustrated in Sect. 3.2. For zircon trapped in pyrope at meta-
morphic conditions, the effect of fluid is relatively minor, but
this system serves to show how the effect of fluid can be re-
versed as entrapment conditions change. For entrapment at
3 GPa and 800 ◦C the Pinc of pure water and pure zircon in-
clusions differ by less than 0.1 GPa, so the effect of adding
water to a zircon inclusion is minimal (Fig. 7). For lower
entrapment pressures (e.g. 2 GPa; Fig. 7) and/or higher en-
trapment temperatures, the addition of water lowers the Pinc,
while Pinc is increased by the presence of water at higher
pressures and lower temperatures of entrapment.
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Figure 7. The variation of pressures of zircon plus water inclusions
in pyrope as a function of the fluid volume fraction for two differ-
ent entrapment conditions. Note that for entrapment at 3 GPa and
800 ◦C the effect of water on the Pinc is small. Lower entrapment
pressures (or higher temperatures) lead to water decreasing the Pinc.

Also note in Fig. 7 the divergence of Pfoot to extreme val-
ues for low fluid contents in this system in which the solid in-
clusion phase is stiffer than the host. This arises because the
addition of fluid to the solid inclusion reduces the bulk mod-
ulus of the inclusion and it becomes very similar to that of the
host over a range of P , T and ffluid. The resulting problems
for host–inclusion calculations are difficult to illustrate with
zircon in garnet because of the similarity of the bulk moduli
of garnet and zircon (K0∼ 170 and 225 GPa respectively),
which means that the amount of fluid required to make the
bulk modulus of the inclusion equal to that of the garnet is
very small, around 1 vol %. Calculations at such low water
contents are very sensitive to numerical round-off errors. We
can better illustrate the concepts and difficulties with the sys-
tem of zircon plus water in a quartz host, in which the much
larger contrast in the bulk moduli moves the critical composi-
tions to∼ 6.5 vol % water at room conditions and∼ 20 vol %
at 1.5 GPa and 900 ◦C (Fig. 8a).

Fluid-dominated inclusions in the system of zircon plus
water in quartz with ffluid> 0.3 (30 vol % fluid) have ther-
moelastic properties of the inclusion dominated by the prop-
erties of the fluid (Fig. 8a), so the entrapment isomeke closely
follows that for pure water inclusions (Fig. 9). The resulting
Pfoot and Pinc are therefore very similar to those of pure water
(Fig. 8b). As the ffluid is reduced towards 0.2, the bulk moduli
of the inclusion and the host become very similar near to the

Figure 8. (a) The variation of the bulk modulus of zircon plus water
mixtures as a function of fluid content (solid lines) for room condi-
tions (black) and 1.5 GPa and 900 ◦C (red). The values of the bulk
modulus of quartz at the same conditions of P and T are indicated
by the horizontal dashed lines. (b) Calculated inclusion pressures
of zircon plus water inclusions in quartz trapped at 1.5 GPa and
900 ◦C. The grey areas indicate where Pfoot is not defined, corre-
sponding to inclusion compositions whose bulk moduli are close to
that of the quartz host at room conditions (left) and entrapment con-
ditions (right). Note that the x axis only extends to 50 % water by
volume. Pressures for more water-rich inclusions are very similar to
those of an inclusion with 50 vol % water; see also the isomekes in
Fig. 9.

entrapment conditions, so the entrapment isomeke becomes
very steep in P –T (Eq. 12) and does not extend to room T at
reasonable or finite pressures. Therefore Pfoot cannot be cal-
culated, and 1Prelax has to be approximated by the alterna-
tive expression of Zhang (1998). This does not introduce sig-
nificant error because for these amounts of fluid Pthermo re-
mains small and therefore 1Prelax is small. At slightly lower
ffluid (in this case 0.08 to 0.18) the bulk moduli are suffi-
ciently different at entrapment (Fig. 8a) for the entrapment
isomeke (Fig. 9) to be well-defined. However, with decreas-
ing P and T along the entrapment isomeke, the difference
between the bulk moduli of the host and inclusion decreases
and the isomeke steepens. In this example, this steepening
is additionally modified by the softening of quartz associ-
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ated with its α–β transition (Angel et al., 2017a), and the
isomeke terminates. For other hosts without phase transi-
tions, the isomeke would become vertical (Eq. 12). In both
cases the entrapment isomekes do not extend continuously to
room T . Nonetheless, the entrapment isomeke can still ex-
ist at lower T and still represents conditions under which
the fractional volume change of the host and the inclusion
from entrapment are equal (Fig. 9). At these lower tempera-
tures it is not unusual to find the isomeke so strongly curved
that there are two isomeke pressures for each T as shown for
ffluid = 0.16 and 0.10 in Fig. 9. This arises from the compos-
ite inclusion being softer than the host while its K ′ is larger
than the host due to the rapid decrease in fluid volume frac-
tion with increasing pressure (Fig. 3b, Eqs. 7–10, 14). Con-
sequently, the P–V line of the inclusion is strongly curved
compared to that of the normal EoS of the host, so the curves
of V/Vtrap for the host and inclusion cross twice for a single
pressure (see 10 vol % water curve in Fig. 10). Both cross-
ing points represent the entrapment isomeke and thus possi-
ble values of Pfoot. But the relevant isomeke pressure can be
identified by interpolation or extrapolation from adjacent in-
clusion compositions with more normal isomekes and single
values of Pfoot from the same entrapment conditions. For this
example, it is obvious that the correct Pfoot to be used in the
range ffluid= 0.08–0.18 is the lower value that is very sim-
ilar to that of the more water-rich inclusions. This can also
be verified by comparing the final Pinc calculated from the
two Pfoot values to the Zhang (1998) approximation. At even
lower fluid contents (ffluid = 0.02 to 0.06) the bulk modulus
of the inclusion differs significantly from the host at entrap-
ment conditions but instead becomes very similar to that of
the host at room conditions (Fig. 8a), and, as a result, the
curves of V/Vtrap for the host and inclusion against P can
become parallel, or not cross at all (see 4 vol % water curve
in Fig. 10), so that Pfoot is not defined. For these composi-
tions, relaxation must be calculated with the approximation
of Zhang (1998). Finally, at very low ffluid (< 0.02 for this
example) the properties of the composite inclusion and thus
the entrapment isomeke, Pfoot and Pinc approach those of a
pure zircon inclusion (Figs. 2, 9).

So far, we have only considered the effects of a fluid for
systems and entrapment conditions that would lead to the
pure solid having a positive Pinc. When Pinc for a solid in-
clusion falls below P = 0, this corresponds to a stretched
state of the inclusion being kept in tension by bonding to
the surrounding host mineral that has expanded more from
entrapment than a free crystal of the inclusion phase would.
Measured examples include quartz trapped in metamorphic
garnet at high T and low P (Gilio et al., 2021b), apatite in
olivine (Cisneros and Befus, 2020), and synthetic zircon in
quartz (Gonzalez et al., 2022). If the Pinc of a pure fluid in-
clusion trapped at the same conditions would be positive, the
addition of small amounts of fluid to the solid-phase inclu-
sion would result in the calculated Pinc first becoming less
negative and then positive. However, while EoSs of solids

Figure 9. Entrapment isomekes for zircon plus water inclusions in
quartz, entrapped at 1.5 GPa and 900 ◦C. Inclusion compositions in
volume percent fluid at entrapment conditions are indicated in the
same colours as the isomekes. The red dots show that the entrap-
ment isomeke for 2 % water is very similar to that of pure zircon,
and the blue dots for 50 % water show that the entrapment isomekes
for water-rich inclusions are indistinguishable from those of pure
water. Note that the entrapment isomekes for 10 % and 16 % wa-
ter are terminated below entrapment by the α–β phase transition in
quartz (dark grey line) but exist as separate line segments at lower
temperatures. The phase boundaries for water and quartz are shown
in light grey. The transformation from α to β quartz is responsible
for the deflection of the isomeke for pure water at ca. 1000 ◦C.

at negative pressures in the extensional regime are valid, at
least for small negative pressures (Angel et al., 2019a), they
are not valid for fluids or gases. Instead, Pinc will be buffered
to the fluid–vapour equilibrium curve by the formation of a
vapour bubble in the fluid phase, which for water lies be-
low 0.02 GPa at temperatures below the critical point 374 ◦C
(near-horizontal grey line in Fig. 9). In these circumstances
the entrapment isomeke should not be calculated from the
measured Pinc. Instead, the P and T of homogenisation of
the fluid component in the inclusion will define a point on
the entrapment isomeke (Fig. 9).

3.4 Implications of fluids in inclusions

The examples discussed above show that the practical con-
sequences of fluid contents of inclusions for the calculation
of their entrapment conditions strongly depend on the elas-
tic contrast between the solid phases within the inclusion and
the fluid phase and between both of them and the host phase,
as well as the entrapment conditions themselves. Together
these control the dependence of Pinc on fluid content (e.g.
Figs. 5, 6, 7 and 8). As an example, the influence of wa-
ter on the pressures of olivine inclusions in diamonds is not
as serious as might be expected from the contrast in elastic
properties shown in Fig. 3. A 1 µm thick rim of water on an
olivine-containing inclusion of 100 µm diameter represents
∼ 6 % of the total volume of the inclusion. The measured
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Figure 10. Plot of V/Vtrap against pressure at 25 ◦C for quartz and
zircon plus water for entrapment at 1.5 GPa and 900 ◦C to illustrate
potential problems in calculating Pfoot for systems in which the
solid inclusion phase is stiffer than the host. Normally, the host and
inclusion EoSs define a single crossing point and a unique value for
Pfoot as for pure zircon (black line). However, the curve for 10 vol %
water plus zircon (at entrapment) crosses the curve for quartz twice,
defining two values for Pfoot. This is caused by the severe curva-
ture of the V/Vtrap line of the mixture due to its large value of K ′

(Eqs. 7–10, 14) compared to that for pure quartz. At lower water
contents (e.g. 4 vol %) the large value of K ′ means that its V/Vtrap
line does not intersect the line for quartz, so Pfoot is not defined.

Pinc of such a water-containing inclusion trapped at 4 GPa
and 1100 ◦C will be almost 0.3 GPa higher than a pure dry
olivine trapped at the same conditions (Fig. 5). If the Ptrap is
then calculated from the measured Pinc by ignoring the pres-
ence of fluid and using only the EoS for olivine, the Ptrap will
be 0.4 GPa too high at 1100 ◦C. This error decreases with in-
creasing depth of entrapment and is approximately zero for
entrapment above 6.5–7 GPa. Therefore, failure to allow for
the fluid content of olivine inclusions will result in estimates
of depth of their entrapment that are in error by less than
12 km. This is probably significantly less than the errors in-
troduced by not modelling the effects on Pinc of either the
precipitation of solids from the fluid in these inclusions after
their entrapment (Nimis et al., 2016) or the escape of fluids
into cracks around the inclusions (e.g. Angel et al., 2022a).
Similar levels of error, but in the opposite direction (Fig. 6),
will arise from ignoring fluids in pyroxene inclusions. In con-
trast, the much stronger variation in Pinc with fluid content in
coesite inclusions (Fig. 6) means that ignoring 6 vol % wa-
ter leads to a larger underestimate of entrapment pressures,
of the order of 1 GPa. This serves to illustrate that the poten-

tial errors due to low fluid contents must be carefully eval-
uated for each host–inclusion system in turn over the range
of expected entrapment conditions. In addition, the contribu-
tions from uncertainties in the EoS of the fluid should also be
evaluated by calculation with alternative EoSs when they are
available.

4 Multiphase solid inclusions

4.1 Properties of solid mixtures

In the absence of a percolating fluid completely surround-
ing the solid crystals, the stress (and pressure) distribution
in a mixture of solid phases, or indeed in a polycrystalline
aggregate of one anisotropic phase, is inhomogeneous (e.g.
Chap. 6 in Pollard and Fletcher, 2006) because the stress
state at any point depends on how the crystal grains inter-
act with one another (e.g. Fig. 1c). In this case the local
distribution of the stress must be calculated from full me-
chanical calculations (e.g. Schmalholz et al., 2020). The av-
erage elastic response of an aggregate of a very large number
of randomly oriented crystals falls between the Reuss and
Voigt bounds. The latter corresponds to a state of uniform
strain applied to each of the constituent crystals and leads
to unequal pressures or stresses in each of them. The Reuss
bound corresponds to what we have already described for
fluid-dominated mixtures, in which all of the grains of solid
are subject to the same uniform hydrostatic pressure, and it
also implies that the boundaries between the grains are com-
pletely free to slip so that there are no coherency-induced
strains when P or T are changed. In an inclusion the number
of crystals is very limited, and it may be that neither bound
applies. In principle, the stress state of inclusions containing
multiple phases can be determined by measuring the stress or
strain states of the individual component crystals by diffrac-
tion or spectroscopy. If the crystals are all at the same pres-
sure, the elastic properties will be determined by the Reuss
bound and the equations presented in Sect. 2.2, and they will
be independent of the internal microstructure of the inclu-
sion.

Under these assumptions, the calculations for multiphase
solid inclusions are the same as for those involving a fluid,
with the difference that the contrast in elastic properties will,
in general, be much less because no mineral has elastic prop-
erties close to those of fluids such as water. Thus, the varia-
tion in the bulk modulus with volume fraction of solid phases
is less curved than for fluids (e.g. compare Fig. 11a with
Figs. 3 and 8), which means that the value of K ′ shows a
much weaker maximum than found for mixtures with fluids
in agreement with Eq. (14). This also means that the volume
fractions of phases in a purely solid mixture change much
less with P and T than those of a solid plus fluid. Similarly,
the variation in thermal expansion coefficient in a mixture of
solids will be much less than for a mixture of solid plus liquid
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(Eq. 4). Consequently, for inclusions containing phases that
are either all more stiff or all less stiff than the host there are
no difficulties in calculating inclusion pressures which will
lie between those expected for the individual phases. Prob-
lems arise, as for fluids, when the bulk modulus of the host
lies between those of the individual phases within the inclu-
sion.

4.2 Hosts of intermediate stiffness

This case can be illustrated (Fig. 11a) by composite rutile
plus amphibole (cummingtonite) inclusions that have been
found in eclogitic garnets (e.g. Musiyachenko et al., 2021).
Rutile is stiffer than garnet, and therefore pure rutile in-
clusions trapped in the eclogite field are calculated to have
Pinc < 0, while amphibole is considerably softer than gar-
net (Fig. 11a), so pure amphibole inclusions should there-
fore show positive Pinc. With the addition of amphibole to
rutile inclusions the calculated Pinc will therefore initially be-
come less negative, then zero, and then positive as shown in
Fig. 11b. This figure also demonstrates a significant differ-
ence in the pressures of mixed-phase solid inclusions from
those including fluids. The trend of Pinc for a mixture of
solids is far closer to linear (Fig. 11b) than the trends seen
with fluids (e.g. Figs. 5, 6, 7, 8), so the addition of a small
amount of the stiffer solid component to the softer solid has
an effect on Pinc that is similar in magnitude (but opposite
in sign) to that of adding the soft component to the stiffer
mineral (Fig. 11b).

The absence of Pfoot values at intermediate compositions
(Fig. 11b) can, as for the example of zircon plus water
in quartz, be explained with calculations of the entrapment
isomekes (Fig. 12) and the elastic properties of the phases.
At entrapment conditions of 3 GPa and 800 ◦C both rutile
and amphibole have lower thermal expansion coefficients
than pyrope, so any mixture of the two in an inclusion will
similarly have a lower α (Eq. 4). Rutile is stiffer than py-
rope over the entire P –T range of interest, which means that
βpyrope > βrutile, and thus the entrapment isomeke of pure ru-
tile in pyrope has a positive slope at these entrapment con-
ditions. However, at low pressures at ambient T , αpyrope is
significantly less than that of rutile and amphibole, so the
slope of the isomeke must become negative, leading to a
minimum in the isomeke pressure at some intermediate T .
As amphibole is added to a rutile inclusion, the bulk modu-
lus of the inclusion at entrapment conditions is reduced to-
wards that of the pyrope host, and the entrapment isomekes
become steeper. The thermal expansion coefficient of rutile
plus amphibole mixtures at any given P and T does not vary
significantly with volume fraction, so the addition of amphi-
bole to rutile leads to both a depression of the minimum of
the entrapment isomeke and a decrease in Pfoot, as shown
for 7 vol % and 8 vol % amphibole in Fig. 12. Further small
increases in amphibole content (e.g. 9 vol % and 10 vol %)
continue to reduce the bulk modulus of the inclusion towards

Figure 11. (a) The variation of the bulk modulus and K ′ of rutile–
amphibole mixtures at room conditions as a function of the volume
fraction of amphibole. (b) Calculated pressures of rutile plus amphi-
bole inclusions trapped in pyrope garnet at 3 GPa and 800 ◦C. The
grey area indicates the compositions for which Pfoot is either not
defined or exceeds ±10 GPa. Calculations with the EoSs of pyrope
(Angel et al., 2022b), rutile (Angel et al., 2020) and cummingtonite
(Holland and Powell, 2011).

that of the host pyrope, leading to even steeper isomekes that
become undefined at lower pressures because the V/Vtrap
curves of the host and inclusion no longer have a crossing
point, a situation similar to that shown in Fig. 10 for the
inclusion containing 4 vol % water. For such compositions,
the entrapment isomeke also exists at temperatures far be-
low room T but not at room T , and thus a Pfoot at room T

does not exist. At ca. 11 vol % amphibole, the isomeke be-
comes vertical at entrapment conditions. At pressures just be-
low entrapment the bulk modulus of the host is greater than
that of the inclusion, so βpyrope < βinc, leading to an isomeke
with a negative slope. But the larger K ′ of the inclusion
mixture (Fig. 11a) causes the bulk modulus of the inclusion
to increase more rapidly than that of the pyrope host with
increasing pressure, with the result that above the entrap-
ment pressure the situation is reversed with Kpyrope <Kinc
and βpyrope > βinc, so the entrapment isomeke has a posi-
tive slope. Thus, the entrapment isomeke is curved towards
higher temperatures (Fig. 12), with the P –V curves at any
temperature resembling those of the inclusion of 10 vol %
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Figure 12. Entrapment isomekes for rutile plus amphibole inclu-
sions trapped in pyrope garnet at 3 GPa and 800 ◦C. Isomekes are la-
belled with the volume percent of amphibole in each inclusion, and
the grey arrow indicates how the entrapment isomekes rotate with
increasing amphibole content. The intersection of the entrapment
isomekes with 25 ◦C (vertical dashed line) correspond to the Pfoot
values shown in Fig. 11; note that the entrapment isomekes for in-
clusion with 9 vol %–12 vol % amphibole do not arrive to 25 ◦C and
therefore do not have a Pfoot. Calculated with the EoSs of pyrope
(Angel et al., 2022b), rutile (Angel et al., 2020) and cummingtonite
(Holland and Powell, 2011).

water shown in Fig. 10. With a further increase in amphibole
content the bulk modulus of the inclusion mixture falls be-
low that of the host, so the isomeke slope at entrapment has a
negative slope. By 20 vol % the slope is sufficiently shallow
that the higher K ′ of the inclusion no longer has the effect
of curving the isomeke back on itself, so Pfoot at room T ex-
ists but is larger than 10 GPa. Further increase in amphibole
content decreases the contrast between the bulk moduli of the
inclusion and host (Fig. 11a), making the isomekes shallower
until that for 100 % amphibole is almost flat because of the
similarity of the thermal expansion coefficients of amphibole
and pyrope at 3 GPa for all temperatures. Note that this anti-
clockwise rotation of the isomekes as amphibole is added to
rutile means that the isomekes for mixtures of the two phases
never lie between those of the pure phases (Fig. 12).

This example also shows that the exact behaviour of en-
trapment isomekes is very sensitive to the details of the EoSs
of both the host and inclusion phases and the relative change
in their elastic properties with P and T , especially at com-
positions for which the thermal expansion and/or compress-
ibility of the inclusion are very similar to those of the host
mineral. As one example, if the EoS of Milani et al. (2015)
for pyrope is used instead of that of Angel et al. (2022b), then
the isomekes for 10 vol %–12 vol % amphibole have the op-
posite curvature to those shown in Fig. 12 and instead curve
back to yield two values of Pfoot at room temperature. Pinc
for these entrapment conditions is calculated to be zero not
at∼ 11 vol % but at∼ 14 vol % amphibole (Musiyachenko et

al., 2021). Nonetheless, the comparison of Fig. 11 with Fig. 9
of Musiyachenko et al. (2021) shows that while relatively
small changes in mineral elastic properties can significantly
change the isomekes for compositions whose properties are
close to those of the host, the values of Pthermo and Pinc vary
much less and are therefore more robust. Conversely, the cal-
culation of entrapment isomekes from measured values of
Pinc becomes less reliable as the properties of the inclusion
approach that of the host, whether at the final conditions or
at conditions around entrapment.

The example of rutile inclusions in garnet also serves to
illustrate one further point. Measurements of pure rutile in-
clusions generally show them to be at room pressure (Musiy-
achenko et al., 2021; Cisneros and Befus, 2020) instead of
having negative Pinc expected from calculations. This does
not indicate that the calculations described here are incorrect
but shows that instead of being “stretched” into tension by
bonding to the surrounding host garnet, the rutile inclusion
crystals have been released by the host. The inclusions must
therefore include either a void space due to contraction of the
rutile back to the volume of a free rutile crystal at room con-
ditions or an interface region of a lower-density material (Al-
ifirova et al., 2022). In such cases we then expect Pinc = 0 for
amphibole–rutile mixtures for which the calculated Pinc < 0
and then increasing positive values of Pinc as the amphibole
content is increased further. The measured Pinc = 0 for in-
clusions that have undergone contraction cannot be used to
infer entrapment conditions using the methods described in
this paper.

5 Summary

Mixtures of mineral phases are, of course, common as rocks.
The thermodynamic properties of a mixed-phase inclusion,
which are the same as those of the same mixture in a rock
closed to chemical exchange, are not simple sums of the
properties of the individual phases. This means that it is not
possible to define the parameters of a single EoS for a mix-
ture by simply taking an average of the EoS parameters of the
phases at reference conditions weighted by either volume or
molar fractions. Thermodynamic calculations of phase equi-
libria in rocks normally also consider that the P and T are
externally imposed and that the volume of the system is free
to respond to changes in these two intensive variables and is
not modified by elastic interaction between the phases. Mul-
tiphase inclusions obviously differ from mixtures of phases
in rocks in two important respects; the volume of the system
is imposed by the host mineral (in response to the external
P and T ) which also interacts elastically with the inclusion.
When the host–inclusion system is subject to uniform tem-
perature, the inclusion pressure then becomes the dependent
variable and can be calculated as the sum of two contribu-
tions (Eq. 11). The first, Pthermo, arises from the imposition
of the change in the volume of the host mineral on the closed
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inclusion and is calculated without ambiguity from the EoS
of the host and that of the phases comprising the compos-
ite inclusion. The second, 1Prelax, arises from the elastic
interaction between the inclusion and the host (e.g. Angel
et al., 2014b, 2017b; Zhang, 1998). Calculations for multi-
phase inclusions have been implemented in the EoS mod-
ule of the CrysFML Fortran subroutine library (Rodriguez-
Carvajal and Gonzalez-Platas, 2003) and made available to
users in the EosFit7c program (Angel et al., 2014a). If it
is assumed that the properties of a solid solution are ideal
and the coefficients of volume compressibility and thermal
expansion vary linearly with molar proportions of the end-
members (but see Myhill, 2018), then the equations given
here and the mphase utility of EosFit7c can also be used to
calculate the EoS of any composition in the solid solution.

We have shown that, as for single-phase inclusions, it is
the contrast in the bulk moduli and the thermal expansivities
between the host and the inclusion that determines Pthermo,
which is quite often more important than the relaxation in
determining the final inclusion pressure. Problems and un-
certainties arise when the properties of the inclusion become
similar to those of the host. This will always occur for certain
volume fractions in two-phase inclusions when one phase is
stiffer than the host and the other softer, whether the softer
phase is a fluid or a solid. At these inclusion compositions the
entrapment isomekes can become vertical in P –T space and
can become undefined, as illustrated by a zircon plus 4 vol %
water inclusion in quartz (Fig. 10). Often associated with
such behaviour is the occurrence of entrapment isomekes that
are so strongly curved that two Pfoot are defined for a given
temperature (Fig. 10), creating difficulties for the calculation
of 1Prelax. A third possibility that we have not illustrated is
when the curves of V/Vtrap for both the host and inclusion
become identical over a pressure range because both K and
K ′ of host and inclusion are the same. For this last case there
is no unique Pfoot. These situations only affect the ability to
calculate the entrapment isomeke and Pfoot, while Pthermo re-
mains well-defined in all cases and the relaxation can be ap-
proximated by other methods not involving Pfoot. This can be
understood in another way by considering a small portion of
a single mineral grain as an inclusion with exactly the same
composition and EoS as its surrounding host. Then the “in-
clusion”, which is really part of the host crystal, will always
be at the same P and T as the host. Therefore, the host and in-
clusion have the same fractional volume change from entrap-
ment to any other P and T , the isomeke is no longer a unique
line in P –T space, and Pfoot cannot be defined. Nonetheless,
in this special case Pthermo = Pinc are always the same as the
external pressure, and thus Pthermo can be calculated from the
EoS of the mineral. In the cases where Pfoot cannot be deter-
mined, an alternative method of calculating 1Prelax must be
employed. We have found that a linear-elastic approximation
to Eq. (13) provides a good estimate of 1Prelax as −3KI

4GH
Pinc,

but there are other alternative methods (e.g. Gonzalez et al.,

2021; Zhong et al., 2021; Morganti et al., 2020) that should
converge to very similar values of Pinc.

The calculated inclusion pressures depend on the volume
fractions of the phases in the inclusion, which can be mea-
sured or estimated by a variety of methods including 3D Ra-
man mapping (e.g. Musiyachenko et al., 2021), diffraction or
optical imaging of the entrapped inclusion, or mapping of an
inclusion exposed for further analysis, for example by micro-
probe. The sensitivity, and hence reliability, of calculated en-
trapment pressures to the volume fractions of the constituent
phases depends on the contrast in the elastic properties of
the inclusion phases themselves. For inclusions containing
two or more solid phases the calculated Pinc values for the
same entrapment conditions are approximately linear with
the volume fractions of the phases (e.g. Fig. 11), and the
same applies to Ptrap values calculated from measured Pinc.
The uncertainty in Ptrap for mixed solid inclusions therefore
depends on the contrast in elastic properties, and especially
bulk moduli, of the phases involved. If this contrast is small,
then Ptrap values will be insensitive to estimates of the vol-
ume fractions of the phases in the inclusion. Conversely, al-
though it might be thought that the large contrast between the
bulk moduli of solids and fluids would always lead to very
strong variations in Pinc values with the amount of fluid in
the inclusion, this is not always the case because there can be
a compensating effect of the contrast in thermal expansion
coefficients (e.g. Fig. 4). For example, the variation in Pinc
values with fluid fraction in silicate inclusions in diamond
differs considerably between olivine, coesite and orthopy-
roxene (Figs. 5, 6). Therefore, no general guidelines can be
given for the sensitivity of Ptrap values to volume fractions of
fluids, but we have provided the tools for calculations to be
made for any inclusion system.

The examples that we have discussed illustrate that the
measured Pinc of mixed-phase inclusions must be interpreted
with care. In addition to considering the uncertainties that
may be introduced into host–inclusion calculations by un-
certainties in phase fractions in the inclusion, and when the
properties of the two become similar, one also should con-
sider whether the inclusion has undergone reactions or trans-
formations of any sort between the phases. Such changes
would affect both the volumes of the phases due to changes
in composition and their elastic properties and cannot be eas-
ily generalised. They are therefore excluded from our current
analysis because they should be analysed on a case-by-case
basis. One can, however, make the general statement that any
reactions or transformations in the inclusion that would lead
to an increase in the volume of an unconstrained system will
result in the inclusion pressure being buffered to a higher
value than expected had the reaction or transformation not
occurred (Gillet et al., 1984; Perrillat et al., 2003; Anzolini
et al., 2016; Arlt and Angel, 2000).

Lastly, careful consideration must be given to the mi-
crostructure of the inclusion before applying the analysis de-
scribed in this paper. Our analysis strictly only applies to in-
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clusions in which there are no significant elastic interactions
between the solid phases, a situation which occurs when the
crystals are bathed in sufficient fluid (Fig. 1); one can say
that the fluid percolates across the inclusion but the solids do
not. As the amount of fluid is decreased there will be a point
at which the solids also percolate and form a continuous net-
work (e.g. Fig. 1c). This will lead to stress gradients within
the solid grains, and the methods presented here should be
used with caution unless it can be demonstrated that the min-
eral grains are, on average, all at the same pressure and that
the stress gradients are limited either in magnitude or extent
within the grains. Otherwise, the stress state of multiphase in-
clusions must be analysed explicitly to account for the elastic
interaction between the grains, especially for microstructures
in which the elastic interactions are expected to be signifi-
cant and the stress state is unlikely to be isotropic and hydro-
static. Examples would include inclusions within inclusions
or grains containing coherently exsolved phases.

Appendix A: Definition of symbols used in this paper

Equation of state parameters, single phases
Vmi Molar volume of phase i
αi Thermal expansion coefficient of phase i
βi Volume compressibility of phase i
Ki Bulk modulus (inverse of volume compressibility) of phase i
K ′i Pressure derivative of the bulk modulus of phase i;

a subscript 0, as in V0 or K0, indicates the property at reference conditions
Parameters for mixtures of phases
mi Number of moles of phase i in a mixture (constant in a given mixture)
fi Volume fraction of phase i in a mixture (varies with P and T )
V,K , K ′, α, β Equation of state parameters of a mixture
Inclusion pressures
Ptrap The pressure of entrapment of the inclusion
Ttrap The temperature of entrapment of the inclusion
Pinc The final measured pressure of the inclusion, normally when the host mineral is at room conditions
Pfoot The pressure of the entrapment isomeke at the temperature of measurement of the inclusion pressure Pinc
Pthermo The pressure the inclusion would have if there was no elastic relaxation; it is the pressure of the inclusion

subject to the volume change in the host
1Prelax The pressure change in the inclusion due to the mutual elastic relaxation: 1Prelax = Pinc−Pthermo
KH,αH Bulk modulus and thermal expansion coefficient of the host mineral
GH Shear modulus of the host mineral
KI, αI Bulk modulus and thermal expansion coefficient of the inclusion
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