

Supplement of

Ab initio thermal expansion and thermoelastic properties of ringwood ite $(\gamma \text{-}Mg_2\text{SiO}_4)$ at mantle transition zone conditions

Donato Belmonte et al.

Correspondence to: Donato Belmonte (donato.belmonte@unige.it)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Computed vibrational frequencies in this work by ab initio B3LYP (ν_{TO} , wavenumbers in cm⁻¹) as compared to experimental results obtained by IR (Exp.1, Akaogi et al., 1984; w = weak, sh = shoulder) and Raman spectroscopy (Exp. 2 – McMillan & Akaogi, 1987; Exp. 3 – Chopelas et al., 1994). Other DFT calculations are also shown for comparison (Calc. 1 – GGA plane-wave calculations with ultrasoft pseudopotentials, Piekarz et al., 2002; Calc. 2 – GGA plane-wave calculations with the PAW, Projector Augmented Wave method, Hernandez et al., 2015; Calc. 3 – LDA plane-wave calculations with pseudopotentials, Yu & Wentzcovitch, 2006; Calc. 4 – LDA plane-wave calculations with pseudopotentials, Li et al., 2009). Longitudinal optic modes (LO) are in italics. The statistical index $|\bar{\Delta}| = M^{-1} \sum_{i=1}^{M} |\nu_{TO}^{calc} - \nu_{TO}^{exp}|$ is the mean absolute difference between experimental and ab initio values, as defined on the wavenumbers of 12 Raman-active modes (see text for details).

Mode	Activity	$\nu_{TO} (\text{cm}^{-1})$	Exp. 1	Exp. 2	Exp. 3	Calc. 1	Calc. 2	Calc. 3	Calc. 4
		(B3LYP)	(IR)	(Raman)	(Raman)	(GGA-PP)	(GGA-PAW)	(LDA)	(LDA)
T _{2u}	Silent	199.3				223	194		
T _{2g}	Raman	305.2		302	302	282	281	309	306
Eu	Silent	338.5				355	335		
T_{1u}	IR	341.3	350 w			350 / 350	333	345	345
T _{1g}	Silent	344.7				317	329		
Eg	Raman	371.8		370	372	343	357	375	372
T_{1u}	IR	396.0	395 sh - 445			396 / 447	389	423	418
T _{2u}	Silent	438.9				407	421		
T_{1u}	IR	545.3	$510 \; sh-545 \; w$			475 / 561	502	549	545
Eu	Silent	566.5				523	531		
A _{2u}	Silent	573.7				563	560		
T _{2g}	Raman	619.4		600	600	571	574	586	585
T _{2g}	Raman	791.2		794	796	778	765	817	811
T_{1u}	IR	802.4	785 sh - 830			761 / 896	768	829	823
A _{2u}	Silent	810.2				790	781		
A _{1g}	Raman	831.2		836	834	805	795	831	828
$ \Delta $		7	-	-	-	24	25	12	10

Table S2. Pressure dependence of vibrational frequencies (dv_i/dP , in cm⁻¹/GPa) and mode Grüneisen parameters (γ_i) as calculated in this work by ab initio B3LYP. Ab initio mode Grüneisen parameters are compared to experimental results (Exp. – Chopelas et al., 1994) and other DFT calculations (Calc. 1 – GGA plane-wave calculations with ultrasoft pseudopotentials, Piekarz et al., 2002; Calc. 2 – GGA plane-wave calculations with the PAW, Projector Augmented Wave method, Hernandez et al., 2015). $\langle \gamma \rangle$ is the average mode Grüneisen parameter.

Mode	Activity	$d\nu_i/dP$	γ_{i}	Exp.	Calc. 1	Calc. 2
		(B3LYP)	(B3LYP)	(Raman)	(GGA-PP)	(GGA-PAW)
T _{2u}	Silent	0.95	1.774		1.697	3.47
T _{2g}	Raman	1.89	1.446	1.54	1.506	1.68
Eu	Silent	1.89	1.704		1.573	1.99
T _{1u}	IR	0.54	0.768		0.937	1.26
T_{1g}	Silent	1.93	1.168		1.279	1.23
Eg	Raman	1.81	1.011	0.985	1.049	1.12
T _{1u}	IR	3.50	1.806		1.559	1.64
T _{2u}	Silent	3.56	1.650		1.808	1.66
T_{1u}	IR	2.97	1.235		0.880	1.26
Eu	Silent	3.11	1.016		1.183	1.15
A _{2u}	Silent	2.20	0.890		1.038	0.95
T _{2g}	Raman	1.75	0.590	0.661	0.721	0.75
T _{2g}	Raman	4.98	1.395	1.26	1.349	1.37
T_{1u}	IR	4.75	1.274		1.228	1.30
A _{2u}	Silent	4.42	1.173		1.120	1.14
A _{1g}	Raman	4.12	1.108	0.926	0.951	1.11
<y></y>			1.19	1.11	1.18	1.39

References

Akaogi, M., Ross, N. L., McMillan, P., and Navrotsky, A.: The Mg₂SiO₄ polymorphs (olivine, modified spinel and spinel) – thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations, Am. Mineral., 69, 499–512, 1984.

Chopelas, A., Boehler, R., and Ko, T.: Thermodynamics and behavior of γ -Mg₂SiO₄ at high pressure: implications for Mg₂SiO₄ phase equilibrium, Phys. Chem. Minerals, 21, 351–359, <u>https://doi.org/10.1007/BF00203293</u>, 1994.

Hernández, E. M., Brodholt, J., and Alfè, D.: Structural, vibrational and thermodynamic properties of Mg₂SiO₄ and MgSiO₃ minerals from first-principles simulations, Phys. Earth Planet. Int., 240, 1–24, http://dx.doi.org/10.1016/j.pepi.2014.10.007, 2015.

Li, L., Brodholt, J., and Alfè, D.: Structure and elasticity of hydrous ringwoodite: a first principle investigation, Phys. Earth Planet. Int., 177, 103–115, <u>https://doi.org/10.1016/j.pepi.2009.07.007</u>, 2009.

McMillan, P., and Akaogi, M.: Raman spectra of β -Mg₂SiO₄ (modified spinel) and γ -Mg₂SiO₄ (spinel), Am. Mineral., 72, 361–364, 1987.

Piekarz, P., Jochym, P. T., Parlinski, K., and Łażewski, J.: High-pressure and thermal properties of γ -Mg₂SiO₄ from first-principles calculations, J. Chem. Phys., 117, 3340–3344, <u>https://doi.org/10.1063/1.1494802</u>, 2002.

Yu, Y. G. and Wentzcovitch, R. M.: Density functional study of vibrational and thermodynamic properties of ringwoodite, J. Geophys. Res. Solid Earth, 111, B12202, <u>https://doi.org/10.1029/2006JB004282</u>, 2006.